Tail recursion to loop - python

I as working on a program that given a and b, computes the last 5 digits of a^b. I currently have it working as long as b is sufficiently low, but if b is large (>1000) this will crush the stack. Is there a way I can make this an iterative function? I have tried converting to iterative, but I can't figure it out.
def pow_mod(a,b):
if b == 0:
return 1
elif b == 2:
return a*a % 10000
return ((b%2*(a-1) + 1) * pow_mod(a,b//2)**2) % 10000

In order to do this computation, iteratively, you start with an answer=a, and then square it repeatedly (and multiply by a if b is odd). To exit the loop, divide b by 2 each time, and check for when b>1.
def pow_mod(a,b):
if b == 0:
return 1
c = 1;
while b > 1:
if b % 2:
c *= a
a *= a
b //= 2
a %= 10000
c %= 10000
return a * c % 10000

Use a while loop instead of recursion, to adjust b the same way that you do in the recursive call.
def pow_mod(a, b):
result = 1
while b > 0:
result = (b%2*(a-1) + 1) * result**2) % 10000
b = b//2
return result

The trick is to store the result in a temporary variable and then pass it to each function call.
lst = []
while b:
lst.insert(0, b)
b = b//2
def _pow_mod(a, b, answer):
if b == 2:
return a*a % 10000;
else:
return ((b%2*(a-1) + 1) * answer **2) % 10000
answer = 1 # b = 0 case
for b in lst:
answer = _pow_mod(a, b, answer)
Complete Code:
# Original recursive solution
def pow_mod_orig(a, b):
if b == 0:
return 1
elif b == 2:
return a*a % 10000
return ((b%2*(a-1) + 1) * pow_mod_orig(a,b//2)**2) % 10000
# Iterative solution
def pow_mod(a, b):
lst = []
while b:
lst.insert(0, b)
b = b//2
def _pow_mod(a, b, answer):
if b == 2:
return a*a % 10000;
else:
return ((b%2*(a-1) + 1) * answer **2) % 10000
answer = 1 # b = 0 case
for b in lst:
answer = _pow_mod(a, b, answer)
return answer
for i in range(1000):
assert(pow_mod_orig(3, i) == pow_mod(3, i))

Related

can anyone optimize my python code for "Pythagorean triplets"?

I have written a code to find Pythagorean triplets but it is not optimized
it took 5-6 minutes for the algorithm to find answer for big numbers...
my teacher said it should take less than 3 secs...
num = int(input())
def main(n):
for x in range(1, n):
for y in range(1, x):
for z in range(1, y):
if x + y + z == n:
if x * x == y * y + z * z or y * y == x * x + z * z or z * z == x * x + y * y:
a = f'{z} {y} {x}'
print(a)
return
else:
print('Impossible')
for example if you enter 12, you'll get 3,4,5
if you enter 30 , the answer will be 5,12,13
The sum of these three numbers must be equal to the number you entered.
can anyone please help me ?
Note the proof for the parametric representation of primitive pythagorean triples. In the proof, the author states:
We can use this proof to write an optimized algorithm:
def p(num):
a, b, c = 1, 1, 0
n = 0
while c < num:
for m in range(1, n):
a = 2 * m * n
b = n ** 2 - m ** 2
c = n ** 2 + m ** 2
if c >= num:
return "Impossible!"
elif a + b + c == num:
return b, a, c
n = n + 1
print(p(12)) # >>> (3, 4, 5)
print(p(30)) # >>> (5, 12, 13)
print(p(31)) # >>> Impossible!
You're doing a lot of repeated and unnecessary work. You know that A^2 + B^2 = C^2 and you know that C > B > A. It doesn't matter if you want to say C > A > B because any solution you find with that would be satisfied with C > B > A. For instance take 12 and solution 3, 4, 5. It doesn't actually matter if you say that A=3 and B=4 or A=4 and B=3. Knowing this we can adjust the loops of each for loop.
A can go from 1 to num, that's fine. Technically it can go to a bit less since you are adding another value to it that has to be at least 1 as well.
B then can go from A+1 to num since it needs to be greater than it.
So what about C? Well it doesnt' need to go from 1 since that's not possible. In fact we only care about A + B + C = num, so solve for C and you get C = num - A - B. That means you don't need to use a loop to find C since you can just solve for it. Knowing this you can do something like so:
In [142]: def find_triplet(num):
...: for a in range(1, num-1):
...: for b in range(a+1, num):
...: # A^2 + B^2 = C^2
...: # And A+B+C = N
...: c = num - a - b
...: if c > 0:
...: if a*a + b*b == c*c:
...: print(f'{a} {b} {c}')
...: else:
...: break
...:
In [143]: find_triplet(30)
5 12 13
So why check to see if C > 0 and break otherwise? Well, if you know C = num - A - B and you are incrementing B, then once B becomes too large, C is going to continue to get more and more negative. Because of that you can check if C > 0 and if it's not, break out of that inner loop to have A increment and B reset.
The approach you discussed takes O(n^3) complexity.
An efficient solution is to run two loops, where first loop runs from x = 1 to n/3, second loop runs from y = x+1 to n/2. In second loop, we check if (n – x – y) is equal to (x * x + y * y):
def pythagoreanTriplet(n):
# Considering triplets in
# sorted order. The value
# of first element in sorted
# triplet can be at-most n/3.
for x in range(1, int(n / 3) + 1):
# The value of second element
# must be less than equal to n/2
for y in range(x + 1,
int(n / 2) + 1):
z = n - x - y
if (x * x + y * y == z * z):
print(x, " ", y, " ", z)
return
print("Impossible")
# Driver Code
n = int(input())
pythagoreanTriplet(n)
PS: Time complexity = O(n^2)

3Sum function debugging

I have been asked to fix this chunk of code. It is to do with sets and the 3Sum problem. I have used print statements and i am very close to the answer, but i get an IndexingError (list index out of range). Any help would be great
def count_c(A, B, C):
"""Counts the number of pairs a in A and b in B so that a + b == c
nb. Assumes that A and B are sorted
"""
rv = 0
n = len(A)
m = len(B)
#t = len(C)
AL, BL, CL = list(A), list(B), list(C)
# i and j are "fingers" on A and B
i, j = 0, m-1
while i < n and j >= 0:
for c in CL:
a, b = AL[i], BL[j] #correct
print ('a,b = ', (a,b))
s = a + b #correct
print('s = ', s)
print ('i , j =', (i,j))
if s == c:
# found a pair that works
rv = rv + 1 #correct
# start again with a smaller b
j = j - 1 #correct
elif s > c:
# too big. decrease the b contribution
j = j - 1
else:
# means s < c, increase the a contribution
i = i + 1
return rv
def three_sum(A, B, C):
"""Solves 3SUM+"""
return count_c(A,B,C)
IndexingError (list index out of range)

Finding Greatest Common Divisor through iterative solution (python 3)

I am trying to find the great common divisor by using a function and solving it iteratively. Though, for some reason, I am not sure why I am not getting the right output.
The greatest common divisor between 30 & 15 should be 15, however, my output is always giving me the wrong number. I have a strong feeling that my "if" statement is strongly incorrect. Please help!
def square(a,b):
'''
x: int or float.
'''
c = a + b
while c > 0:
c -= 1
if a % c == 0 and b % c == 0:
return c
else:
return 1
obj = square(30,15)
print (obj)
You should return a value only if you finished iterating all numbers and found none of them a divisor to both numbers:
def square(a, b):
c = a + b
while c > 0:
if a % c == 0 and b % c == 0:
return c
c -= 1
return 1
However, the last return will be unneeded in this case, as c would go from a + b to 1, and mod 1 will always bring a common divisor, so the loop will always terminate with 1, for the worst case.
Also, a number greater than a and b can not be a common divisor of them. (x mod y for y > x yields x), and gcd is the formal name for the task, so I would go with
def gcd(a, b):
for c in range(min(a, b), 0, -1):
if a % c == b % c == 0:
return c
for iterational solution.
You might be interested to know that there is a common recursive solution to the GCD problem based on the Euclidian algorighm.
def gcd(a, b):
if b == 0:
return a
else:
return gcd(b, a % b)
print(gcd(30, 15))
# 15

GCD implementation in python

I am solving this problem in SPOJ and it states that :
Problem statement is simple. Given A and B you need to calculate
S(A,B) .
Here, f(n)=n, if n is square free otherwise 0. Also f(1)=1.
Input
The first line contains one integer T - denoting the number of test
cases.
T lines follow each containing two integers A,B.
Output
For each testcase output the value of S(A,B) mod 1000000007 in a
single line.
Constraints
`T <= 1000
1 <= A,B <= 1000000`
Example
Input:
3
42 18
35 1
20 25
Output:
306395
630
128819
I wrote this code for this problem (if I got the the problem right) :
def gcd(a,b): #gcd(a,b)
if b==0:
return a
else:
return gcd(b,a%b)
# print gcd(42,18)
import math
def issquarefree(n): #sqare free number check
i=2
s=i*i
if (n==1 or n==2) or n==3:
return True
while s<=n:
if n%s==0:
i=-1
break
else:
i+=1
s=i*i
if i==-1:return False
else:
return True
for i in range(int(raw_input())): #main program
a,b=map(int,raw_input().split())
g=gcd(a,b)
sa=(a*(a+1))/2 #see below
sb=(b*(b+1))/2 #see below
gc=issquarefree(g)
s=0
if gc== False:
print 0
elif gc==True:
s+=sa*sb*g
print s%1000000007
here I found that so applying this to the problem # S(A,B) I wrote this as (multiplication of sum of first A and B numbers ) multiplied by f(n) which is gcd(a,b) or 0.
But I am not getting the expected output to this problem so is my code wrong or I got the problem wrong
my output vs expected
3
35 1
42 18
20 25
630 630
926478 306395
341250 128819
Writing out the G(a, b) = f(gcd(a, b)) (so that you can use the cited formula) is incorrect since the function is not constant. The proper solution is this:
for i in range(int(raw_input())):
A, B = map(int, raw_input().split())
# proper algorithm
s = 0
for a in xrange(1, A):
for b in xrange(1, B):
s += a * b * G(a, b)
print s % 1000000007
You obviously have to implement G function properly (as returning 0 or gcd(a, b)).
Careful analysis of G might give some optimization insight but it is definitely not a trivial one if any.
Here is a simple optimization:
import fractions
DIVISOR = 1000000007
def is_not_square_free(a):
counter = 1
factor = 1
while factor < a:
counter += 1
factor = counter * counter
if a % factor == 0:
return True
return factor == a
def F(n):
if n == 1:
return 1
if is_not_square_free(n):
return 0
return n
_CACHE = {}
def G(a, b):
a = a % DIVISOR
b = b % DIVISOR
key = (a, b) if a > b else (b, a)
if key not in _CACHE:
_CACHE[key] = (a * b * F(fractions.gcd(a, b))) % DIVISOR
return _CACHE[key]
def S(A, B):
s = 0
for a in range(1, A+1):
for b in range(1, B+1):
s += G(a, b)
return s
for _ in range(int(raw_input())):
A, B = map(int, raw_input().split())
print(S(A, B) % DIVISOR)
def gcd(a, b):
returns greatest common divisor of a and b'''
return gcd(b % a, a) if a and b else max(a, b)
print test gcd should print 6,5, 7, and 9'''
print gcd(48,18)
print gcd(10,5)
print gcd(14,21)
print gcd (9,0)

Calculating logarithm, why is this algorithm not efficient, and how to make it more efficient?

I was wondering if I could calculate the logarithm of a number based on a number relative to a base (for example, log base 2 of 16) without actually using log(). I managed to do it, but I don't believe it is very efficient.
This is my code in Python:
def myLog(x,b):
exp=0
ans=b**exp
while x!=ans:
ans=b**exp
if ans==x:
return exp
exp=exp+1
So I could give it myLog(16,2) and it should return 4. And indeed it does, however I believe it is not the most efficient way, so how could I fix it and make my code more efficient, not just in this case, but in most of them?
Try recursion:
def func(a, b, ans=0):
if a/b == 1:
return ans + 1
else: return func(a/b, b, ans+1)
In [26]: func(16, 2)
Out[26]: 4
In [27]: func(8, 2)
Out[27]: 3
In [28]: func(16,4)
Out[28]: 2
Here's my two cents worth:
def myLog(x,b):
exp = 0
ans = 1
while ans<x:
ans *= b
exp += 1
if ans == x:
return exp
else:
raise ValueError("can't find a suitable exponent")
In [10]: myLog(16,2)
Out[10]: 4
Hope this helps
You're not taking into account if someone gives a negative value such as myLog(-1,2) or if it is 1 myLog(1,2), then you compute ans before the loop which you know it always be 0 because you put exp = 0, then in the loop you compute it again without before changing the exp.
logarithm python
Assumes:
x: a positive integer
b: a positive integer; b >= 2
returns: log_b(x), or, the logarithm of x relative to a base b.
Seems the shortest way is:
def myLog(x, b):
ans = 0
while b <= x:
ans += 1
x /= b
return ans
Or recursively:
def myLog(x, b):
if (b > x): return 0
else: return 1 + myLog(x/b, b)
Because it is an endless loop:
def myLog(x,b):
exp = 0
ans = b**exp
while x != ans:
ans = b**exp
if ans>x:
return -1
if ans == x:
return exp
exp = exp+1
See also:
What algorithm is used by computers to calculate logarithms?
Taylor series
This version adds support for non-integer outputs:
def log(a, b):
b = float(b)
a = float(a)
g = a
n = 0
i = 1
while b**i != 1:
while g >= b**i:
g /= b**i
n += i
i /= b
return n
def log(a, b):
b = float(b)
a = float(a)
g = a
n = 0
i = 1
while b**i != 1:
while g >= b**i:
g /= b**i
n += i
i /= b
return n
Does not work for all numbers. log(5,10) returns 0.00000 when it should be 0.69897

Categories

Resources