Viewing dicom image with Bokeh - python

I'm trying to set the graph background to a dicom image. I followed this example, but the image data given from dicom.pixel_array isn't RGBA. I'm not sure how to convert it, either. I'm also not sure what exactly bokeh is expecting. I've tried finding specifics in the documentation, but not such luck.
from bokeh.plotting import figure, show, output_file
import dicom
import numpy as np
path = "/pathToDicomImage.dcm"
data = dicom.read_file(path)
img = data.pixel_array
p = figure(x_range=(0,10), y_range=(0,10))
# must give a vector of images
p.image_rgba(image=[img], x=0, y=0, dw=10, dh=10)
output_file("image_rgba.html", title="image_rgba.py example")
show(p)
This code doesnt give me any errors, but it doesn't display anything. Maybe the pixel array doesn't have alpha data, so alpha defaults to 0? I'm not sure. Also, I can't quite figure out how to test it.
SOLVED
As was pointed out, I just needed to map the pixel data to rgba space. for this instance, it means duplicating the data to each channel, and setting alpha all the way.
def dicom_image_to_RGBA(image_data):
rows = len(image_data)
cols = rows
img = np.empty((rows,cols), dtype=np.uint32)
view = img.view(dtype=np.uint8).reshape((rows, cols, 4))
for i in range(0,rows):
for j in range(0,cols):
view[i][j][0] = image_data[i][j]
view[i][j][1] = image_data[i][j]
view[i][j][2] = image_data[i][j]
view[i][j][3] = 255
return img

Not being an expert in python, I have had a glance at pydicom's capabilities in handling pixel data. I figured out that pixel_array is the value of the pixel-data attribute of the DICOM dataset as is and pydicom does not offer any functionality to convert it into some standard format which can be handled uniformly. This means you will have to convert it to RGB in most cases which is a quite compilcated and error-prone task.
Things to consider in this:
The encoding (Big/Little Endian, various compression methods like JPEG, JPEG-LS, RLE, ZIP) - DICOM attribute (0002,0010) TransferSyntaxUID
The type of pixeldata (Grayscale, RGB, ...) - DICOM attribute (0028,0004) PhotometricInterpretation, (0028,0103) PixelRepresentation
In case of color images: are the values encoded colur by plane (RRRRR,.....GGGGG,.....BBBBB) or colour by pixel as you expect it to be (RGB RGB...)
The bit depth and which bits are used for actual pixel data values (0028,0100) BitsAllocated, (0028,0101) BitsStored, (0028,0102) Highbit.
are the pixel data values really the values to be displayed or are they indices to a colour/grayscale lookup table (0028,3000) ModalityLUTSequence, (0028,3002) LUTDescriptor, (0028,3003) LUTExplanation, (0028,3004) ModalityLUTType, (0028,3006) LUTData.
Scary, isn't it? For some modern image classes like Enhanced MR, there is even more than that.
However, if you constrain to a particular type of image (e.g. Computed Radiography). limitations to the above mentioned apply that make your life a bit easier.
If you would post a DICOM dump of the image header I could give you some hints how to display that particular image.
HTH
kritzel

What you need to do is map the pixel data returned from pixel_array to RGB space. Usually that is done using a look up table (LUT). Take a look at the functions GetImage and GetLUTValue in the dicomparser module in the dicompyler-core library.
In GetLUTValue it maps the data to an 8-bit greyscale image. If you want to use a different LUT, you would need to map the color space accordingly.

Related

Why are there Horizontal Stripes on my Palettized Image?

I am trying to make a palettized version of my height image data (using Python/Matplotlib) and for some reason...it is giving me quite weird horizontal lines which I know are not actually present in the dataset.
Both images (mine and the "better" one).
Is this something weird with how Matplotlib normalizes the data? I just don't quite understand how this could happen, so I am at a loss for where to start. I have provided my code below (sorry if there is a typo, I slightly changed it to make sense outside of the code).
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
# file location of the raw data
fileloc = r'C:\Users\...\raw_height_profile.csv'
# generate height profile map
palettized_image = getheightprofile(fileloc)
def getheightprofile(fileloc, color_palette='jet'):
# read data from file
data = pd.read_csv(fileloc, skiprows=0)
# generate colormap (I'm using the jet colormap rn)
colormap = plt.get_cmap(color_palette)
# normalize the height data to the range [0, 1]
norm = (data - np.min(data)) / (np.max(data) - np.min(data))
# convert the height data to RGB values using the palette
palettized_data = (colormap(norm)*255).astype(np.uint8)
# save the file as a png (to check quality)
saveloc = r'C:\Users\...\palletized_height_profile.png'
plt.imsave(saveloc, palettized_data)
# return the nice numbers for later analysis
return palettized_data
But instead of returning the nice image that I think I should get, it returns a super weird image with lines across it. note: I know these images aren't quite the same palettization, but I think you can understand the issue.
Does anyone understand how, why, etc.? I have also attached a link to the dataset, because maybe that is helpful...but I am quite sure there is nothing wrong with the data.

Display specific part of tiff image using rasterio without having to load the entire file

I have a large tiff file (around 2GB) containing a map. I have been able to successfully read the data and even display it using the following python code:
import rasterio
from rasterio.plot import show
with rasterio.open("image.tif") as img:
show(img)
data = img.read()
This works just fine. However, I need to be able to display specific parts of this map without having to load the entire file into memory (as it takes up too much of the RAM and is not doable on many other PCs). I tried using the Window class of rasterio in order to that, but when I tried to display the map the outcome was different from how the full map is displayed (as if it caused data loss):
import rasterio
from rasterio.plot import show
from rasterio.windows import Window
with rasterio.open("image.tif") as img:
data = img.read(window=Window(0, 0, 100000, 100000))
show(data)
So my question is, how can I display a part of the map without having to load into memory the entire file, while also making it look as if it had been cropped from the full map image?
thanks in advance :)
The reason that it displays nicely in the first case, but not in the second, is that in the first case you pass an instance of rasterio.DatasetReader to show (show(img)), but in the second case you pass in a numpy array (show(data)). The DatasetReader contains additional information, in particular an affine transformation and color interpretation, which show uses.
The additional things show does in the first case (for RGB data) can be recreated for the windowed case like so:
import rasterio
from rasterio.enums import ColorInterp
from rasterio.plot import show
from rasterio.windows import Window
with rasterio.open("image.tif") as img:
window = Window(0, 0, 100000, 100000)
# Lookup table for the color space in the source file
source_colorinterp = dict(zip(img.colorinterp, img.indexes))
# Read the image in the proper order so the numpy array will have the colors in the
# order expected by matplotlib (RGB)
rgb_indexes = [
source_colorinterp[ci]
for ci in (ColorInterp.red, ColorInterp.green, ColorInterp.blue)
]
data = img.read(rgb_indexes, window=window)
# Also pass in the affine transform corresponding to the window in order to
# display the correct coordinates and possibly orientation
show(data, transform=img.window_transform(window))
(I figured out what show does by looking at the source code here)
In case of data with a single channel, the underlying matplotlib library used for plotting scales the color range based on the min and max value of the data. To get exactly the same colors as before, you'll need to know the min and max of the whole image, or some values that come reasonably close.
Then you can explicitly tell matplotlib's imshow how to scale:
with rasterio.open("image.tif") as img:
window = Window(0, 0, 100000, 100000)
data = img.read(window=window, masked=True)
# adjust these
value_min = 0
value_max = 255
show(data, transform=img.window_transform(window), vmin=value_min, vmax=value_max)
Additional kwargs (like vmin and vmax here) will be passed on to matplotlib.axes.Axes.imshow, as documented here.
From the matplotlib documenation:
vmin, vmax: float, optional
When using scalar data and no explicit norm, vmin and vmax define the data range that the colormap covers. By default, the colormap covers the complete value range of the supplied data. It is deprecated to use vmin/vmax when norm is given. When using RGB(A) data, parameters vmin/vmax are ignored.
That way you could also change the colormap it uses etc.

RGB Values Being Returned by PIL don't match RGB color

I'm attempting to make a reasonably simple code that will be able to read the size of an image and return all the RGB values. I'm using PIL on Python 2.7, and my code goes like this:
import os, sys
from PIL import Image
img = Image.open('C:/image.png')
pixels = img.load()
print(pixels[0, 1])
now this code was actually gotten off of this site as a way to read a gif file. I'm trying to get the code to print out an RGB tuple (in this case (55, 55, 55)) but all it gives me is a small sequence of unrelated numbers, usually containing 34.
I have tried many other examples of code, whether from here or not, but it doesn't seem to work. Is it something wrong with the .png format? Do I need to further code in the rgb part? I'm happy for any help.
My guess is that your image file is using pre-multiplied alpha values. The 8 values you see are pretty close to 55*34/255 (where 34 is the alpha channel value).
PIL uses the mode "RGBa" (with a little a) to indicate when it's using premultiplied alpha. You may be able to tell PIL to covert the to normal "RGBA", where the pixels will have roughly the values you expect:
img = Image.open('C:/image.png').convert("RGBA")
Note that if your image isn't supposed to be partly transparent at all, you may have larger issues going on. We can't help you with that without knowing more about your image.

How to build an image with every pixel's RGB value

I am using Python and the PIL library and I have the RGB information for every pixel of an image along with their location. Is there any way that I can build an image from this information?
Certainly. If your source data is sparse (ie. you don't have a value for every pixel location) you probably want to do the following:
create an empty image of the required dimensions
ensure your colour data is stored in raster order (ie. sort by y then x)
iterate through the data and store the pixel values in each location
So, assuming you have an array of tuples such as (x, y, (r,g,b)), you can do something like:
from pil import Image
WIDTH=640
HEIGHT=480
img = Image.new(WIDTH, HEIGHT, 'RGB')
# Define this based on your data
my_raster_sort(my_image_data)
img_data = img.load()
for x, y, color in my_image_data:
img_data[x,y] = color
If your source image data is complete (ie. you have a colour value for every position) then it would probably be faster to transform your data into a buffer formatted with the desired memory layout, and then create an image in one step using Image.frombuffer.
Yes. That's what Image.putpixel() (and possibly putdata() depending on how you have the data) are for. Find the documentation for these methods here.
Hard to advise you further since you provided no code or even a sample of the data.

Python PIL: best scaling method that preserves lines

I have a 2D drawing with a black background and white lines (exported from Autocad) and I want to create a thumbnail preserving lines, using Python PIL library.
But what I obtain using the 'thumbnail' method is just a black picture scattered with white dots.
Note that if I put the image into an IMG tag with fixed width, I obtain exactly what I want (but the image is entirely loaded).
After your comments, here is my sample code:
from PIL import Image
fn = 'filename.gif'
im = Image(fn)
im.convert('RGB')
im.thumbnail((300, 300), Image.ANTIALIAS)
im.save('newfilename.png', 'PNG')
How can I do?
The default resizing method used by thumbnail is NEAREST, which is a really bad choice. If you're resizing to 1/5 of the original size for example, it will output one pixel and throw out the next 4 - a one-pixel wide line has only a 1 out of 5 chance of showing up at all in the result!
The surprising thing is that BILINEAR and BICUBIC aren't much better. They take a formula and apply it to the 2 or 3 closest pixels to the source point, but there's still lots of pixels they don't look at, and the formula will deemphasize the line anyway.
The best choice is ANTIALIAS, which appears to take all of the original image into consideration without throwing away any pixels. The lines will become dimmer but they won't disappear entirely; you can do an extra step to improve the contrast if necessary.
Note that all of these methods will fall back to NEAREST if you're working with a paletted image, i.e. im.mode == 'P'. You must always convert to 'RGB'.
from PIL import Image
im = Image.open(fn)
im = im.convert('RGB')
im.thumbnail(size, Image.ANTIALIAS)
Here's an example taken from the electronics.stackexchange site https://electronics.stackexchange.com/questions/5412/easiest-and-best-poe-ethernet-chip-micro-design-for-diy-interface-with-custom-ard/5418#5418
Using the default NEAREST algorithm, which I assume is similar to the results you had:
Using the ANTIALIAS algorithm:
By default, im.resize uses the NEAREST filter, which is going to do what you're seeing -- lose information unless it happens to fall on an appropriately moduloed pixel.
Instead call
im.resize(size, Image.BILINEAR)
This should preserve your lines. If not, try Image.BICUBIC or Image.ANTIALIAS. Any of those should work better than NEAREST.

Categories

Resources