I have a python x-array dataset with dimensions x,y,t and at least two variables at each coordinate. I was wondering if there exists any x-array method that can help "project" or "composite" values on an axis of my choice.
The figure I drafted up below is an example of what I mean by compositing on a time axis. In the figure, only most recent finite values are considered in the final product. If no finite value is found in a specified interval, then the composite value is nan. This is similar to stacking raster layers in photoshop or gimp.
What I've learned in my recent x-array explorations is that more than often the solution to x-array problems involves avoiding manual dissection of x-array data-structures(however tempting it may be).
I was wondering if python x-array had a built in way of handling problems like compositing? Any tips on how I should go about approaching this problem? I'm primarily looking for either more knowledge about x-arrays or a solution to the compositing problem.
Unfortunately, we don't yet have this functionality built-in to xarray yet (contributions would be welcome!). See https://github.com/pydata/xarray/issues/835 for the issue tracker. Eventually, this will probably go under the name of combine_first.
Related
I am currently simulating a structural optimization problem in which the gradients of responses are extracted from Nastran and provided to SLSQP optimizer in OpenMDAO. The number of constraints changes in subsequent iterations, because the design variables included both the shape and sizing variables, therefore a new mesh is generated every time. A constraint component is defined in OpenMDAO, and it reads the response data exported from Nastran. Now, the issue here is in defining the shape of its output variable "f_const". The shape of this output variable is required to adjust according to the shape of the available response array, since outputs['f_const'] = np.loadtxt("nsatran_const.dat"). Here, nastran_const.dat is the file containing response data extracted from Nastran. The shape of this data is not known at the beginning of design iteration and keep on changing during the subsequent iterations. So, if some shape of f_const is defined at the start, then it does not change later and gives error because of the mismatch in the shapes.
In the doc of openmdao, I found https://openmdao.org/newdocs/versions/latest/features/experimental/dyn_shapes.html?highlight=varying%20shape
It explains, that the shape of input/out variable can be set dynamic by linking it to any connecting or local variables whose shapes are already known. This is different from my case because, the shape of stress array is not known before the start of computation. The shape of f_const is to be defined in setup, and I cannot figure out how to change it later. Please guide me in this regard.
You can't have arrays that change shape like that. The "dynamic" shape you found in the docs refers to setup-time variation. Once setup has been finished though, sizes are fixed. So we need a way for you arrays to be of a fixed size.
If you really must re-mesh every time (which I don't recommend) then there are two possible solutions I can think of:
Over-allocation
Constraint Aggregation
Option 1 -- Over Allocation
This topic is covered in detail in this related question, but briefly what you could do is allocate an array big enough that you always have enough space. Then you can use one entry of the array to record how many active entries are in it. Any non-active entries would be set to a default value that won't violate your constraints.
You'll have to be very careful with the way you define the derivatives. For active array entries, the derivatives come from NASTRAN. For inactive ones, you could set them to 0 but note that you are creating a discrete discontinuity when an entry switches to active. This may very well give the optimizer fits when its trying to converge and derivatives of active constraints keep flipping between 0 and nonzero values.
I really don't recommend this approach, but if you absolutely must have "variable size" arrays then over-allocation is your best best.
Option 2 -- Constraint Aggregation
They key idea here is to use an aggregation function to collapse all the stress constraints into a single value. For structural problems this is most often done with a KS function. OpenMDAO has a KScomponent in its standard library that you can use.
The key is that this component requires a constant sized input. So again, over-allocation would be used here. In this case, you shouldn
't track the number of active values in the array, because you are passing that to the aggregation function. KS functions are like smooth max functions, so if you have a bunch of 0's then it shouldn't affect it.
Your problem still has a discontinuous operation going on with the re-meshing and the noisy constraint array. The KS function should smooth some of that, but not all of it. I still think you'll have trouble converging, but it should work better than raw over-allocation.
Option 3 --- The "right" answer
Find a way to fix your grid, so it never changes. I know this is hard if you're using VSP to generate your discritizations, and letting NASTRAN re-grid things from there ... but its not impossible at all.
OpenVSP has a set of geometry-query functions that can be used to back-fit fixed meshes into the parametric space of the geometry. If you do that, then you can regenerate the geometry in VSP and use the parametric space to move your fixed grids with it. This is how the pyGeo tool that the University of Michigan MDO Lab does it, and it works very well.
Its a modest amount of work (though a lot less if you use pyGeo directly), but I think its well worth it. You'll get faster components and a much more stable optimization.
first question, I will do my best to be as clear as possible.
If I can provide UMAP with a distance function that also outputs a gradient or some other relevant information, can I apply UMAP to non-traditional looking data? (I.e., a data set with points of inconsistent dimension, data points that are non-uniformly sized matrices, etc.) The closest I have gotten to finding something that looks vaguely close to my question is in the documentation here (https://umap-learn.readthedocs.io/en/latest/embedding_space.html), but this seems to be sort of the opposite process, and as far as I can tell still supposes you are starting with tuple-based data of uniform dimension.
I'm aware that one way around this is just to calculate a full pairwise distance matrix ahead of time and give that to UMAP, but from what I understand of the way UMAP is coded, it only performs a subset of all possible distance calculations, and is thus much faster for the same amount of data than if I were to take the full pre-calculation route.
I am working in python3, but if there is an implementation of UMAP dimension reduction in some other environment that permits this, I would be willing to make a detour in my workflow to obtain this greater flexibility with incoming data types.
Thank you.
Algorithmically this is quite possible, but in practice most implementations do not support anything other than fixed dimension vectors. If computing the all pairs distances is not tractable another option is to try to find a way to featurize or vectorize the data in a way that will allow for easy distance computations. This is, of course, not always possible. The final option is to implement things yourself, but this requires handling the nearest neighbour search, which is likely a non-trivial coding project in and of itself.
I am modeling electrical current through various structures with the help of FiPy. To do so, I solve Laplace's equation for the electrical potential. Then, I use Ohm's law to derive the field and with the help of the conductivity, I obtain the current density.
FiPy stores the potential as a cell-centered variable and its gradient as a face-centered variable which makes sense to me. I have two questions concerning face-centered variables:
If I have a two- or three-dimensional problem, FiPy computes the gradient in all directions (ddx, ddy, ddz). The gradient is a FaceVariable which is always defined on the face between two cell centers. For a structured (quadrilateral) grid, only one of the derivates should be greater than zero since for any face, the position of the two cell-centers involved should only differ in one coordinate. In my simulations however, it occurs frequently that more than one of the derivates (ddx, ddy, ddz) is greater than zero, even for a structured grid.
The manual gives the following explanation for the FaceGrad-Method:
Return gradient(phi) as a rank-1 FaceVariable using differencing for the normal direction(second-order gradient).
I do not see, how this differs from my understanding pointed out above.
What makes it even more problematic: Whenever "too many" derivates are included, current does not seem to be conserved, even in the simplest structures I model...
Is there a clever way to access the data stored in the face-centered variable? Let's assume I would want to compute the electrical current going through my modeled structure.
As of right now, I save the data stored in the FaceVariable as a tsv-file. This yields a table with (x,y,z)-positions and (ddx, ddy, ddz)-values. I read the file and save the data into arrays to use it in Python. This seems counter-intuitive and really inconvenient. It would be a lot better to be able to access the FaceVariable along certain planes or at certain points.
The documentation does not make it clear, but .faceGrad includes tangential components which account for more than just the neighboring cell center values.
Please see this Jupyter notebook for explicit expressions for the different types of gradients that FiPy can calculate (yes, this stuff should go into the documentation: #560).
The value is accessible with myFaceVar.value and the coordinates with myFaceVar.mesh.faceCenters. FiPy is designed around unstructured meshes and so taking arbitrary slices is not trivial. CellVariable objects support interpolation by calling myCellVar((xs, ys, zs)), but FaceVariable objects do not. See this discussion.
I would like to represent a bunch of particles (~100k grains), for which I have the position (including rotation) and a discretized level set function (i.e. the signed distance of every voxel from surface). Due to the large sample, I'm searching for eficient solutions to visualize it.
I first went for vtk, using its python interface, but I'm not really sure if it's the best (and simplest) way to do it since, as far as I know, there is no direct implementation for getting an isosurface from a 3D data set. In the beginning I was thinking usind marching cubes, but then I still would have to use a threshold or to interpolate in order to get the voxels that are on the surface and label them in order to be used by the marching cubes.
Now I found mayavi which has a python function
mlab.pipeline.iso_surface()
I however did not find much documentation on it and was wondering how it behaves in terms of performance.
Does someone have experience with this kind of tools? Which would be the best solution (in terms of efficiency and, secondly, in terms of simplicity - I do not know the vtk library, but if there is a huge difference in performance I can dig into it, also without python interface).
I have a numpy array of values and I wanted to scale (zoom) it. With floats I was able to use scipy.ndimage.zoom but now my array contains complex values which are not supported by scipy.ndimage.zoom. My workaround was to separate the array into two parts (real and imaginary) and scale them independently. After that I add them back together. Unfortunately this produces a lot of tiny artifacts in my 'image'. Does somebody know a better way? Maybe there also exists a python library for this? I couldn't find one.
Thank you!
This is not a good answer but it seems to work quite well. Instead of using the default parameters for the zoom method, I'm using order=0. I then proceed to deal with the real and imaginary part separately, as described in my question. This seems to reduce the artifacts although some smaller artifacts remain. It is by no means perfect and if somebody has a better answer, I would be very interested.