Related
I have a plot like this, plotting a semicircle with x and y
I want to add arrows at each point like so (ignore the horrible paint job):
Is there an easy way to add arrows perpendicular to the plot?
Current code:
import numpy as np
import matplotlib.pyplot as plt
r = 2
h = 0
k = 0
x0 = h-r
x1 = h+r
x = np.linspace(x0,x1,9)
y = k + np.sqrt(r**2 - (x-h)**2)
plt.scatter(x,y)
plt.xlim(-4,4)
plt.ylim(-4,4)
PERPENDICULAR TO THE TANGENT OF THE CURVE I'M SORRY I FORGOT TO ADD THIS
A point in space has no idea what "perpendicular" means, but assuming your y is some function of x that has a derivate, you can think of the derivate of the function at some point to be the tangent of the curve at that point, and to get a perpendicular vector you just need to rotate the vector counter-clockwise 90 degrees:
x1, y1 = -y0, x0
We know that these points come from a circle. So given three points we can easily find the center using basic geometry notions. If you need a refresher, take a look here.
For this particular case, the center is at the origin. Knowing the center coordinates, the normal at each point is just the vector from the center to the point itself. Since the center is the origin, the normals' components are just given by the coordinates of the points themselves.
import numpy as np
import matplotlib.pyplot as plt
r = 2
h = 0
k = 0
x0 = h-r
x1 = h+r
x = np.linspace(x0, x1, 9)
y = k + np.sqrt(r**2 - (x-h)**2)
center = np.array([0.0, 0.0])
plt.scatter(x, y)
plt.quiver(x, y, x, y, width=0.005)
plt.xlim(-4, 4)
plt.ylim(-4, 4)
plt.show()
If you are in a hurry and you do not have time to implement equations, you could use the scikit-spatial library in the following way:
from skspatial.objects import Circle, Vector, Points
import numpy as np
import matplotlib.pyplot as plt
r = 2
h = 0
k = 0
x0 = h-r
x1 = h+r
x = np.linspace(x0, x1, 9)
y = k + np.sqrt(r**2 - (x-h)**2)
points = Points(np.vstack((x, y)).T)
circle = Circle.best_fit(np.vstack((x, y)).T)
center = circle.point
normals = np.array([Vector.from_points(center, point) for point in points])
plt.scatter(x, y)
plt.quiver(x, y, normals[:, 0], normals[:, 1], width=0.005)
plt.xlim(-4, 4)
plt.ylim(-4, 4)
plt.show()
Postulate of blunova's and simon's answers is correct, generally speaking: points have no normal, but curve have; so you need to rely on what you know your curve is. Either, as blunova described it, by the knowledge that it is a circle, and computing those normal with ad-hoc computation from that knowledge.
Or, as I am about to describe, using the function f such as y=f(x). and using knowledge on what is the normal to such a (x,f(x)) chart.
Here is your code, written with such a function f
import numpy as np
import matplotlib.pyplot as plt
r = 2
h = 0
k = 0
x0 = h-r
x1 = h+r
x = np.linspace(x0,x1,9)
def f(x):
return k + np.sqrt(r**2 - (x-h)**2)
y=f(x)
plt.scatter(x,y)
plt.xlim(-4,4)
plt.ylim(-4,4)
So, all I did here is rewriting your line y=... in the form of a function.
From there, it is possible to compute the normal to each point of the chart (x,f(x)).
The tangent to a point (x,f(x)) is well known: it is vector (1,f'(x)), where f'(x) is the derivative of f. So, normal to that is (-f'(x), 1).
Divided by √(f'(x)²+1) to normalize this vector.
So, just use that as entry to quiver.
First compute a derivative of your function
dx=0.001
def fprime(x):
return (f(x+dx)-f(x-dx))/(2*dx)
Then, just
plt.quiver(x, f(x), -fprime(x), 1)
Or, to have all vector normalized
plt.quiver(x, f(x), -fprime(x)/np.sqrt(fprime(x)**2+1), 1/np.sqrt(fprime(x)**2+1))
(note that fprime and the normalization part are all vectorizable operation, so it works with x being a arange)
All together
import numpy as np
import matplotlib.pyplot as plt
r = 2
h = 0
k = 0
x0 = h-r
x1 = h+r
def f(x):
return k+ np.sqrt(r**2 - (x-h)**2)
dx=0.001
x = np.linspace(x0+dx,x1-dx,9)
y = f(x)
def fprime(x):
return (f(x+dx)-f(x-dx))/(2*dx)
plt.scatter(x,y)
plt.quiver(x,f(x), -fprime(x)/np.sqrt(fprime(x)**2+1), 1/np.sqrt(fprime(x)**2+1))
plt.xlim(-4,4)
plt.ylim(-4,4)
plt.show()
That is almost an exact copy of your code, but for the quiver line, and with the addition of fprime.
One other slight change, specific to your curve, is that I changed x range to ensure the computability of fprime (if first x is x0, then fprime need f(x0-dx) which does not exist because of sqrt. Likewise for x1. So, first x is x0+dx, and last is x1-dx, which is visually the same)
That is the main advantage of this solution over blunova's: it is your code, essentially. And would work if you change f, without assuming that f is a circle. All that is assume is that f is derivable (and if it were not, you could not define what those normal are anyway).
For example, if you want to do the same with a parabola instead, just change f
import numpy as np
import matplotlib.pyplot as plt
r = 2
h = 0
k = 0
x0 = h-r
x1 = h+r
def f(x):
return x**2
dx=0.001
x = np.linspace(x0+dx,x1-dx,9)
y = f(x)
def fprime(x):
return (f(x+dx)-f(x-dx))/(2*dx)
plt.scatter(x,y)
plt.quiver(x,f(x), -fprime(x)/np.sqrt(fprime(x)**2+1), 1/np.sqrt(fprime(x)**2+1))
plt.xlim(-4,4)
plt.ylim(-2,5)
plt.show()
All I changed here is the f formula. Not need for a new reasoning to compute the normal.
Last remark: an even more accurate version (not forcing the approximate computation of fprime with a dx) would be to use sympy to define f, and then compute the real, symbolic, derivative of f. But that doesn't seem necessary for your case.
I would like to plot implicit equations (of the form f(x, y)=g(x, y) eg. X^y=y^x) in Matplotlib. Is this possible?
Since you've tagged this question with sympy, I will give such an example.
From the documentation: http://docs.sympy.org/latest/modules/plotting.html.
from sympy import var, plot_implicit
var('x y')
plot_implicit(x*y**3 - y*x**3)
I don't believe there's very good support for this, but you could try something like
import matplotlib.pyplot
from numpy import arange
from numpy import meshgrid
delta = 0.025
xrange = arange(-5.0, 20.0, delta)
yrange = arange(-5.0, 20.0, delta)
X, Y = meshgrid(xrange,yrange)
# F is one side of the equation, G is the other
F = Y**X
G = X**Y
matplotlib.pyplot.contour(X, Y, (F - G), [0])
matplotlib.pyplot.show()
See the API docs for contour: if the fourth argument is a sequence then it specifies which contour lines to plot. But the plot will only be as good as the resolution of your ranges, and there are certain features it may never get right, often at self-intersection points.
matplotlib does not plot equations; it plots serieses of points. You can use a tool like scipy.optimize to numerically calculate y points from x values (or vice versa) of implicit equations numerically or any number of other tools as appropriate.
For example, here is an example where I plot the implicit equation x ** 2 + x * y + y ** 2 = 10 in a certain region.
from functools import partial
import numpy
import scipy.optimize
import matplotlib.pyplot as pp
def z(x, y):
return x ** 2 + x * y + y ** 2 - 10
x_window = 0, 5
y_window = 0, 5
xs = []
ys = []
for x in numpy.linspace(*x_window, num=200):
try:
# A more efficient technique would use the last-found-y-value as a
# starting point
y = scipy.optimize.brentq(partial(z, x), *y_window)
except ValueError:
# Should we not be able to find a solution in this window.
pass
else:
xs.append(x)
ys.append(y)
pp.plot(xs, ys)
pp.xlim(*x_window)
pp.ylim(*y_window)
pp.show()
There is an implicit equation (and inequality) plotter in sympy. It is created as a part of GSoC and it produces the plots as matplotlib figure instances.
Docs at http://docs.sympy.org/latest/modules/plotting.html#sympy.plotting.plot_implicit.plot_implicit
Since sympy version 0.7.2 it is available as:
>>> from sympy.plotting import plot_implicit
>>> p = plot_implicit(x < sin(x)) # also creates a window with the plot
>>> the_matplotlib_axes_instance = p._backend._ax
Edit: If you plot a hyperbola using plt.plot() then you will get the undesired branching effect. plt.scatter() in its place should still work. Then there is no need to reverse the order of negative or positive values, but if you wanted to use this code for some reason (instead of using contour plot from scipy) it will work anyways with plt.scatter()
An implicit function in two dimensions in general can be written as:
f(x,y)=0
Since we cannot write this as f(x) = y, then we cannot compute y from an easily programmable set of discrete x. It is possible, however, to see how close a point generated from a grid is from the true function.
So make a grid of x and y to a custom point density and see how close each point is to satisfying the equation.
In other words, if we can't get f(x,y) =0, perhaps we can get close to 0. Instead of looking for f(x,y) =0 look for f(x,y) > -\epsilon and f(x,y) < \epsilon.
\epsilon is your tolerance and if this condition fits within your tolerance of 0 and tuning the grid appropriately you can get your function plotted.
The code below does just that for a circle of radius 1 (f(x,y)= x^2 + y^2 -1 = 0). I used the symbol dr for \epsilon.
Also, to make sure the plt.plot function connects the lines in the correct order, I use a reversed version of the x values for the negative y values. That way, the evaluation of f(x,y) is done in a clockwise loop so that the nearest values are one after another. Without this, lines from opposite sides of the function would connect and it would appear slightly filled in.
import numpy as np
import matplotlib.pyplot as plt
r = 1 #arbitrary radius to set up the span of points
points = 250
dr = r/points #epsilon window
x=list(np.linspace(-5*r,5*r,5*points+1)) #setting up the x,y grid
y=x
xreversed = reversed(x) #reversing the array
x_0=[] #placeholder arrays
y_0=[]
for i in x:
for j in y:
if i**2 + j**2 -1 < dr and i**2+j**2 -1 > -dr and j >= 0: #positive values of y
x_0.append(i)
y_0.append(j)
for i in xreversed:
for j in y:
if i**2+j**2 -1 < dr and i**2+j**2 -1 > -dr and j < 0: #negative values of y, using x reversed
x_0.append(i)
y_0.append(j)
plt.plot(x_0,y_0)
plt.show()
Many thanks Steve, Mike, Alex. I have gone along with Steve's solution (please see code below). My only remaining issue is that the contour plot appears behind my gridlines, as opposed to a regular plot, which I can force to the front with zorder. Any more halp greatly appreciated.
Cheers,
Geddes
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator, FormatStrFormatter
import numpy as np
fig = plt.figure(1)
ax = fig.add_subplot(111)
# set up axis
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
# setup x and y ranges and precision
x = np.arange(-0.5,5.5,0.01)
y = np.arange(-0.5,5.5,0.01)
# draw a curve
line, = ax.plot(x, x**2,zorder=100)
# draw a contour
X,Y=np.meshgrid(x,y)
F=X**Y
G=Y**X
ax.contour(X,Y,(F-G),[0],zorder=100)
#set bounds
ax.set_xbound(-1,7)
ax.set_ybound(-1,7)
#produce gridlines of different colors/widths
ax.xaxis.set_minor_locator(MultipleLocator(0.2))
ax.yaxis.set_minor_locator(MultipleLocator(0.2))
ax.xaxis.grid(True,'minor',linestyle='-')
ax.yaxis.grid(True,'minor',linestyle='-')
minor_grid_lines = [tick.gridline for tick in ax.xaxis.get_minor_ticks()]
for idx,loc in enumerate(ax.xaxis.get_minorticklocs()):
if loc % 2.0 == 0:
minor_grid_lines[idx].set_color('0.3')
minor_grid_lines[idx].set_linewidth(2)
elif loc % 1.0 == 0:
minor_grid_lines[idx].set_c('0.5')
minor_grid_lines[idx].set_linewidth(1)
else:
minor_grid_lines[idx].set_c('0.7')
minor_grid_lines[idx].set_linewidth(1)
minor_grid_lines = [tick.gridline for tick in ax.yaxis.get_minor_ticks()]
for idx,loc in enumerate(ax.yaxis.get_minorticklocs()):
if loc % 2.0 == 0:
minor_grid_lines[idx].set_color('0.3')
minor_grid_lines[idx].set_linewidth(2)
elif loc % 1.0 == 0:
minor_grid_lines[idx].set_c('0.5')
minor_grid_lines[idx].set_linewidth(1)
else:
minor_grid_lines[idx].set_c('0.7')
minor_grid_lines[idx].set_linewidth(1)
plt.show()
I have to check whether a point is within an ellipse with semiaxes a and b. I generated a list of tuples (dots) and then generated another list of tuples (dotsin) where I only keep those points that are within an ellipse.
However, when generated, some points fall out of the ellipse. Is this error accumulation trough calculations, and if so how do I improve on this so the dots do not fall out of the curve?
Do note that I am a bit rusty in python and some things are not obvious for me.
Thanks in advance!
dots=[(random.uniform(-a,a),random.uniform(-b,b)) for i in range(1000)]#;dots
dotsin=[(x,y) for x,y in dots if (x**2 + y**2)<((a*cos(atan(y/x)))**2 + (b*sin(atan(y/x)))**2)]#;dotsin
plt.scatter([x[0] for x in dotsin],[y[1] for y in dotsin])
plt.grid()
Your condition (x**2 + y**2)<((a*cos(atan(y/x)))**2 + (b*sin(atan(y/x)))**2) is equivalent to (x**2 + y**2)**2 < (a*x) ** 2 + (b*y) ** 2. This is not an equation of ellipse. An equation of ellipse is (x/a)**2 + (y/b)**2 < 1.
from numpy import random
import numpy as np
from math import sin, cos, atan
import matplotlib.pyplot as plt
%matplotlib inline
a = 3
b = 2
n = 1000
dots=[(random.uniform(-a,a),random.uniform(-b,b)) for i in range(n)]#;dots
dotsin=[(x,y) for x,y in dots if (x/a)**2 + (y/b)**2 < 1]#;dotsin
plt.scatter([x[0] for x in dotsin],[y[1] for y in dotsin])
phi = np.linspace(0, 2*np.pi, 200)
plt.plot(a*np.cos(phi), b*np.sin(phi))
plt.grid()
I am trying to use circle fitting code for 3D data set. I have modified it for 3D points just adding z-coordinate where necessary. My modification works fine for one set of points and works bad for another. Please look at the code, if it has some errors.
import trig_items
import numpy as np
from trig_items import *
from numpy import *
from matplotlib import pyplot as p
from scipy import optimize
# Coordinates of the 3D points
##x = r_[36, 36, 19, 18, 33, 26]
##y = r_[14, 10, 28, 31, 18, 26]
##z = r_[0, 1, 2, 3, 4, 5]
x = r_[ 2144.18908574, 2144.26880854, 2144.05552972, 2143.90303742, 2143.62520676,
2143.43628579, 2143.14005775, 2142.79919654, 2142.51436023, 2142.11240866,
2141.68564346, 2141.29333828, 2140.92596405, 2140.3475612, 2139.90848046,
2139.24661021, 2138.67384709, 2138.03313547, 2137.40301734, 2137.40908256,
2137.06611224, 2136.50943781, 2136.0553113, 2135.50313189, 2135.07049922,
2134.62098139, 2134.10459535, 2133.50838433, 2130.6600465, 2130.03537342,
2130.04047644, 2128.83522468, 2127.79827542, 2126.43513385, 2125.36700593,
2124.00350543, 2122.68564431, 2121.20709478, 2119.79047011, 2118.38417647,
2116.90063343, 2115.52685778, 2113.82246629, 2112.21159431, 2110.63180117,
2109.00713198, 2108.94434529, 2106.82777156, 2100.62343757, 2098.5090226,
2096.28787738, 2093.91550703, 2091.66075061, 2089.15316429, 2086.69753869,
2084.3002414, 2081.87590579, 2079.19141866, 2076.5394574, 2073.89128676,
2071.18786213]
y = r_[ 725.74913818, 724.43874065, 723.15226506, 720.45950581, 717.77827954,
715.07048092, 712.39633862, 709.73267688, 707.06039438, 704.43405908,
701.80074596, 699.15371526, 696.5309022, 693.96109921, 691.35585501,
688.83496327, 686.32148661, 683.80286662, 681.30705568, 681.30530975,
679.66483676, 678.01922321, 676.32721779, 674.6667554, 672.9658024,
671.23686095, 669.52021535, 667.84999077, 659.19757984, 657.46179949,
657.45700508, 654.46901086, 651.38177517, 648.41739432, 645.32356976,
642.39034578, 639.42628453, 636.51107198, 633.57732055, 630.63825133,
627.75308356, 624.80162215, 622.01980232, 619.18814892, 616.37688894,
613.57400131, 613.61535723, 610.4724493, 600.98277781, 597.84782844,
594.75983001, 591.77946964, 588.74874068, 585.84525834, 582.92311166,
579.99564481, 577.06666417, 574.30782762, 571.54115037, 568.79760614,
566.08551098]
z = r_[ 339.77146775, 339.60021095, 339.47645894, 339.47130963, 339.37216218,
339.4126132, 339.67942046, 339.40917728, 339.39500353, 339.15041461,
339.38959195, 339.3358209, 339.47764895, 339.17854867, 339.14624071,
339.16403926, 339.02308811, 339.27011082, 338.97684183, 338.95087698,
338.97321177, 339.02175448, 339.02543922, 338.88725411, 339.06942374,
339.0557553, 339.04414618, 338.89234303, 338.95572249, 339.00880416,
339.00413073, 338.91080374, 338.98214758, 339.01135789, 338.96393537,
338.73446188, 338.62784913, 338.72443217, 338.74880562, 338.69090173,
338.50765186, 338.49056867, 338.57353355, 338.6196255, 338.43754399,
338.27218569, 338.10587265, 338.43880881, 338.28962141, 338.14338705,
338.25784154, 338.49792568, 338.15572139, 338.52967693, 338.4594245,
338.1511823, 338.03711207, 338.19144663, 338.22022045, 338.29032321,
337.8623197 ]
# coordinates of the barycenter
xm = mean(x)
ym = mean(y)
zm = mean(z)
### Basic usage of optimize.leastsq
def calc_R(xc, yc, zc):
""" calculate the distance of each 3D points from the center (xc, yc, zc) """
return sqrt((x - xc) ** 2 + (y - yc) ** 2 + (z - zc) ** 2)
def func(c):
""" calculate the algebraic distance between the 3D points and the mean circle centered at c=(xc, yc, zc) """
Ri = calc_R(*c)
return Ri - Ri.mean()
center_estimate = xm, ym, zm
center, ier = optimize.leastsq(func, center_estimate)
##print center
xc, yc, zc = center
Ri = calc_R(xc, yc, zc)
R = Ri.mean()
residu = sum((Ri - R)**2)
print 'R =', R
So, for the first set of x, y, z (commented in the code) it works well: the output is R = 39.0097846735. If I run the code with the second set of points (uncommented) the resulting radius is R = 108576.859834, which is almost straight line. I plotted the last one.
The blue points is a given data set, the red ones is the arc of the resulting radius R = 108576.859834. It is obvious that the given data set has much smaller radius than the result.
Here is another set of points.
It is clear that the least squares does not work correctly.
Please help me solving this issue.
UPDATE
Here is my solution:
### fit 3D arc into a set of 3D points ###
### output is the centre and the radius of the arc ###
def fitArc3d(arr, eps = 0.0001):
# Coordinates of the 3D points
x = numpy.array([arr[k][0] for k in range(len(arr))])
y = numpy.array([arr[k][4] for k in range(len(arr))])
z = numpy.array([arr[k][5] for k in range(len(arr))])
# coordinates of the barycenter
xm = mean(x)
ym = mean(y)
zm = mean(z)
### gradient descent minimisation method ###
pnts = [[x[k], y[k], z[k]] for k in range(len(x))]
meanP = Point(xm, ym, zm) # mean point
Ri = [Point(*meanP).distance(Point(*pnts[k])) for k in range(len(pnts))] # radii to the points
Rm = math.fsum(Ri) / len(Ri) # mean radius
dR = Rm + 10 # difference between mean radii
alpha = 0.1
c = meanP
cArr = []
while dR > eps:
cArr.append(c)
Jx = math.fsum([2 * (x[k] - c[0]) * (Ri[k] - Rm) / Ri[k] for k in range(len(Ri))])
Jy = math.fsum([2 * (y[k] - c[1]) * (Ri[k] - Rm) / Ri[k] for k in range(len(Ri))])
Jz = math.fsum([2 * (z[k] - c[2]) * (Ri[k] - Rm) / Ri[k] for k in range(len(Ri))])
gradJ = [Jx, Jy, Jz] # find gradient
c = [c[k] + alpha * gradJ[k] for k in range(len(c)) if len(c) == len(gradJ)] # find new centre point
Ri = [Point(*c).distance(Point(*pnts[k])) for k in range(len(pnts))] # calculate new radii
RmOld = Rm
Rm = math.fsum(Ri) / len(Ri) # calculate new mean radius
dR = abs(Rm - RmOld) # new difference between mean radii
return Point(*c), Rm
It is not very optimal code (I do not have time to fine tune it) but it works.
I guess the problem is the data and the corresponding algorithm. The least square method works fine if it produces a local parabolic minimum, such that a simple gradient method goes approximately direction minimum. Unfortunately, this is not necessarily the case for your data. You can check this by keeping some rough estimates for xc and yc fixed and plotting the sum of the squared residuals as a function of zc and R. I get a boomerang shaped minimum. Depending on your starting parameters you might end in one of the branches going away from the real minimum. Once in the valley this can be very flat such that you exceed the number of max iterations or get something that is accepted within the tolerance of the algorithm. As always, thinks are better the better your starting parameters. Unfortunately you have only a small arc of the circle, so that it is difficult to get better. I am not a specialist in Python, but I think that leastsq allows you to play with the Jacobian and Gradient Methods. Try to play with the tolerance as well.
In short: the code looks basically fine to me, but your data is pathological and you have to adapt the code to that kind of data.
There is a non-iterative solution in 2D from Karimäki, maybe you can adapt
this method to 3D. You can also look at this. Sure you will find more literature.
I just checked the data using a Simplex-Algorithm. The minimum is, as I said, not well behaved. See here some cuts of the residual function. Only in the xy-plane you get some reasonable behavior. The properties of the zr- and xr- plane make the finding process very difficult.
So in the beginning the simplex algorithm finds several almost stable solutions. You can see them as flat steps in the graph below (blue x, purple y, yellow z, green R). At the end the algorithm has to walk down the almost flat but very stretched out valley, resulting in the final conversion of z and R. Nevertheless, I expect many regions that look like a solution if the tolerance is insufficient. With the standard tolerance of 10^-5 the algoritm stopped after approx 350 iterations. I had to set it to 10^-10 to get this solution, i.e. [1899.32, 741.874, 298.696, 248.956], which seems quite ok.
Update
As mentioned earlier, the solution depends on the working precision and requested accuracy. So your hand made gradient method works probably better as these values are different compared to the build-in least square fit. Nevertheless, this is my version making a two step fit. First I fit a plane to the data. In a next step I fit a circle within this plane. Both steps use the least square method. This time it works, as each step avoids critically shaped minima. (Naturally, the plane fit runs into problems if the arc segment becomes small and the data lies virtually on a straight line. But this will happen for all algorithms)
from math import *
from matplotlib import pyplot as plt
from scipy import optimize
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import pprint as pp
dataTupel=zip(xs,ys,zs) #your data from above
# Fitting a plane first
# let the affine plane be defined by two vectors,
# the zero point P0 and the plane normal n0
# a point p is member of the plane if (p-p0).n0 = 0
def distanceToPlane(p0,n0,p):
return np.dot(np.array(n0),np.array(p)-np.array(p0))
def residualsPlane(parameters,dataPoint):
px,py,pz,theta,phi = parameters
nx,ny,nz =sin(theta)*cos(phi),sin(theta)*sin(phi),cos(theta)
distances = [distanceToPlane([px,py,pz],[nx,ny,nz],[x,y,z]) for x,y,z in dataPoint]
return distances
estimate = [1900, 700, 335,0,0] # px,py,pz and zeta, phi
#you may automize this by using the center of mass data
# note that the normal vector is given in polar coordinates
bestFitValues, ier = optimize.leastsq(residualsPlane, estimate, args=(dataTupel))
xF,yF,zF,tF,pF = bestFitValues
point = [xF,yF,zF]
normal = [sin(tF)*cos(pF),sin(tF)*sin(pF),cos(tF)]
# Fitting a circle inside the plane
#creating two inplane vectors
sArr=np.cross(np.array([1,0,0]),np.array(normal))#assuming that normal not parallel x!
sArr=sArr/np.linalg.norm(sArr)
rArr=np.cross(sArr,np.array(normal))
rArr=rArr/np.linalg.norm(rArr)#should be normalized already, but anyhow
def residualsCircle(parameters,dataPoint):
r,s,Ri = parameters
planePointArr = s*sArr + r*rArr + np.array(point)
distance = [ np.linalg.norm( planePointArr-np.array([x,y,z])) for x,y,z in dataPoint]
res = [(Ri-dist) for dist in distance]
return res
estimateCircle = [0, 0, 335] # px,py,pz and zeta, phi
bestCircleFitValues, ier = optimize.leastsq(residualsCircle, estimateCircle,args=(dataTupel))
rF,sF,RiF = bestCircleFitValues
print bestCircleFitValues
# Synthetic Data
centerPointArr=sF*sArr + rF*rArr + np.array(point)
synthetic=[list(centerPointArr+ RiF*cos(phi)*rArr+RiF*sin(phi)*sArr) for phi in np.linspace(0, 2*pi,50)]
[cxTupel,cyTupel,czTupel]=[ x for x in zip(*synthetic)]
### Plotting
d = -np.dot(np.array(point),np.array(normal))# dot product
# create x,y mesh
xx, yy = np.meshgrid(np.linspace(2000,2200,10), np.linspace(540,740,10))
# calculate corresponding z
# Note: does not work if normal vector is without z-component
z = (-normal[0]*xx - normal[1]*yy - d)/normal[2]
# plot the surface, data, and synthetic circle
fig = plt.figure()
ax = fig.add_subplot(211, projection='3d')
ax.scatter(xs, ys, zs, c='b', marker='o')
ax.plot_wireframe(xx,yy,z)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
bx = fig.add_subplot(212, projection='3d')
bx.scatter(xs, ys, zs, c='b', marker='o')
bx.scatter(cxTupel,cyTupel,czTupel, c='r', marker='o')
bx.set_xlabel('X Label')
bx.set_ylabel('Y Label')
bx.set_zlabel('Z Label')
plt.show()
which give a radius of 245. This is close to what the other approach gave (249). So within error margins I get the same.
The plotted result looks reasonable.
Hope this helps.
Feel like you missed some constraints in your 1st version code. The implementation could be explained as fitting a sphere to 3d points. So that's why the 2nd radius for 2nd data list is almost straight line. It's thinking like you are giving it a small circle on a large sphere.
I would like to plot implicit equations (of the form f(x, y)=g(x, y) eg. X^y=y^x) in Matplotlib. Is this possible?
Since you've tagged this question with sympy, I will give such an example.
From the documentation: http://docs.sympy.org/latest/modules/plotting.html.
from sympy import var, plot_implicit
var('x y')
plot_implicit(x*y**3 - y*x**3)
I don't believe there's very good support for this, but you could try something like
import matplotlib.pyplot
from numpy import arange
from numpy import meshgrid
delta = 0.025
xrange = arange(-5.0, 20.0, delta)
yrange = arange(-5.0, 20.0, delta)
X, Y = meshgrid(xrange,yrange)
# F is one side of the equation, G is the other
F = Y**X
G = X**Y
matplotlib.pyplot.contour(X, Y, (F - G), [0])
matplotlib.pyplot.show()
See the API docs for contour: if the fourth argument is a sequence then it specifies which contour lines to plot. But the plot will only be as good as the resolution of your ranges, and there are certain features it may never get right, often at self-intersection points.
matplotlib does not plot equations; it plots serieses of points. You can use a tool like scipy.optimize to numerically calculate y points from x values (or vice versa) of implicit equations numerically or any number of other tools as appropriate.
For example, here is an example where I plot the implicit equation x ** 2 + x * y + y ** 2 = 10 in a certain region.
from functools import partial
import numpy
import scipy.optimize
import matplotlib.pyplot as pp
def z(x, y):
return x ** 2 + x * y + y ** 2 - 10
x_window = 0, 5
y_window = 0, 5
xs = []
ys = []
for x in numpy.linspace(*x_window, num=200):
try:
# A more efficient technique would use the last-found-y-value as a
# starting point
y = scipy.optimize.brentq(partial(z, x), *y_window)
except ValueError:
# Should we not be able to find a solution in this window.
pass
else:
xs.append(x)
ys.append(y)
pp.plot(xs, ys)
pp.xlim(*x_window)
pp.ylim(*y_window)
pp.show()
There is an implicit equation (and inequality) plotter in sympy. It is created as a part of GSoC and it produces the plots as matplotlib figure instances.
Docs at http://docs.sympy.org/latest/modules/plotting.html#sympy.plotting.plot_implicit.plot_implicit
Since sympy version 0.7.2 it is available as:
>>> from sympy.plotting import plot_implicit
>>> p = plot_implicit(x < sin(x)) # also creates a window with the plot
>>> the_matplotlib_axes_instance = p._backend._ax
Edit: If you plot a hyperbola using plt.plot() then you will get the undesired branching effect. plt.scatter() in its place should still work. Then there is no need to reverse the order of negative or positive values, but if you wanted to use this code for some reason (instead of using contour plot from scipy) it will work anyways with plt.scatter()
An implicit function in two dimensions in general can be written as:
f(x,y)=0
Since we cannot write this as f(x) = y, then we cannot compute y from an easily programmable set of discrete x. It is possible, however, to see how close a point generated from a grid is from the true function.
So make a grid of x and y to a custom point density and see how close each point is to satisfying the equation.
In other words, if we can't get f(x,y) =0, perhaps we can get close to 0. Instead of looking for f(x,y) =0 look for f(x,y) > -\epsilon and f(x,y) < \epsilon.
\epsilon is your tolerance and if this condition fits within your tolerance of 0 and tuning the grid appropriately you can get your function plotted.
The code below does just that for a circle of radius 1 (f(x,y)= x^2 + y^2 -1 = 0). I used the symbol dr for \epsilon.
Also, to make sure the plt.plot function connects the lines in the correct order, I use a reversed version of the x values for the negative y values. That way, the evaluation of f(x,y) is done in a clockwise loop so that the nearest values are one after another. Without this, lines from opposite sides of the function would connect and it would appear slightly filled in.
import numpy as np
import matplotlib.pyplot as plt
r = 1 #arbitrary radius to set up the span of points
points = 250
dr = r/points #epsilon window
x=list(np.linspace(-5*r,5*r,5*points+1)) #setting up the x,y grid
y=x
xreversed = reversed(x) #reversing the array
x_0=[] #placeholder arrays
y_0=[]
for i in x:
for j in y:
if i**2 + j**2 -1 < dr and i**2+j**2 -1 > -dr and j >= 0: #positive values of y
x_0.append(i)
y_0.append(j)
for i in xreversed:
for j in y:
if i**2+j**2 -1 < dr and i**2+j**2 -1 > -dr and j < 0: #negative values of y, using x reversed
x_0.append(i)
y_0.append(j)
plt.plot(x_0,y_0)
plt.show()
Many thanks Steve, Mike, Alex. I have gone along with Steve's solution (please see code below). My only remaining issue is that the contour plot appears behind my gridlines, as opposed to a regular plot, which I can force to the front with zorder. Any more halp greatly appreciated.
Cheers,
Geddes
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator, FormatStrFormatter
import numpy as np
fig = plt.figure(1)
ax = fig.add_subplot(111)
# set up axis
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
# setup x and y ranges and precision
x = np.arange(-0.5,5.5,0.01)
y = np.arange(-0.5,5.5,0.01)
# draw a curve
line, = ax.plot(x, x**2,zorder=100)
# draw a contour
X,Y=np.meshgrid(x,y)
F=X**Y
G=Y**X
ax.contour(X,Y,(F-G),[0],zorder=100)
#set bounds
ax.set_xbound(-1,7)
ax.set_ybound(-1,7)
#produce gridlines of different colors/widths
ax.xaxis.set_minor_locator(MultipleLocator(0.2))
ax.yaxis.set_minor_locator(MultipleLocator(0.2))
ax.xaxis.grid(True,'minor',linestyle='-')
ax.yaxis.grid(True,'minor',linestyle='-')
minor_grid_lines = [tick.gridline for tick in ax.xaxis.get_minor_ticks()]
for idx,loc in enumerate(ax.xaxis.get_minorticklocs()):
if loc % 2.0 == 0:
minor_grid_lines[idx].set_color('0.3')
minor_grid_lines[idx].set_linewidth(2)
elif loc % 1.0 == 0:
minor_grid_lines[idx].set_c('0.5')
minor_grid_lines[idx].set_linewidth(1)
else:
minor_grid_lines[idx].set_c('0.7')
minor_grid_lines[idx].set_linewidth(1)
minor_grid_lines = [tick.gridline for tick in ax.yaxis.get_minor_ticks()]
for idx,loc in enumerate(ax.yaxis.get_minorticklocs()):
if loc % 2.0 == 0:
minor_grid_lines[idx].set_color('0.3')
minor_grid_lines[idx].set_linewidth(2)
elif loc % 1.0 == 0:
minor_grid_lines[idx].set_c('0.5')
minor_grid_lines[idx].set_linewidth(1)
else:
minor_grid_lines[idx].set_c('0.7')
minor_grid_lines[idx].set_linewidth(1)
plt.show()