I am trying to tabulate a change in condition using a 'groupby' but am stumped and would appreciate any guidance. I have a data frame as follows:
SUBJECT TYPE
1 1
1 2
1 2
2 1
2 1
3 1
3 3
3 5
I would like to generate a statement that tabulates any positive change, ignores any negative change, and generates a count of change per subject. For example, the output of the above would be:
Subject TYPE
1 1
2 0
3 2
Would I need create an if/else clause using pandas, or is there a simpler way to achieve this using summit? Maybe something like...
def tabchange(type, subject):
current_subject = subject[0]
type_diff = type - type
j = 1
for i in range(1,len(type)):
type_diff[i] = type[i] - type[i-j]
if subject[i] == current_subject:
if type_diff[i] > 0:
new_row = 1
j += 1
else:
j = 1
else:
new_row[i] = 0
current_subject = subject[i]
return new_row
import pandas as pd
df = pd.DataFrame({'SUBJECT': [1, 1, 1, 2, 2, 3, 3, 3],
'TYPE': [1, 2, 2, 1, 1, 1, 3, 5]})
grouped = df.groupby('SUBJECT')
df['TYPE'] = grouped['TYPE'].diff() > 0
result = grouped['TYPE'].agg('sum')
yields
SUBJECT
1 1.0
2 0.0
3 2.0
Name: TYPE, dtype: float64
Above, df is grouped by SUBJECT and the diff is taken of the TYPE column:
In [253]: grouped = df.groupby('SUBJECT'); df['TYPE'] = grouped['TYPE'].diff() > 0
In [254]: df
Out[254]:
SUBJECT TYPE
0 1 False
1 1 True
2 1 False
3 2 False
4 2 False
5 3 False
6 3 True
7 3 True
Then, again grouping by SUBJECT, the result is obtained by counting the number of Trues in the TYPE column:
In [255]: result = grouped['TYPE'].agg('sum'); result
Out[255]:
SUBJECT
1 1.0
2 0.0
3 2.0
Name: TYPE, dtype: float64
Related
I want to make a function with loop and conditional, that count only when Actual Result = 1.
So the numbers always increase by 1 if the Actual Result = 1.
This is my dataframe:
This is my code but it doesnt produce the result that i want :
def func_count(x):
for i in range(1,880):
if x['Actual Result']==1:
result = i
else:
result = '-'
return result
X_machine_learning['Count'] = X_machine_learning.apply(lambda x:func_count(x),axis=1)
When i check & filter with count != '-' The result will be like this :
The number always equal to 1 and not increase by 1 everytime the actual result = 1. Any solution?
Try something like this:
import pandas as pd
df = pd.DataFrame({
'age': [30,25,40,12,16,17,14,50,22,10],
'actual_result': [0,1,1,1,0,0,1,1,1,0]
})
count = 0
lst_count = []
for i in range(len(df)):
if df['actual_result'][i] == 1:
count+=1
lst_count.append(count)
else:
lst_count.append('-')
df['count'] = lst_count
print(df)
Result
age actual_result count
0 30 0 -
1 25 1 1
2 40 1 2
3 12 1 3
4 16 0 -
5 17 0 -
6 14 1 4
7 50 1 5
8 22 1 6
9 10 0 -
Actually, you don't need to loop over the dataframe, which is mostly a Pandas-antipattern that should be avoided. With df your dataframe you could try the following instead:
m = df["Actual Result"] == 1
df["Count"] = m.cumsum().where(m, "-")
Result for the following dataframe
df = pd.DataFrame({"Actual Result": [1, 1, 0, 1, 1, 1, 0, 0, 1, 0]})
is
Actual Result Count
0 1 1
1 1 2
2 0 -
3 1 3
4 1 4
5 1 5
6 0 -
7 0 -
8 1 6
9 0 -
I have following dataframe called condition:
[0] [1] [2] [3]
1 0 0 1 0
2 0 1 0 0
3 0 0 0 1
4 0 0 0 1
For easier reproduction:
import numpy as np
import pandas as pd
n=4
t=3
condition = pd.DataFrame([[0,0,1,0], [0,1,0,0], [0,0,0, 1], [0,0,0, 1]], columns=['0','1', '2', '3'])
condition.index=np.arange(1,n+1)
Further I have several dataframes that should be filled in a foor loop
df = pd.DataFrame([],index = range(1,n+1),columns= range(t+1) ) #NaN DataFrame
df_2 = pd.DataFrame([],index = range(1,n+1),columns= range(t+1) )
df_3 = pd.DataFrame(3,index = range(1,n+1),columns= range(t+1) )
for i,t in range(t,-1,-1):
if condition[t]==1:
df.loc[:,t] = df_3.loc[:,t]**2
df_2.loc[:,t]=0
elif (condition == 0 and no 1 in any column after t)
df.loc[:,t] = 2.5
....
else:
df.loc[:,t] = 5
df_2.loc[:,t]= df.loc[:,t+1]
I am aware that this for loop is not correct, but what I wanted to do, is to check elementwise condition (recursevly) and if it is 1 (in condition) to fill dataframe df with squared valued of df_3. If it is 0 in condition, I should differentiate two cases.
In the first case, there are no 1 after 0 (row 1 and 2 in condition) then df = 2.5
Second case, there was 1 after and fill df with 5 (row 3 and 4)
So the dataframe df should look something like this
[0] [1] [2] [3]
1 5 5 9 2.5
2 5 9 2.5 2.5
3 5 5 5 9
4 5 5 5 9
The code should include for loop.
Thanks!
I am not sure if this is what you want, but based on your desired output you can do this with only masking operations (which is more efficient than looping over the rows anyway). Your code could look like this:
is_one = condition.astype(bool)
is_after_one = (condition.cumsum(axis=1) - condition).astype(bool)
df = pd.DataFrame(5, index=condition.index, columns=condition.columns)
df_2 = pd.DataFrame(2.5, index=condition.index, columns=condition.columns)
df_3 = pd.DataFrame(3, index=condition.index, columns=condition.columns)
df.where(~is_one, other=df_3 * df_3, inplace=True)
df.where(~is_after_one, other=df_2, inplace=True)
which yields:
0 1 2 3
1 5 5 9.0 2.5
2 5 9 2.5 2.5
3 5 5 5.0 9.0
4 5 5 5.0 9.0
EDIT after comment:
If you really want to loop explicitly over the rows and columns, you could do it like this with the same result:
n_rows = condition.index.size
n_cols = condition.columns.size
for row_index in range(n_rows):
for col_index in range(n_cols):
cond = condition.iloc[row_index, col_index]
if col_index < n_cols - 1:
rest_row = condition.iloc[row_index, col_index + 1:].to_list()
else:
rest_row = []
if cond == 1:
df.iloc[row_index, col_index] = df_3.iloc[row_index, col_index] ** 2
elif cond == 0 and 1 not in rest_row:
# fill whole row at once
df.iloc[row_index, col_index:] = 2.5
# stop iterating over the rest
break
else:
df.iloc[row_index, col_index] = 5
df_2.loc[:, col_index] = df.iloc[:, col_index + 1]
The result is the same, but this is much more inefficient and ugly, so I would not recommend it like this
Let's consider two pandas dataframes:
import numpy as np
import pandas as pd
df = pd.DataFrame([1, 2, 3, 2, 5, 4, 3, 6, 7])
check_df = pd.DataFrame([3, 2, 5, 4, 3, 6, 4, 2, 1])
If want to do the following thing:
If df[1] > check_df[1] or df[2] > check_df[1] or df[3] > check_df[1] then we assign to df 1, and 0 otherwise
If df[2] > check_df[2] or df[3] > check_df[2] or df[4] > check_df[2] then we assign to df 1, and 0 otherwise
We apply the same algorithm to end of DataFrame
My primitive code is the following:
df_copy = df.copy()
for i in range(len(df) - 3):
moving_df = df.iloc[i:i+3]
if (moving_df >check_df.iloc[i]).any()[0]:
df_copy.iloc[i] = 1
else:
df_copy.iloc[i] = -1
df_copy
0
0 -1
1 1
2 -1
3 1
4 1
5 -1
6 3
7 6
8 7
Could you please give me a advice, if there is any possibility to do this without loop?
IIUC, this is easily done with a rolling.min:
df['out'] = np.where(df[0].rolling(N, min_periods=1).max().shift(1-N).gt(check_df[0]),
1, -1)
output:
0 out
0 1 -1
1 2 1
2 3 -1
3 2 1
4 5 1
5 4 -1
6 3 1
7 6 -1
8 7 -1
to keep the last items as is:
m = df[0].rolling(N).max().shift(1-N)
df['out'] = np.where(m.gt(check_df[0]),
1, -1)
df['out'] = df['out'].mask(m.isna(), df[0])
output:
0 out
0 1 -1
1 2 1
2 3 -1
3 2 1
4 5 1
5 4 -1
6 3 1
7 6 6
8 7 7
Although #mozway has already provided a very smart solution, I would like to share my approach as well, which was inspired by this post.
You could create your own object that compares a series with a rolling series. The comparison could be performed by typical operators, i.e. >, < or ==. If at least one comparison holds, the object would return a pre-defined value (given in list returns_tf, where the first element would be returned if the comparison is true, and the second if it's false).
Possible Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([1, 2, 3, 2, 5, 4, 3, 6, 7])
check_df = pd.DataFrame([3, 2, 5, 4, 3, 6, 4, 2, 1])
class RollingComparison:
def __init__(self, comparing_series: pd.Series, rolling_series: pd.Series, window: int):
self.comparing_series = comparing_series.values[:-1*window]
self.rolling_series = rolling_series.values
self.window = window
def rolling_window_mask(self, option: str = "smaller"):
shape = self.rolling_series.shape[:-1] + (self.rolling_series.shape[-1] - self.window + 1, self.window)
strides = self.rolling_series.strides + (self.rolling_series.strides[-1],)
rolling_window = np.lib.stride_tricks.as_strided(self.rolling_series, shape=shape, strides=strides)[:-1]
rolling_window_mask = (
self.comparing_series.reshape(-1, 1) < rolling_window if option=="smaller" else (
self.comparing_series.reshape(-1, 1) > rolling_window if option=="greater" else self.comparing_series.reshape(-1, 1) == rolling_window
)
)
return rolling_window_mask.any(axis=1)
def assign(self, option: str = "rolling", returns_tf: list = [1, -1]):
mask = self.rolling_window_mask(option)
return np.concatenate((np.where(mask, returns_tf[0], returns_tf[1]), self.rolling_series[-1*self.window:]))
The assignments can be achieved as follows:
roller = RollingComparison(check_df[0], df[0], 3)
check_df["rolling_smaller_checking"] = roller.assign(option="smaller")
check_df["rolling_greater_checking"] = roller.assign(option="greater")
check_df["rolling_equals_checking"] = roller.assign(option="equal")
Output (the column rolling_smaller_checking equals your desired output):
0 rolling_smaller_checking rolling_greater_checking rolling_equals_checking
0 3 -1 1 1
1 2 1 -1 1
2 5 -1 1 1
3 4 1 1 1
4 3 1 -1 1
5 6 -1 1 1
6 4 3 3 3
7 2 6 6 6
8 1 7 7 7
I am trying to create a new column for a dataframe. The column I use for it is a price column. Basically what I am trying to achieve is getting the number of times that the price has increased/decreased consecutively. I need this to be rather quick because the dataframes can be quite big.
For example the result should look like :
input = [1,2,3,2,1]
increase = [0,1,2,0,0]
decrease = [0,0,0,1,2]
You can compute the diff and apply a cumsum on the positive/negative values:
df = pd.DataFrame({'col': [1,2,3,2,1]})
s = df['col'].diff()
df['increase'] = s.gt(0).cumsum().where(s.gt(0), 0)
df['decrease'] = s.lt(0).cumsum().where(s.lt(0), 0)
Output:
col increase decrease
0 1 0 0
1 2 1 0
2 3 2 0
3 2 0 1
4 1 0 2
resetting the count
As I realize your example is ambiguous, here is an additional method in case your want to reset the counts for each increasing/decreasing group, using groupby.
The resetting counts are labeled inc2/dec2:
df = pd.DataFrame({'col': [1,2,3,2,1,2,3,1]})
s = df['col'].diff()
s1 = s.gt(0)
s2 = s.lt(0)
df['inc'] = s1.cumsum().where(s1, 0)
df['dec'] = s2.cumsum().where(s2, 0)
si = df['inc'].eq(0)
sd = df['dec'].eq(0)
df['inc2'] = si.groupby(si.cumsum()).cumcount()
df['dec2'] = sd.groupby(sd.cumsum()).cumcount()
Output:
col inc dec inc2 dec2
0 1 0 0 0 0
1 2 1 0 1 0
2 3 2 0 2 0
3 2 0 1 0 1
4 1 0 2 0 2
5 2 3 0 1 0
6 3 4 0 2 0
7 1 0 3 0 1
data = {
'input': [1,2,3,2,1]
}
df = pd.DataFrame(data)
diffs = df['input'].diff()
df['a'] = (df['input'] > df['input'].shift(periods=1, axis=0)).cumsum()-(df['input'] > df['input'].shift(periods=1, axis=0)).astype(int).cumsum() \
.where(~(df['input'] > df['input'].shift(periods=1, axis=0))) \
.ffill().fillna(0).astype(int)
df['b'] = (df['input'] < df['input'].shift(periods=1, axis=0)).cumsum()-(df['input'] < df['input'].shift(periods=1, axis=0)).astype(int).cumsum() \
.where(~(df['input'] < df['input'].shift(periods=1, axis=0))) \
.ffill().fillna(0).astype(int)
print(df)
output
input a b
0 1 0 0
1 2 1 0
2 3 2 0
3 2 0 1
4 1 0 2
Coding this manually using numpy might look like this
import numpy as np
input = np.array([1, 2, 3, 2, 1])
increase = np.zeros(len(input))
decrease = np.zeros(len(input))
for i in range(1, len(input)):
if input[i] > input[i-1]:
increase[i] = increase[i-1] + 1
decrease[i] = 0
elif input[i] < input[i-1]:
increase[i] = 0
decrease[i] = decrease[i-1] + 1
else:
increase[i] = 0
decrease[i] = 0
increase # array([0, 1, 2, 0, 0], dtype=int32)
decrease # array([0, 0, 0, 1, 2], dtype=int32)
I have a pandas dataframe with a text column.
I'd like to create a new column in which values are conditional on the start of the text string from the text column.
So if the 30 first characters of the text column:
== 'xxx...xxx' then return value 1
== 'yyy...yyy' then return value 2
== 'zzz...zzz' then return value 3
if none of the above return 0
There is possible use multiple numpy.where but if more conditions use apply:
For select strings from strats use indexing with str.
df = pd.DataFrame({'A':['xxxss','yyyee','zzzswee','sss'],
'B':[4,5,6,8]})
print (df)
A B
0 xxxss 4
1 yyyee 5
2 zzzswee 6
3 sss 8
#check first 3 values
a = df.A.str[:3]
df['new'] = np.where(a == 'xxx', 1,
np.where(a == 'yyy', 2,
np.where(a == 'zzz', 3, 0)))
print (df)
A B new
0 xxxss 4 1
1 yyyee 5 2
2 zzzswee 6 3
3 sss 8 0
def f(x):
#print (x)
if x == 'xxx':
return 1
elif x == 'yyy':
return 2
elif x == 'zzz':
return 3
else:
return 0
df['new'] = df.A.str[:3].apply(f)
print (df)
A B new
0 xxxss 4 1
1 yyyee 5 2
2 zzzswee 6 3
3 sss 8 0
EDIT:
If length is different, only need:
df['new'] = np.where(df.A.str[:3] == 'xxx', 1,
np.where(df.A.str[:2] == 'yy', 2,
np.where(df.A.str[:1] == 'z', 3, 0)))
print (df)
A B new
0 xxxss 4 1
1 yyyee 5 2
2 zzzswee 6 3
3 sss 8 0
EDIT1:
Thanks for idea to Quickbeam2k1 use str.startswith for check starts of each string:
df['new'] = np.where(df.A.str.startswith('xxx'), 1,
np.where(df.A.str.startswith('yy'), 2,
np.where(df.A.str.startswith('z'), 3, 0)))
print (df)
A B new
0 xxxss 4 1
1 yyyee 5 2
2 zzzswee 6 3
3 sss 8 0
A different and slower solution:
However, the advantage is that the mapping from patterns is a function parameter (with implicit default 0 value)
def map_starts_with(pat_map):
def map_string(t):
pats = [pat for pat in pat_map.keys() if t.startswith(pat)]
return pat_map.get(pats[0]) if len(pats) > 0 else 0
# get only value of "first" pattern if at least one pattern is found
return map_string
df = pd.DataFrame({'col':[ 'xx', 'aaaaaa', 'c']})
col
0 xx
1 aaaaaa
2 c
mapping = { 'aaa':4 ,'c':3}
df.col.apply(lambda x: map_starts_with(mapping)(x))
0 0
1 4
2 3
Note the we also used currying here. I'm wondering if this approach can be implemented using additional pandas or numpy functionality.
Note that the "first" pattern match may depend on the traversal order of the dict keys. This is irrelephant if there is no overlap in the keys. (Jezrael's solution, or its direct generalization thereof, will also choose one element for the match, but in a more predictable manner)