I'm trying to implement sentence similarity architecture based on this work using the STS dataset. Labels are normalized similarity scores from 0 to 1 so it is assumed to be a regression model.
My problem is that the loss goes directly to NaN starting from the first epoch. What am I doing wrong?
I have already tried updating to latest keras and theano versions.
The code for my model is:
def create_lstm_nn(input_dim):
seq = Sequential()`
# embedd using pretrained 300d embedding
seq.add(Embedding(vocab_size, emb_dim, mask_zero=True, weights=[embedding_weights]))
# encode via LSTM
seq.add(LSTM(128))
seq.add(Dropout(0.3))
return seq
lstm_nn = create_lstm_nn(input_dim)
input_a = Input(shape=(input_dim,))
input_b = Input(shape=(input_dim,))
processed_a = lstm_nn(input_a)
processed_b = lstm_nn(input_b)
cos_distance = merge([processed_a, processed_b], mode='cos', dot_axes=1)
cos_distance = Reshape((1,))(cos_distance)
distance = Lambda(lambda x: 1-x)(cos_distance)
model = Model(input=[input_a, input_b], output=distance)
# train
rms = RMSprop()
model.compile(loss='mse', optimizer=rms)
model.fit([X1, X2], y, validation_split=0.3, batch_size=128, nb_epoch=20)
I also tried using a simple Lambda instead of the Merge layer, but it has the same result.
def cosine_distance(vests):
x, y = vests
x = K.l2_normalize(x, axis=-1)
y = K.l2_normalize(y, axis=-1)
return -K.mean(x * y, axis=-1, keepdims=True)
def cos_dist_output_shape(shapes):
shape1, shape2 = shapes
return (shape1[0],1)
distance = Lambda(cosine_distance, output_shape=cos_dist_output_shape)([processed_a, processed_b])
The nan is a common issue in deep learning regression. Because you are using Siamese network, you can try followings:
check your data: do they need to be normalized?
try to add an Dense layer into your network as the last layer, but be careful picking up an activation function, e.g. relu
try to use another loss function, e.g. contrastive_loss
smaller your learning rate, e.g. 0.0001
cos mode does not carefully deal with division by zero, might be the cause of NaN
It is not easy to make deep learning work perfectly.
I didn't run into the nan issue, but my loss wouldn't change. I found this info
check this out
def cosine_distance(shapes):
y_true, y_pred = shapes
def l2_normalize(x, axis):
norm = K.sqrt(K.sum(K.square(x), axis=axis, keepdims=True))
return K.sign(x) * K.maximum(K.abs(x), K.epsilon()) / K.maximum(norm, K.epsilon())
y_true = l2_normalize(y_true, axis=-1)
y_pred = l2_normalize(y_pred, axis=-1)
return K.mean(1 - K.sum((y_true * y_pred), axis=-1))
Related
i am using tensorflow/keras and i would like to use the input in the loss function
as per this answer here
Custom loss function in Keras based on the input data
I have created my loss function thusly
def custom_Loss_with_input(inp_1):
def loss(y_true, y_pred):
b = K.mean(inp_1)
return y_true - b
return loss
and set up the model with the layers and all ending like this
model = Model(inp_1, x)
model.compile(loss=custom_Loss_with_input(inp_1), optimizer= Ada)
return model
Nevertheless, i get the following error:
TypeError: Cannot convert a symbolic Keras input/output to a numpy array. This error may indicate that you're trying to pass a symbolic value to a NumPy call, which is not supported. Or, you may be trying to pass Keras symbolic inputs/outputs to a TF API that does not register dispatching, preventing Keras from automatically converting the API call to a lambda layer in the Functional Model.
Any advice on how to eliminate this error?
Thanks in advance
You can use add_loss to pass external layers to your loss, in your case the input tensor.
Here an example:
def CustomLoss(y_true, y_pred, input_tensor):
b = K.mean(input_tensor)
return K.mean(K.square(y_true - y_pred)) + b
X = np.random.uniform(0,1, (1000,10))
y = np.random.uniform(0,1, (1000,1))
inp = Input(shape=(10,))
hidden = Dense(32, activation='relu')(inp)
out = Dense(1)(hidden)
target = Input((1,))
model = Model([inp,target], out)
model.add_loss( CustomLoss( target, out, inp ) )
model.compile(loss=None, optimizer='adam')
model.fit(x=[X,y], y=None, epochs=3)
If your loss is composed of different parts and you want to track them you can add different losses corresponding to the loss parts. In this way, the losses are printed at the end of each epoch and are stored in model.history.history. Remember that the final loss minimized during training is the sum of the various loss parts.
def ALoss(y_true, y_pred):
return K.mean(K.square(y_true - y_pred))
def BLoss(input_tensor):
b = K.mean(input_tensor)
return b
X = np.random.uniform(0,1, (1000,10))
y = np.random.uniform(0,1, (1000,1))
inp = Input(shape=(10,))
hidden = Dense(32, activation='relu')(inp)
out = Dense(1)(hidden)
target = Input((1,))
model = Model([inp,target], out)
model.add_loss(ALoss( target, out ))
model.add_metric(ALoss( target, out ), name='a_loss')
model.add_loss(BLoss( inp ))
model.add_metric(BLoss( inp ), name='b_loss')
model.compile(loss=None, optimizer='adam')
model.fit(x=[X,y], y=None, epochs=3)
To use the model in inference mode (removing the target from inputs):
final_model = Model(model.input[0], model.output)
final_model.predict(X)
I'm trying to reproduce the architecture of the network proposed in this publication in tensorFlow. Being a total beginner to this, I've been using this tutorial as a base to work on, using tensorflow==2.3.2.
To train this network, they use a loss which implies outputs from two branches of the network at the same time, which made me look towards custom losses function in keras. I've got that you can define your own, as long as the definition of the function looks like the following:
def custom_loss(y_true, y_pred):
I also understood that you could give other arguments like so:
def loss_function(margin=0.3):
def custom_loss(y_true, y_pred):
# And now you can use margin
You then just have to call these while compiling your model. When it comes to using multiple outputs, the most common approach seem to be the one proposed here, where you would give several losses functions, one being called for each of your output.
However, I could not find a solution to give several outputs to a loss function, which is what I need here.
To further explain it, here is a minimal working example showing what I've tried, which you can try for yourself in this collab.
import os
import tensorflow as tf
import keras.backend as K
from tensorflow.keras import datasets, layers, models, applications, losses
from tensorflow.keras.preprocessing import image_dataset_from_directory
_URL = 'https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip'
path_to_zip = tf.keras.utils.get_file('cats_and_dogs.zip', origin=_URL, extract=True)
PATH = os.path.join(os.path.dirname(path_to_zip), 'cats_and_dogs_filtered')
train_dir = os.path.join(PATH, 'train')
validation_dir = os.path.join(PATH, 'validation')
BATCH_SIZE = 32
IMG_SIZE = (160, 160)
IMG_SHAPE = IMG_SIZE + (3,)
train_dataset = image_dataset_from_directory(train_dir,
shuffle=True,
batch_size=BATCH_SIZE,
image_size=IMG_SIZE)
validation_dataset = image_dataset_from_directory(validation_dir,
shuffle=True,
batch_size=BATCH_SIZE,
image_size=IMG_SIZE)
data_augmentation = tf.keras.Sequential([
layers.experimental.preprocessing.RandomFlip('horizontal'),
layers.experimental.preprocessing.RandomRotation(0.2),
])
preprocess_input = applications.resnet50.preprocess_input
base_model = applications.ResNet50(input_shape=IMG_SHAPE,
include_top=False,
weights='imagenet')
base_model.trainable = True
conv = layers.Conv2D(filters=128, kernel_size=(1,1))
global_pooling = layers.GlobalAveragePooling2D()
horizontal_pooling = layers.AveragePooling2D(pool_size=(1, 5))
reshape = layers.Reshape((-1, 128))
def custom_loss(y_true, y_pred):
print(y_pred.shape)
# Do some stuffs involving both outputs
# Returning something trivial here for correct behavior
return K.mean(y_pred)
inputs = tf.keras.Input(shape=IMG_SHAPE)
x = data_augmentation(inputs)
x = preprocess_input(x)
x = base_model(x, training=True)
first_branch = global_pooling(x)
second_branch = conv(x)
second_branch = horizontal_pooling(second_branch)
second_branch = reshape(second_branch)
model = tf.keras.Model(inputs, [first_branch, second_branch])
base_learning_rate = 0.0001
model.compile(optimizer=tf.keras.optimizers.Adam(lr=base_learning_rate),
loss=custom_loss,
metrics=['accuracy'])
model.summary()
initial_epochs = 10
history = model.fit(train_dataset,
epochs=initial_epochs,
validation_data=validation_dataset)
while doing so, I thought that the y_pred given to loss function would be a list, containing both outputs. However, while running it, what I've got in stdout was this:
Epoch 1/10
(None, 2048)
(None, 5, 128)
What I understand from this is that the loss function is called with every output, one by one, instead of being called once with all the outputs, which means I can't define a loss that would use both the outputs at the same time. Is there any way to achieve this?
Please let me know if I'm unclear, or if you need further details.
I had the same problem trying to implement Triplet_Loss function.
I refered to Keras's implementation for Siamese Network with Triplet Loss Function but something didnt work out and I had to implement the network by myself.
def get_siamese_model(input_shape, conv2d_filters):
# Define the tensors for the input images
anchor_input = Input(input_shape, name="Anchor_Input")
positive_input = Input(input_shape, name="Positive_Input")
negative_input = Input(input_shape, name="Negative_Input")
body = build_body(input_shape, conv2d_filters)
# Generate the feature vectors for the images
encoded_a = body(anchor_input)
encoded_p = body(positive_input)
encoded_n = body(negative_input)
distance = DistanceLayer()(encoded_a, encoded_p, encoded_n)
# Connect the inputs with the outputs
siamese_net = Model(inputs=[anchor_input, positive_input, negative_input],
outputs=distance)
return siamese_net
and the "bug" was in DistanceLayer Implementation Keras posted (also in the same link above).
class DistanceLayer(tf.keras.layers.Layer):
"""
This layer is responsible for computing the distance between the anchor
embedding and the positive embedding, and the anchor embedding and the
negative embedding.
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
def call(self, anchor, positive, negative):
ap_distance = tf.math.reduce_sum(tf.math.square(anchor - positive), axis=1, keepdims=True, name='ap_distance')
an_distance = tf.math.reduce_sum(tf.math.square(anchor - negative), axis=1, keepdims=True, name='an_distance')
return (ap_distance, an_distance)
When I was training the model, the loss function took only one of the vectors ap_distance or an_distance.
FINALLY, THE FIX WAS to concatenate the vectors together (along axis=1 this case) and on the loss function, take them apart:
def call(self, anchor, positive, negative):
ap_distance = tf.math.reduce_sum(tf.math.square(anchor - positive), axis=1, keepdims=True, name='ap_distance')
an_distance = tf.math.reduce_sum(tf.math.square(anchor - negative), axis=1, keepdims=True, name='an_distance')
return tf.concat([ap_distance, an_distance], axis=1)
on my custom loss:
def get_loss(margin=1.0):
def triplet_loss(y_true, y_pred):
# The output of the network is NOT A tuple, but a matrix shape (batch_size, 2),
# containing the distances between the anchor and the positive example,
# and the anchor and the negative example.
ap_distance = y_pred[:, 0]
an_distance = y_pred[:, 1]
# Computing the Triplet Loss by subtracting both distances and
# making sure we don't get a negative value.
loss = tf.math.maximum(ap_distance - an_distance + margin, 0.0)
# tf.print("\n", ap_distance, an_distance)
# tf.print(f"\n{loss}\n")
return loss
return triplet_loss
Ok, here is an easy way to achieve this. We can achieve this by using the loss_weights parameter. We can weigh multiple outputs exactly the same so that we can get the combined loss results. So, for two output we can do
loss_weights = 1*output1 + 1*output2
In your case, your network has two outputs, by the name they are reshape, and global_average_pooling2d. You can do now as follows
# calculation of loss for one output, i.e. reshape
def reshape_loss(y_true, y_pred):
# do some math with these two
return K.mean(y_pred)
# calculation of loss for another output, i.e. global_average_pooling2d
def gap_loss(y_true, y_pred):
# do some math with these two
return K.mean(y_pred)
And while compiling now you need to do as this
model.compile(
optimizer=tf.keras.optimizers.Adam(lr=base_learning_rate),
loss = {
'reshape':reshape_loss,
'global_average_pooling2d':gap_loss
},
loss_weights = {
'reshape':1.,
'global_average_pooling2d':1.
}
)
Now, the loss is the result of 1.*reshape + 1.*global_average_pooling2d.
I am currently experimenting with generative adversarial networks in Keras.
As proposed in this paper, I want to use the historical averaging loss function. Meaning that I want to penalize the change of the network weights.
I am not sure how to implement it in a clever way.
I was implementing the custom loss function according to the answer to this post.
def historical_averaging_wrapper(current_weights, prev_weights):
def historical_averaging(y_true, y_pred):
diff = 0
for i in range(len(current_weights)):
diff += abs(np.sum(current_weights[i]) + np.sum(prev_weights[i]))
return K.binary_crossentropy(y_true, y_pred) + diff
return historical_averaging
The weights of the network are penalized, and the weights are changing after each batch of data.
My first idea was to update the loss function after each batch.
Roughly like this:
prev_weights = model.get_weights()
for i in range(len(data)/batch_len):
current_weights = model.get_weights()
model.compile(loss=historical_averaging_wrapper(current_weights, prev_weights), optimizer='adam')
model.fit(training_data[i*batch_size:(i+1)*batch_size], training_labels[i*batch_size:(i+1)*batch_size], epochs=1, batch_size=batch_size)
prev_weights = current_weights
Is this reasonable? That approach seems to be a bit "messy" in my opinion.
Is there another possibility to do this in a "smarter" way?
Like maybe updating the loss function in a data generator and use fit_generator()?
Thanks in advance.
Loss functions are operations on the graph using tensors.
You can define additional tensors in the loss function to hold previous values. This is an example:
import tensorflow as tf
import tensorflow.keras.backend as K
keras = tf.keras
class HistoricalAvgLoss(object):
def __init__(self, model):
# create tensors (initialized to zero) to hold the previous value of the
# weights
self.prev_weights = []
for w in model.get_weights():
self.prev_weights.append(K.variable(np.zeros(w.shape)))
def loss(self, y_true, y_pred):
err = keras.losses.mean_squared_error(y_true, y_pred)
werr = [K.mean(K.abs(c - p)) for c, p in zip(model.get_weights(), self.prev_weights)]
self.prev_weights = K.in_train_phase(
[K.update(p, c) for c, p in zip(model.get_weights(), self.prev_weights)],
self.prev_weights
)
return K.in_train_phase(err + K.sum(werr), err)
The variable prev_weights holds the previous values. Note that we added a K.update operation after the weight errors are calculated.
A sample model for testing:
model = keras.models.Sequential([
keras.layers.Input(shape=(4,)),
keras.layers.Dense(8),
keras.layers.Dense(4),
keras.layers.Dense(1),
])
loss_obj = HistoricalAvgLoss(model)
model.compile('adam', loss_obj.loss)
model.summary()
Some test data and objective function:
import numpy as np
def test_fn(x):
return x[0]*x[1] + 2.0 * x[1]**2 + x[2]/x[3] + 3.0 * x[3]
X = np.random.rand(1000, 4)
y = np.apply_along_axis(test_fn, 1, X)
hist = model.fit(X, y, validation_split=0.25, epochs=10)
The model losses decrease over time, in my test.
Using examples from Lipton et al (2016), target replication is basically calculating the loss at each time step (except final) of the LSTM (or GRU) and averaging this loss and adding it to the main loss while training. Mathematically, it is given by -
Graphically, it can be represented as -
So how do I go about exactly implementing this in Keras? Say, I have binary classification task. Let's say my model is a simple one given below -
model.add(LSTM(50))
model.add(Dense(1))
model.compile(loss='binary_crossentropy', class_weights={0:0.5, 1:4}, optimizer=Adam(), metrics=['accuracy'])
model.fit(x_train, y_train)
I think y_train needs to be reshaped/tiled from (batch_size, 1) to (batch_size, time_step) right?
The dense layer needs TimeDistributed to be applied correctly to the LSTM after setting return_sequences=True?
How do I exactly implement the exact loss function given above? Will class_weights need to be modified?
Target replication is only during training. How to implement validation set evaluation using only the main loss?
How should I deal with zero paddings in target replication? My sequences are padded to a max_len of 15 with average length being 7. Since the target replication loss averages over all the steps, how do I make sure it doesn't use the padded words in calculating the loss? Basically, dynamically assign T the actual sequence length.
Question 1:
So, for the targets, you need it shaped as (batch_size, time_steps, 1). Just use:
y_train = np.stack([y_train]*time_steps, axis=1)
Question 2:
You're correct, but TimeDistributed is optional in Keras 2.
Question 3:
I don't know how class weights will behave, but a regular loss function should go like:
from keras.losses import binary_crossentropy
def target_replication_loss(alpha):
def inner_loss(true,pred):
losses = binary_crossentropy(true,pred)
return (alpha*K.mean(losses[:,:-1], axis=-1)) + ((1-alpha)*losses[:,-1])
return inner_loss
model.compile(......, loss = target_replication_loss(alpha), ...)
Question 3a:
Since the above doens't work well with class weights, I created an alternative where the weights go into the loss:
def target_replication_loss(alpha, class_weights):
def get_weights(x):
b = class_weights[0]
a = class_weights[1] - b
return (a*x) + b
def inner_loss(true,pred):
#this will only work for classification with only one class 0 or 1
#and only if the target is the same for all classes
true_classes = true[:,-1,0]
weights = get_weights(true_classes)
losses = binary_crossentropy(true,pred)
return weights*((alpha*K.mean(losses[:,:-1], axis=-1)) + ((1-alpha)*losses[:,-1]))
return inner_loss
Question 4:
To avoid complexity, I'd say you should use an additional metric in validation:
def last_step_BC(true,pred):
return binary_crossentropy(true[:,-1], pred[:,-1])
model.compile(....,
loss = target_replication_loss(alpha),
metrics=[last_step_BC])
Question 5:
This is a hard one and I'd need to research a little....
As an initial workaround, you can set the model with an input shape of (None, features), and train each sequence individually.
Working example without class_weight
def target_replication_loss(alpha):
def inner_loss(true,pred):
losses = binary_crossentropy(true,pred)
#print(K.int_shape(losses))
#print(K.int_shape(losses[:,:-1]))
#print(K.int_shape(K.mean(losses[:,:-1], axis=-1)))
#print(K.int_shape(losses[:,-1]))
return (alpha*K.mean(losses[:,:-1], axis=-1)) + ((1-alpha)*losses[:,-1])
return inner_loss
alpha = 0.6
i1 = Input((5,2))
i2 = Input((5,2))
out = LSTM(1, activation='sigmoid', return_sequences=True)(i1)
model = Model(i1, out)
model.compile(optimizer='adam', loss = target_replication_loss(alpha))
model.fit(np.arange(30).reshape((3,5,2)), np.arange(15).reshape((3,5,1)), epochs = 200)
Working example with class weights:
def target_replication_loss(alpha, class_weights):
def get_weights(x):
b = class_weights[0]
a = class_weights[1] - b
return (a*x) + b
def inner_loss(true,pred):
#this will only work for classification with only one class 0 or 1
#and only if the target is the same for all classes
true_classes = true[:,-1,0]
weights = get_weights(true_classes)
losses = binary_crossentropy(true,pred)
print(K.int_shape(losses))
print(K.int_shape(losses[:,:-1]))
print(K.int_shape(K.mean(losses[:,:-1], axis=-1)))
print(K.int_shape(losses[:,-1]))
print(K.int_shape(weights))
return weights*((alpha*K.mean(losses[:,:-1], axis=-1)) + ((1-alpha)*losses[:,-1]))
return inner_loss
alpha = 0.6
class_weights={0: 0.5, 1:4.}
i1 = Input(batch_shape=(3,5,2))
i2 = Input((5,2))
out = LSTM(1, activation='sigmoid', return_sequences=True)(i1)
model = Model(i1, out)
model.compile(optimizer='adam', loss = target_replication_loss(alpha, class_weights))
model.fit(np.arange(30).reshape((3,5,2)), np.arange(15).reshape((3,5,1)), epochs = 200)
Inspired by this article, I'm trying to build a Conditional GAN which will use LSTM to generate MNIST numbers. I hope I'm using the same architecture as in the image below (except for the bidirectional RNN in discriminator, taken from this paper):
When I run this model, I've got very strange results. This image shows my model generating number 3 after each epoch. It should look more like this. It's really bad.
Loss of my discriminator network decreasing really fast up to close to zero. However, the loss of my generator network oscillates around some fixed point (maybe diverging slowly). I really don't know what's happening. Here is the most important part of my code (full code here):
timesteps = 28
X_dim = 28
Z_dim = 100
y_dim = 10
X = tf.placeholder(tf.float32, [None, timesteps, X_dim]) # reshaped MNIST image to 28x28
y = tf.placeholder(tf.float32, [None, y_dim]) # one-hot label
Z = tf.placeholder(tf.float32, [None, timesteps, Z_dim]) # numpy.random.uniform noise in range [-1; 1]
y_timesteps = tf.tile(tf.expand_dims(y, axis=1), [1, timesteps, 1]) # [None, timesteps, y_dim] - replicate y along axis=1
def discriminator(x, y):
with tf.variable_scope('discriminator', reuse=tf.AUTO_REUSE) as vs:
inputs = tf.concat([x, y], axis=2)
D_cell = tf.contrib.rnn.LSTMCell(64)
output, _ = tf.nn.dynamic_rnn(D_cell, inputs, dtype=tf.float32)
last_output = output[:, -1, :]
logit = tf.contrib.layers.fully_connected(last_output, 1, activation_fn=None)
pred = tf.nn.sigmoid(logit)
variables = [v for v in tf.all_variables() if v.name.startswith(vs.name)]
return variables, pred, logit
def generator(z, y):
with tf.variable_scope('generator', reuse=tf.AUTO_REUSE) as vs:
inputs = tf.concat([z, y], axis=2)
G_cell = tf.contrib.rnn.LSTMCell(64)
output, _ = tf.nn.dynamic_rnn(G_cell, inputs, dtype=tf.float32)
logit = tf.contrib.layers.fully_connected(output, X_dim, activation_fn=None)
pred = tf.nn.sigmoid(logit)
variables = [v for v in tf.all_variables() if v.name.startswith(vs.name)]
return variables, pred
G_vars, G_sample = run_generator(Z, y_timesteps)
D_vars, D_real, D_logit_real = run_discriminator(X, y_timesteps)
_, D_fake, D_logit_fake = run_discriminator(G_sample, y_timesteps)
D_loss = -tf.reduce_mean(tf.log(D_real) + tf.log(1. - D_fake))
G_loss = -tf.reduce_mean(tf.log(D_fake))
D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=D_vars)
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=G_vars)
There is most likely something wrong with my model. Anyone could help me make the generator network converge?
There are a few things you can do to improve your network architecture and training phase.
Remove the tf.nn.sigmoid(logit) from both the generator and discriminator. Return just the pred.
Use a numerically stable function to calculate your loss functions and fix the loss functions:
D_loss = -tf.reduce_mean(tf.log(D_real) + tf.log(1. - D_fake))
G_loss = -tf.reduce_mean(tf.log(D_fake))
should be:
D_loss_real = tf.nn.sigmoid_cross_entropy_with_logits(
logits=D_real,
labels=tf.ones_like(D_real))
D_loss_fake = tf.nn.sigmoid_cross_entropy_with_logits(
logits=D_fake,
labels=tf.zeros_like(D_fake))
D_loss = -tf.reduce_mean(D_loss_real + D_loss_fake)
G_loss = -tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=D_real,
labels=tf.ones_like(D_real)))
Once you fixed the loss and used a numerically stable function, things will go better. Also, as a rule of thumb, if there's too much noise in the loss, reduce the learning rate (the default lr of ADAM is usually too high when training GANs).
Hope it helps