I'm watching this series https://www.youtube.com/watch?v=wlnx-7cm4Gg&list=PL5tcWHG-UPH2zBfOz40HSzcGUPAVOOnu1 which is about mining tweets with tweepy (python) and the guy stores the tweets with everything ( such as created_at, id, id_str, text) and then he uses Dataframes in pandas to store only the text. Is this way efficient ? How Can I only store the "text" in the Json file instead of all other details ?
The code:
ACCESS_TOKEN = "xxxxxxxxxxxxxxxxxxxxx"
ACCESS_TOKEN_SECRET = "xxxxxxxxxxxxxxxxxxxxxxxxx"
CONSUMER_KEY = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
CONSUMER_SECRET = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
import tweepy
import numpy as np
import pandas as pd
# import twitter_credentials
class TwitterAuthenticator():
def authenticate_twitter_app(self):
auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET)
auth.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET)
return auth
class TwitterStreamer():
"""
Class for streaming and processing live tweets.
"""
def __init__(self):
self.twitter_authenticator = TwitterAuthenticator()
def stream_tweets(self, fetched_tweets_filename, hash_tag):
# This handles Twitter authetification and the connection to Twitter Streaming API
listener = TwitterListener(fetched_tweets_filename)
auth = self.twitter_authenticator.authenticate_twitter_app()
# api = tweepy.API(auth)
stream = tweepy.Stream(auth,listener)
stream.filter(track = hash_tag)
class TwitterListener(tweepy.StreamListener):
"""
This is a basic listener class that just prints received tweets to stdout.
"""
def __init__(self, fetched_tweets_filename):
self.fetched_tweets_filename = fetched_tweets_filename
def on_data(self, data):
try:
print(data)
with open(self.fetched_tweets_filename, 'a') as tf:
tf.write(data)
return True
except BaseException as e:
print("Error on_data %s" % str(e))
return True
def on_status(self, status):
print(status)
def on_error(self, status):
if status == 420:
# Returning False on_data method in case rate limit occurs.
return False
print(status)
# public_tweets = api.home_timeline()
# for tweet in public_tweets:
# print tweet.text
if __name__ == '__main__':
hash_tag = ["python"]
fetched_tweets_filename = "tweets.json"
twitter_streamer = TwitterStreamer()
twitter_streamer.stream_tweets(fetched_tweets_filename,hash_tag)
# print stream.text
The tweet stored in the json file:
{"created_at":"Sun Nov 04 18:43:59 +0000 2018","id":1059154305498972160,"id_str":"1059154305498972160","text":"RT #hmason: When you want to use a new algorithm that you don't deeply understand, the best approach is to implement it yourself to learn h\u2026","source":"\u003ca href=\"http:\/\/twitter.com\/download\/android\" rel=\"nofollow\"\u003eTwitter for Android\u003c\/a\u003e","truncated":false,"in_reply_to_status_id":null,"in_reply_to_status_id_str":null,"in_reply_to_user_id":null,"in_reply_to_user_id_str":null,"in_reply_to_screen_name":null,"user":{"id":14858491,"id_str":"14858491","name":"Alexandra Lemus","screen_name":"nankyoku","location":"M\u00e9xico","url":null,"description":"Transitioning into the Permanent Beta state...","translator_type":"none","protected":false,"verified":false,"followers_count":173,"friends_count":585,"listed_count":18,"favourites_count":658,"statuses_count":572,"created_at":"Wed May 21 16:35:49 +0000 2008","utc_offset":null,"time_zone":null,"geo_enabled":true,"lang":"es","contributors_enabled":false,"is_translator":false,"profile_background_color":"EDECE9","profile_background_image_url":"http:\/\/abs.twimg.com\/images\/themes\/theme3\/bg.gif","profile_background_image_url_https":"https:\/\/abs.twimg.com\/images\/themes\/theme3\/bg.gif","profile_background_tile":false,"profile_link_color":"088253","profile_sidebar_border_color":"D3D2CF","profile_sidebar_fill_color":"E3E2DE","profile_text_color":"634047","profile_use_background_image":true,"profile_image_url":"http:\/\/pbs.twimg.com\/profile_images\/378800000575875952\/f00390453684dd243d7ca95c69a05f74_normal.jpeg","profile_image_url_https":"https:\/\/pbs.twimg.com\/profile_images\/378800000575875952\/f00390453684dd243d7ca95c69a05f74_normal.jpeg","profile_banner_url":"https:\/\/pbs.twimg.com\/profile_banners\/14858491\/1381524599","default_profile":false,"default_profile_image":false,"following":null,"follow_request_sent":null,"notifications":null},"geo":null,"coordinates":null,"place":null,"contributors":null,"retweeted_status":{"created_at":"Sat Nov 03 17:36:24 +0000 2018","id":1058774912201035776,"id_str":"1058774912201035776","text":"When you want to use a new algorithm that you don't deeply understand, the best approach is to implement it yoursel\u2026 https:\/\/t.co\/9F7SmlGfyf","source":"\u003ca href=\"http:\/\/twitter.com\" rel=\"nofollow\"\u003eTwitter Web Client\u003c\/a\u003e","truncated":true,"in_reply_to_status_id":null,"in_reply_to_status_id_str":null,"in_reply_to_user_id":null,"in_reply_to_user_id_str":null,"in_reply_to_screen_name":null,"user":{"id":765548,"id_str":"765548","name":"Hilary Mason","screen_name":"hmason","location":"NYC","url":"http:\/\/www.hilarymason.com","description":"GM for Machine Learning at #Cloudera. Founder at #FastForwardLabs. Data Scientist in Residence at #accel. I \u2665 data and cheeseburgers.","translator_type":"none","protected":false,"verified":true,"followers_count":111311,"friends_count":1539,"listed_count":5276,"favourites_count":12049,"statuses_count":17602,"created_at":"Sun Feb 11 21:22:24 +0000 2007","utc_offset":null,"time_zone":null,"geo_enabled":false,"lang":"en","contributors_enabled":false,"is_translator":false,"profile_background_color":"000000","profile_background_image_url":"http:\/\/abs.twimg.com\/images\/themes\/theme1\/bg.png","profile_background_image_url_https":"https:\/\/abs.twimg.com\/images\/themes\/theme1\/bg.png","profile_background_tile":false,"profile_link_color":"282F8A","profile_sidebar_border_color":"87BC44","profile_sidebar_fill_color":"AB892B","profile_text_color":"000000","profile_use_background_image":true,"profile_image_url":"http:\/\/pbs.twimg.com\/profile_images\/948689418709323777\/sTBM3vG0_normal.jpg","profile_image_url_https":"https:\/\/pbs.twimg.com\/profile_images\/948689418709323777\/sTBM3vG0_normal.jpg","profile_banner_url":"https:\/\/pbs.twimg.com\/profile_banners\/765548\/1353033581","default_profile":false,"default_profile_image":false,"following":null,"follow_request_sent":null,"notifications":null},"geo":null,"coordinates":null,"place":null,"contributors":null,"is_quote_status":false,"extended_tweet":{"full_text":"When you want to use a new algorithm that you don't deeply understand, the best approach is to implement it yourself to learn how it works, and then use a library to benefit from robust code.\n\nHere's one article showing this with neural networks in Python: https:\/\/t.co\/3ehO86NFKI","display_text_range":[0,280],"entities":{"hashtags":[],"urls":[{"url":"https:\/\/t.co\/3ehO86NFKI","expanded_url":"https:\/\/towardsdatascience.com\/how-to-build-your-own-neural-network-from-scratch-in-python-68998a08e4f6","display_url":"towardsdatascience.com\/how-to-build-y\u2026","indices":[257,280]}],"user_mentions":[],"symbols":[]}},"quote_count":14,"reply_count":8,"retweet_count":290,"favorite_count":1019,"entities":{"hashtags":[],"urls":[{"url":"https:\/\/t.co\/9F7SmlGfyf","expanded_url":"https:\/\/twitter.com\/i\/web\/status\/1058774912201035776","display_url":"twitter.com\/i\/web\/status\/1\u2026","indices":[117,140]}],"user_mentions":[],"symbols":[]},"favorited":false,"retweeted":false,"possibly_sensitive":false,"filter_level":"low","lang":"en"},"is_quote_status":false,"quote_count":0,"reply_count":0,"retweet_count":0,"favorite_count":0,"entities":{"hashtags":[],"urls":[],"user_mentions":[{"screen_name":"hmason","name":"Hilary Mason","id":765548,"id_str":"765548","indices":[3,10]}],"symbols":[]},"favorited":false,"retweeted":false,"filter_level":"low","lang":"en","timestamp_ms":"1541357039223"}
If the question is not clear then please comment it out and I will try to edit the question.
If you want only the "text" field to be saved in the json file, you can tweak the definition of the TwitterListener.on_data method:
import json
def on_data(self, data):
try:
print(data)
with open(self.fetched_tweets_filename, 'a') as tf:
json_load = json.loads(data)
text = {'text': json_load['text']}
tf.write(json.dumps(text))
return True
except BaseException as e:
print("Error on_data %s" % str(e))
return True
Fair warning, I don't have tweepy installed/set up, so I was only able to test a version of the above code using the json file you posted above. Let me know if you run into any bugs and I'll see what I can do.
It looks like what you're getting from the API and storing in your variable "data" is unicode text in a json format. You are just writing that text directly to a file. Using the API call you do, you're always going to get all of the data so it isn't that inefficient. If you just wanted to get/write the text of the tweet, try using a json load and then processing from there.
Am doing a project to find top 10 trending topics or hashtags on Twitter. Am creating a class with the code below:
class TweetsListener(StreamListener):
def __init__(self, csocket):
self.client_socket = csocket
def on_data(self, data):
try:
msg = json.loads( data )
print(msg['user']['screen_name'].encode('utf-8'))
return True
except BaseException as e:
print("Error on_data: %s" % str(e))
return True
def on_error(self, status):
print(status)
return True
Below is the code for sending data:
def sendData(c_socket):
auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_secret)
twitter_stream = Stream(auth, TweetsListener(c_socket))
twitter_stream.filter(track=['india']
Here twitter_stream.filter is filtering messages with tag India. I want to get all the messages from Twitter. In short, I do not want a filter to be applied. Is there a way to do the same?
Any help appreciated.
- P.S : Novice in Spark streaming and PySpark
Twitter now offers a sample stream: https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/GET_statuse_sample.html
It's fairly new so I'm not sure if the wrappers (looks like you're using Tweepy) have implemented it yet, but it shouldn't be hard to interface with.
So far I have the following code that works and inserts the tweets into my mongodb but I had a few questions.
class CustomStreamListener(tweepy.StreamListener):
def __init__(self, api):
self.api = api
super(tweepy.StreamListener, self).__init__()
self.db = pymongo.MongoClient().test
def on_data(self, tweet):
self.db.tweets.insert(json.loads(tweet))
def on_error(self, status_code):
return True # Don't kill the stream
def on_timeout(self):
return True # Don't kill the stream
sapi = tweepy.streaming.Stream(auth, CustomStreamListener(api))
sapi.filter(track=['arsenal'] , languages = ['en'])
Could someone explain how I can get only certain parts of the tweet inserted into the database ie. just the tweet text and location.
Does the twitter streaming api allow displaying just tweets no # reply tweets?
json.loads(tweet) is just a dictionary, you can freely choose what parts of its key-values you process.
You can filter tweets by conditioning them either way you like:
tweet_obj = json.loads(tweet)
if not tweet_obj['in_reply_to_user_id']: # replies has `None` in this field
pass # add some processing here