Standard logging for every method in a Class - python

I would like every class method that is called in my script to log the time it took to complete the method. What is the best/cleanest way to do this without adding logging to every method?
I can do this by brute-forcing it, but adding the same boilerplate to every method I write doesn't seem right:
import datetime as dt
import logging
import sys
logger = logging.getLogger()
logging.basicConfig(level=logging.INFO)
class TestA(object):
def method_one(self):
begin_at = dt.datetime.utcnow()
print "Called method_one"
end_at = dt.datetime.utcnow()
logger.info('{}.{} took {}'.format(
__name__,
sys._getframe().f_code.co_name, # http://code.activestate.com/recipes/66062-determining-current-function-name/
end_at - begin_at,
))
def method_two(self):
begin_at = dt.datetime.utcnow()
print "Called method_two"
end_at = dt.datetime.utcnow()
logger.info('{}.{} took {}'.format(
__name__,
sys._getframe().f_code.co_name, # http://code.activestate.com/recipes/66062-determining-current-function-name/
end_at - begin_at,
))
class TestB(object):
def method_three(self):
begin_at = dt.datetime.utcnow()
print "Called method_three"
end_at = dt.datetime.utcnow()
logger.info('{}.{} took {}'.format(
__name__,
sys._getframe().f_code.co_name, # http://code.activestate.com/recipes/66062-determining-current-function-name/
end_at - begin_at,
))
t_a = TestA()
t_b = TestB()
t_a.method_one()
t_a.method_two()
t_a.method_one()
t_b.method_three()
Running this results in the intended behavior:
Called method_one
INFO:test:__main__.method_one took 0:00:00.000172
Called method_two
INFO:test:__main__.method_two took 0:00:00.000006
Called method_one
INFO:test:__main__.method_one took 0:00:00.000005
Called method_three
INFO:test:__main__.method_three took 0:00:00.000005
I think I should be using decorators, but I'm inexperienced at these, and my first attempt fell flat:
def method_logger(f):
begin_at = dt.datetime.utcnow()
output = f()
end_at = dt.datetime.utcnow()
logger.info('{}.{} took {}'.format(
f.__name__,
sys._getframe().f_code.co_name, # http://code.activestate.com/recipes/66062-determining-current-function-name/
end_at - begin_at,
))
return output
class TestA(object):
def method_one(self):
print "Called method_one"
def method_two(self):
print "Called method_two"
class TestB(object):
def method_three(self):
print "Called method_three"
I get that I need to pass 'self' in somehow, but am not sure how best to proceed.
Traceback (most recent call last):
File "test_logging.py", line 68, in <module>
class TestA(object):
File "test_logging.py", line 69, in TestA
#method_logger
File "test_logging.py", line 59, in method_logger
output = f()
TypeError: method_one() takes exactly 1 argument (0 given)
How can I replicate my intended behavior without decorating every single method, the way I know how? Please also let me know if there's a better way to do what I'm doing, would love to see examples.

Use a timing function and a decorator:
def timeit(method):
def timed(*args, **kw):
ts = time.time()
result = method(*args, **kw)
te = time.time()
delta = te - ts
hours, remainder = divmod(delta, 3600)
minutes, seconds = divmod(remainder, 60)
logger.info('%s.%s took %02d:%02d:%02.6f',
method.__module__,
method.__name__,
int(hours),
int(minutes),
seconds)
return result
return timed
class TestA(object):
#timeit
def method_one(self):
print "Called method_one"

Related

Clean way to measure multiple code execution times in Python

I want to get the execution time of several portions of my code. Currently I am using time.time() but I feel a bit dumb when writing again and over again code like this:
start = time()
function1(args1)
print("Execution of function1: {}".format(time()-start))
start = time()
function2(args2)
print("Execution of function2: {}".format(time()-start))
start = time()
function3(args3)
print("Execution of function3: {}".format(time()-start))
Please do you know any smarter way to do this? I couldn't find any module that would enable to do things like this (for instance):
chrono("Execution of function1")
function1(args1)
chrono("Execution of function2")
function2(args2)
chrono("Execution of function3")
function3(args3)
import time
def timeit(method):
def timed(*args, **kw):
ts = time.time()
result = method(*args, **kw)
te = time.time()
print '%r (%r, %r) %2.2f sec' % \
(method.__name__, args, kw, te-ts)
return result
return timed
#timeit
def function1():
time.sleep(1)
print 'function1'
>>> function1()
function1
'function1' ((), {}) 1.00 sec
Use this decorator for function definition.
Reference:
https://www.zopyx.com/andreas-jung/contents/a-python-decorator-for-measuring-the-execution-time-of-methods
Take a look at the timeit module.
https://docs.python.org/3/library/timeit.html
From that page,
>>> import timeit
>>> timeit.timeit('"-".join(str(n) for n in range(100))', number=10000)
0.3018611848820001
>>> timeit.timeit('"-".join([str(n) for n in range(100)])', number=10000)
0.2727368790656328
>>> timeit.timeit('"-".join(map(str, range(100)))', number=10000)
0.23702679807320237

how to wrap automatically functions from certain file

It's a well known fact there are many ways to get a function name using python standard library, here's a little example:
import sys
import dis
import traceback
def get_name():
stack = traceback.extract_stack()
filename, codeline, funcName, text = stack[-2]
return funcName
def foo1():
print("Foo0 start")
print("Inside-_getframe {0}".format(sys._getframe().f_code.co_name))
print("Inside-traceback {0}".format(get_name()))
print("Foo1 end")
def foo2():
print("Foo2 start")
print("Inside {0}".format(sys._getframe().f_code.co_name))
print("Inside-traceback {0}".format(get_name()))
print("Foo2 end")
def foo3():
print("Foo3 start")
print("Inside {0}".format(sys._getframe().f_code.co_name))
print("Inside-traceback {0}".format(get_name()))
print("Foo3 end")
for f in [foo1, foo2, foo3]:
print("Outside: {0}".format(f.__name__))
f()
print('-' * 80)
You can use traceback, sys._getframe, dis and maybe there is a lot of more options... so far so good, python is awesome to do this kind of introspection.
Now, here's the thing, I'd like to know how to wrap automatically functions (at file level) to print its name and also measuring the execution time when they are executed. For instance, something like this:
def foo1():
print("Foo0 processing")
def foo2():
print("Foo2 processing")
def foo3():
print("Foo3 processing")
wrap_function_from_this_file()
for f in [foo1, foo2, foo3]:
f()
print('-' * 80)
Would print something like:
foo1 started
Foo1 processing
foo1 finished, elapsed time=1ms
--------------------------------------------------------------------------------
foo2 started
Foo2 processing
foo2 finished, elapsed time=2ms
--------------------------------------------------------------------------------
foo3 started
Foo3 processing
foo3 finished, elapsed time=3ms
--------------------------------------------------------------------------------
As you can see, the idea would be not adding any wrapper per-function manually to the file's functions. wrap_function_from_this_file would automagically introspect the file where is executed and it'd modify functions wrapping them somewhat, in this case, wrapping the functions with some code printing its name and execution time.
Just for the record, I'm not asking for any profiler. I'd like to know whether this is possible to do and how.
A solution could be to use globals() for getting information about currently defined objects. Here is a simple wrapper function, which replaces the functions within the given globals data by a wrapped version of them:
import types
def my_tiny_wrapper(glb):
def wrp(f):
# create a function which is not in
# local space of my_tiny_wrapper
def _inner(*args, **kwargs):
print('wrapped', f.__name__)
return f(*args, **kwargs)
print('end wrap', f.__name__)
return _inner
for f in [f for f in glb.values() if type(f) == types.FunctionType
and f.__name__ != 'my_tiny_wrapper']:
print('WRAP FUNCTION', f.__name__)
glb[f.__name__] = wrp(f)
It can be used like this:
def peter(): pass
def pan(a): print('salat and onions')
def g(a,b,c='A'): print(a,b,c)
# pass the current globals to the funcion
my_tiny_wrapper(globals())
g(4,b=2,c='D') # test keyword arguments
peter() # test no arguments
pan(4) # single argument
generating the following result:
~ % python derp.py
('WRAP FUNCTION', 'g')
('WRAP FUNCTION', 'pan')
('WRAP FUNCTION', 'peter')
('wrapped', 'g')
(4, 2, 'D')
('end wrap', 'g')
('wrapped', 'peter')
('end wrap', 'peter')
('wrapped', 'pan')
salat and onions
('end wrap', 'pan')
Here's the solution I was looking for:
import inspect
import time
import random
import sys
random.seed(1)
def foo1():
print("Foo0 processing")
def foo2():
print("Foo2 processing")
def foo3():
print("Foo3 processing")
def wrap_functions_from_this_file():
def wrapper(f):
def _inner(*args, **kwargs):
start = time.time()
print("{0} started".format(f.__name__))
result = f(*args, **kwargs)
time.sleep(random.random())
end = time.time()
print('{0} finished, elapsed time= {1:.4f}s'.format(
f.__name__, end - start))
return _inner
for o in inspect.getmembers(sys.modules[__name__], inspect.isfunction):
globals()[o[0]] = wrapper(o[1])
wrap_functions_from_this_file()
for f in [foo1, foo2, foo3]:
f()
print('-' * 80)

Throttle a function call in python

I have the following type of code, but it is slow because report() is called very often.
import time
import random
def report(values):
open('report.html', 'w').write(str(values))
values = []
for i in range(10000):
# some computation
r = random.random() / 100.
values.append(r)
time.sleep(r)
# report on the current status, but this should not slow things down
report(values)
In this illustrative code example, I would like the report to be up-to-date (at most 10s old), so I would like to throttle that function.
I could fork in report, write the current timestamp, and wait for that period, and check using a shared memory timestamp if report has been called in the meantime. If yes, terminate, if not, write the report.
Is there a more elegant way to do it in Python?
Here's a decorator that will take an argument for how long to protect the inner function for, raising an exception if called too soon.
import time
from functools import partial, wraps
class TooSoon(Exception):
"""Can't be called so soon"""
pass
class CoolDownDecorator(object):
def __init__(self,func,interval):
self.func = func
self.interval = interval
self.last_run = 0
def __get__(self,obj,objtype=None):
if obj is None:
return self.func
return partial(self,obj)
def __call__(self,*args,**kwargs):
now = time.time()
if now - self.last_run < self.interval:
raise TooSoon("Call after {0} seconds".format(self.last_run + self.interval - now))
else:
self.last_run = now
return self.func(*args,**kwargs)
def CoolDown(interval):
def applyDecorator(func):
decorator = CoolDownDecorator(func=func,interval=interval)
return wraps(func)(decorator)
return applyDecorator
Then:
>>> #CoolDown(10)
... def demo():
... print "demo called"
...
>>>
>>> for i in range(12):
... try:
... demo()
... except TooSoon, exc:
... print exc
... time.sleep(1)
...
demo called
Call after 8.99891519547 seconds
Call after 7.99776816368 seconds
Call after 6.99661898613 seconds
Call after 5.99548196793 seconds
Call after 4.9943420887 seconds
Call after 3.99319410324 seconds
Call after 2.99203896523 seconds
Call after 1.99091005325 seconds
Call after 0.990563154221 seconds
demo called
Call after 8.99888515472 seconds
Here is an example of throttling a function using closures in Python3.
import time
def get_current_time_milli():
return int(round(time.time() * 1000))
def mycallbackfunction():
time.sleep(0.1) #mocking some work
print ("in callback function...")
'''
Throttle a function call using closures.
Don't call the callback function until last invokation is more than 100ms ago.
Only works with python 3.
Caveat: python 2 we cannot rebind nonlocal variable inside the closure.
'''
def debouncer(callback, throttle_time_limit=100):
last_millis = get_current_time_milli()
def throttle():
nonlocal last_millis
curr_millis = get_current_time_milli()
if (curr_millis - last_millis) > throttle_time_limit:
last_millis = get_current_time_milli()
callback()
return throttle
#
myclosure_function = debouncer(mycallbackfunction, 100)
# we are calling myclosure_function 20 times, but only few times, the callback is getting executed.
# some event triggers this call repeatedly.
for i in range(20):
print('calling my closure', myclosure_function(), get_current_time_milli())

unusual result in measuring time in python

This is my stopwatch class
import time
class StopWatch:
def __init__(self, tag="", startTime=time.time(), elapsedTime=-1):
self._tag=tag
self._elapsedTime=elapsedTime
self._startTime=startTime
# other codes here............#
def stop(self, tag=None):
if tag is not None:
self._tag = tag
self._elapsedTime = time.time() - self._startTime
return self
def getStartTime(self):
return self._startTime
And stopwatch test file is:
import unittest
import time
from metric.StopWatch import StopWatch
class StopWatchTest(unittest.TestCase):
def test_stopwatch(self):
now=time.time()
print "now:%f" % now
stopwatch=StopWatch("firstHook")
print "start time:%r" % stopwatch.getStartTime()
self.assertTrue(stopwatch.getStartTime()>now, "start time is wrong")
What I get is error with:
now:1364791630.047630
start time:1364791629.158797
..
AssertionError: start time is wrong
The code to be executed later is showing earlier time. What is the reason behind this?
Default arguments are evaluated only once.
def __init__(self, tag="", startTime=time.time(), elapsedTime=-1):
self._tag=tag
self._elapsedTime = elapsedTime
self._startTime = startTime
To fix, we need to check the defaults explicitly and evaluate them in the function body:
def __init__(self, tag="", startTime=None, elapsedTime=-1):
self._tag=tag
self._elapsedTime = elapsedTime
if startTime is None:
startTime = time.time()
self._startTime = startTime
The reason is that this line:
def __init__(self, tag="", startTime=time.time(), elapsedTime=-1):
Is evaluated when it is reached by the Python interpreter (because despite the name it actually compiles the code, albeit to byte code). So startTime is set when the class is defined, not when __init__ is called.
Change it to:
def __init__(self, tag="", start_time=None, elapsed_time=-1):
if start_time is None:
start_time = time.time()
self._tag=tag
self._elapsed_time=elapsed_Time
self._start_time=start_time

Python time measure function

I want to create a python function to test the time spent in each function and print its name with its time, how i can print the function name and if there is another way to do so please tell me
def measureTime(a):
start = time.clock()
a()
elapsed = time.clock()
elapsed = elapsed - start
print "Time spent in (function name) is: ", elapsed
First and foremost, I highly suggest using a profiler or atleast use timeit.
However if you wanted to write your own timing method strictly to learn, here is somewhere to get started using a decorator.
Python 2:
def timing(f):
def wrap(*args):
time1 = time.time()
ret = f(*args)
time2 = time.time()
print '%s function took %0.3f ms' % (f.func_name, (time2-time1)*1000.0)
return ret
return wrap
And the usage is very simple, just use the #timing decorator:
#timing
def do_work():
#code
Python 3:
def timing(f):
def wrap(*args, **kwargs):
time1 = time.time()
ret = f(*args, **kwargs)
time2 = time.time()
print('{:s} function took {:.3f} ms'.format(f.__name__, (time2-time1)*1000.0))
return ret
return wrap
Note I'm calling f.func_name to get the function name as a string(in Python 2), or f.__name__ in Python 3.
After playing with the timeit module, I don't like its interface, which is not so elegant compared to the following two method.
The following code is in Python 3.
The decorator method
This is almost the same with #Mike's method. Here I add kwargs and functools wrap to make it better.
def timeit(func):
#functools.wraps(func)
def new_func(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
elapsed_time = time.time() - start_time
print('function [{}] finished in {} ms'.format(
func.__name__, int(elapsed_time * 1_000)))
return result
return new_func
#timeit
def foobar():
mike = Person()
mike.think(30)
The context manager method
from contextlib import contextmanager
#contextmanager
def timeit_context(name):
start_time = time.time()
yield
elapsed_time = time.time() - start_time
print('[{}] finished in {} ms'.format(name, int(elapsed_time * 1_000)))
For example, you can use it like:
with timeit_context('My profiling code'):
mike = Person()
mike.think()
And the code within the with block will be timed.
Conclusion
Using the first method, you can easily comment out the decorator to get the normal code. However, it can only time a function. If you have some part of code that you don't what to make it a function, then you can choose the second method.
For example, now you have
images = get_images()
big_image = ImagePacker.pack(images, width=4096)
drawer.draw(big_image)
Now you want to time the big_image = ... line. If you change it to a function, it will be:
images = get_images()
big_image = None
#timeit
def foobar():
nonlocal big_image
big_image = ImagePacker.pack(images, width=4096)
drawer.draw(big_image)
Looks not so great...What if you are in Python 2, which has no nonlocal keyword.
Instead, using the second method fits here very well:
images = get_images()
with timeit_context('foobar'):
big_image = ImagePacker.pack(images, width=4096)
drawer.draw(big_image)
I don't see what the problem with the timeit module is. This is probably the simplest way to do it.
import timeit
timeit.timeit(a, number=1)
Its also possible to send arguments to the functions. All you need is to wrap your function up using decorators. More explanation here: http://www.pythoncentral.io/time-a-python-function/
The only case where you might be interested in writing your own timing statements is if you want to run a function only once and are also want to obtain its return value.
The advantage of using the timeit module is that it lets you repeat the number of executions. This might be necessary because other processes might interfere with your timing accuracy. So, you should run it multiple times and look at the lowest value.
Timeit has two big flaws: it doesn't return the return value of the function, and it uses eval, which requires passing in extra setup code for imports. This solves both problems simply and elegantly:
def timed(f):
start = time.time()
ret = f()
elapsed = time.time() - start
return ret, elapsed
timed(lambda: database.foo.execute('select count(*) from source.apachelog'))
(<sqlalchemy.engine.result.ResultProxy object at 0x7fd6c20fc690>, 4.07547402381897)
There is an easy tool for timing. https://github.com/RalphMao/PyTimer
It can work like a decorator:
from pytimer import Timer
#Timer(average=False)
def matmul(a,b, times=100):
for i in range(times):
np.dot(a,b)
Output:
matmul:0.368434
matmul:2.839355
It can also work like a plug-in timer with namespace control(helpful if you are inserting it to a function which has a lot of codes and may be called anywhere else).
timer = Timer()
def any_function():
timer.start()
for i in range(10):
timer.reset()
np.dot(np.ones((100,1000)), np.zeros((1000,500)))
timer.checkpoint('block1')
np.dot(np.ones((100,1000)), np.zeros((1000,500)))
np.dot(np.ones((100,1000)), np.zeros((1000,500)))
timer.checkpoint('block2')
np.dot(np.ones((100,1000)), np.zeros((1000,1000)))
for j in range(20):
np.dot(np.ones((100,1000)), np.zeros((1000,500)))
timer.summary()
for i in range(2):
any_function()
Output:
========Timing Summary of Default Timer========
block2:0.065062
block1:0.032529
========Timing Summary of Default Timer========
block2:0.065838
block1:0.032891
Hope it will help
Decorator method using decorator Python library:
import decorator
#decorator
def timing(func, *args, **kwargs):
'''Function timing wrapper
Example of using:
``#timing()``
'''
fn = '%s.%s' % (func.__module__, func.__name__)
timer = Timer()
with timer:
ret = func(*args, **kwargs)
log.info(u'%s - %0.3f sec' % (fn, timer.duration_in_seconds()))
return ret
See post on my Blog:
post on mobilepro.pl Blog
my post on Google Plus
My way of doing it:
from time import time
def printTime(start):
end = time()
duration = end - start
if duration < 60:
return "used: " + str(round(duration, 2)) + "s."
else:
mins = int(duration / 60)
secs = round(duration % 60, 2)
if mins < 60:
return "used: " + str(mins) + "m " + str(secs) + "s."
else:
hours = int(duration / 3600)
mins = mins % 60
return "used: " + str(hours) + "h " + str(mins) + "m " + str(secs) + "s."
Set a variable as start = time() before execute the function/loops, and printTime(start) right after the block.
and you got the answer.
Elaborating on #Jonathan Ray I think this does the trick a bit better
import time
import inspect
def timed(f:callable):
start = time.time()
ret = f()
elapsed = 1000*(time.time() - start)
source_code=inspect.getsource(f).strip('\n')
logger.info(source_code+": "+str(elapsed)+" seconds")
return ret
It allows to take a regular line of code, say a = np.sin(np.pi) and transform it rather simply into
a = timed(lambda: np.sin(np.pi))
so that the timing is printed onto the logger and you can keep the same assignment of the result to a variable you might need for further work.
I suppose in Python 3.8 one could use the := but I do not have 3.8 yet
Below is a Timer class that:
Easy to use: use directly or as decorator function, < 100 lines
Measures a lot: total calls, total time, average time, and std. deviation.
Prints pretty time
Thread-safe
This is how you use it:
# Create the timer
timer1 = Timer("a name", log_every=2)
# Use "with"
with timer1:
print("timer1")
# Reuse as a decorator
#timer1
def my_func():
print("my_func")
# Instantiate as a decorator
#Timer("another timer", log_every=1)
def my_func2():
print("my_func2")
my_func()
my_func2()
my_func()
Below is the class
from datetime import datetime
import time, logging, math, threading
class Timer(object):
'''A general timer class. Does not really belong in a judicata file here.'''
def __init__(self, name, log_every = 1):
self.name = name
self.log_every = 1
self.calls = 0
self.total_time = 0
self.total_squared_time = 0
self.min, self.max = None, 0
# Make timer thread-safe by storing the times in thread-local storage.
self._local = threading.local()
self._lock = threading.Lock()
def __enter__(self):
"""Start a new timer"""
self._local.start = datetime.utcnow()
def __exit__(self, exc_type, exc_val, exc_tb):
"""Stop the timer, and report the elapsed time"""
elapsed_time = (datetime.utcnow() - self._local.start).total_seconds()
with self._lock:
self.calls += 1
self.total_time += elapsed_time
if self.min == None or elapsed_time < self.min:
self.min = elapsed_time
if elapsed_time > self.max:
self.max = elapsed_time
self.total_squared_time += elapsed_time * elapsed_time
if self.log_every and (self.calls % self.log_every) == 0:
self.log()
def __call__(self, fn):
'''For use as a decorator.'''
def decorated_timer_function(*args, **kwargs):
with self:
return fn(*args, **kwargs)
return decorated_timer_function
#classmethod
def time_str(cls, secs):
if isinstance(secs, six.string_types):
try:
secs = float(secs)
except:
return "(bad time: %s)"%secs
sign = lambda x: x
if secs < 0:
secs = -secs
sign = lambda x: ("-" + x)
return sign("%d secs"%int(secs) if secs >= 120 else
"%.2f secs" % secs if secs >= 1 else
"%d ms" % int(secs * 1000) if secs >= .01 else
"%.2f ms" % (secs * 1000) if secs >= .0001 else
"%d ns" % int(secs * 1000 * 10000) if secs >= 1e-9 else
"%s" % secs)
def log(self):
if not self.calls:
logging.info("<Timer %s: no calls>"%self.name)
return
avg = 1.0 * self.total_time / self.calls
var = 1.0 * self.total_squared_time / self.calls - avg*avg
std_dev = self.time_str(math.sqrt(var))
total = self.time_str(self.total_time)
min, max, avg = [self.time_str(t) for t in [self.min, self.max, avg]]
logging.info("<Timer %s: N=%s, total=%s, avg=%s, min/max=%s/%s, std=%s>"
%(self.name, self.calls, total, avg, min, max, std_dev))
You can use timeit.default_timer along with a contextmanager:
from timeit import default_timer
from contextlib import contextmanager
#contextmanager
def timer():
start_time = default_timer()
try:
yield
finally:
print("--- %s seconds ---" % (default_timer() - start_time))
Use it with with statement:
def looper():
for i in range(0, 100000000):
pass
with timer():
looper()
Output:
--- 2.651526927947998 seconds ---
Here is a generic solution
def timed(fn):
# make sure wherever u used this, imports will be ready
from time import perf_counter
from functools import wraps
# wraps preserves the metadata of fn
#wraps(fn)
def inner(*args, **kwargs):
start = perf_counter()
result = fn(*args, **kwargs)
end = perf_counter()
elapsed = end - start
args_ = [str(a) for a in args]
kwargs_ = ["{0}={1}".format(k, v) for (k, v) in kwargs.items()]
all_args = args_ + kwargs_
args_str = ",".join(all_args)
print("{0} ({1}) took {2:.6f} to run.".format(fn.__name__, args_str, elapsed))
return result
return inner
define a function:
#timed
def sum_up(a,b):
return a+b
now call it:
sum_up(2,9)
For the case using timeit.timeit, if command
timeit.timeit(function_to_test, n=10000)
raise error ValueError: stmt is neither a string nor callable
or command
timeit.timeit('function_to_test', n=10000)
raise error name 'function_to_test' is not defined, then you need:
replace function_to_test or 'function_to_test' with str(function_to_test), that is
timeit.timeit(str(function_to_test), n=10000)
or if Python version >= 3.6, another way is using f string as
timeit.timeit(f'{function_to_test}', n=10000)
About version use lambda, i.e. timeit.timeit(lambda: function_to_test, n=10000), it work but, from my test, it take much longer time.
Here, is a concrete example:
import timeit
def function_to_test(n):
s = 1
for i in range(n):
s += 1
return s
print("time run function_to_test: ", timeit.timeit(str(function_to_test(1000000)), number=10000))
print("time run function_to_test: ", timeit.timeit(f'{function_to_test(1000000)}', number=10000))

Categories

Resources