Zero padding not performed properly I think - python

I seem to have some issues using the implementation that is provided here.
I am a bit in a similar situation as the guy posting, in which I am trying to map and input to an output. The input being samples of an audio file, and the output being a feature vector with length 14 (length is static). The sequence length is variable as the audio files are in different lengths, making the vector containing the samples become in different lengths as well.
I am not solving a classification problem but a regression, so a bit different task.
My code looks like this:
import tensorflow as tf
from tensorflow.models.rnn import rnn_cell
from tensorflow.models.rnn import rnn
import numpy as np
import librosa
import glob
import matplotlib.pyplot as plt
from os import listdir
from os.path import isfile, join
import os
from os import walk
from os.path import splitext
from os.path import join
import time
rng = np.random
np.set_printoptions(threshold=np.nan)
import functools
start_time = time.time()
print "Preprocessing"
def lazy_property(function):
attribute = '_' + function.__name__
#property
#functools.wraps(function)
def wrapper(self):
if not hasattr(self, attribute):
setattr(self, attribute, function(self))
return getattr(self, attribute)
return wrapper
## Class definition ##
class VariableSequenceLabelling:
def __init__(self, data, target, num_hidden=200, num_layers=3):
self.data = data
self.target = target
self._num_hidden = num_hidden
self._num_layers = num_layers
self.prediction
self.error
self.optimize
#lazy_property
def length(self):
used = tf.sign(tf.reduce_max(tf.abs(self.data), reduction_indices=2))
length = tf.reduce_sum(used, reduction_indices=1)
length = tf.cast(length, tf.int32)
return length
#lazy_property
def prediction(self):
# Recurrent network.
output, _ = tf.nn.dynamic_rnn(
rnn_cell.GRUCell(self._num_hidden),
self.data,
dtype=tf.float32,
sequence_length=self.length,
)
# Softmax layer.
max_length = int(self.target.get_shape()[1])
num_classes = int(self.target.get_shape()[2])
weight, bias = self._weight_and_bias(self._num_hidden, num_classes)
# Flatten to apply same weights to all time steps.
output = tf.reshape(output, [-1, self._num_hidden])
prediction = tf.nn.softmax(tf.matmul(output, weight) + bias)
prediction = tf.reshape(prediction, [-1, max_length, num_classes])
return prediction
#lazy_property
def cost(self):
# Compute cross entropy for each frame.
cross_entropy = self.target * tf.log(self.prediction)
cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2)
mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))
cross_entropy *= mask
# Average over actual sequence lengths.
cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1)
cross_entropy /= tf.cast(self.length, tf.float32)
return tf.reduce_mean(cross_entropy)
#lazy_property
def optimize(self):
learning_rate = 0.0003
optimizer = tf.train.AdamOptimizer(learning_rate)
return optimizer.minimize(self.cost)
#lazy_property
def error(self):
mistakes = tf.not_equal(
tf.argmax(self.target, 2), tf.argmax(self.prediction, 2))
mistakes = tf.cast(mistakes, tf.float32)
mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))
mistakes *= mask
# Average over actual sequence lengths.
mistakes = tf.reduce_sum(mistakes, reduction_indices=1)
mistakes /= tf.cast(self.length, tf.float32)
return tf.reduce_mean(mistakes)
#staticmethod
def _weight_and_bias(in_size, out_size):
weight = tf.truncated_normal([in_size, out_size], stddev=0.01)
bias = tf.constant(0.1, shape=[out_size])
return tf.Variable(weight), tf.Variable(bias)
#######################
#Converting file to .wav from .sph file format... God dammit!!!
#with open(train_filelist, 'r') as train_filelist, open(test_filelist, 'r') as test_filelist:
#train_mylist = train_filelist.read().splitlines()
#test_mylist = test_filelist.read().splitlines()
#for line in train_mylist:
#new_line = ' '.join(reversed(line))
#index_start = new_line.find('h')
#index_end = new_line.find('/')
#edited_line = ''.join(reversed(new_line[index_start+5:index_end])).strip().replace(" ","")
#new_file = edited_line + 'wav'
#os.system(line + ' >> ' + dnn_train + new_file)
#for line in test_mylist:
#new_line = ' '.join(reversed(line))
#index_start = new_line.find('h')
#index_end = new_line.find('/')
#edited_line = ''.join(reversed(new_line[index_start+5:index_end])).strip().replace(" ","")
#new_file = edited_line + 'wav'
#os.system(line + ' >> ' + dnn_test + new_file)
path_train = "/home/JoeS/kaldi-trunk/egs/start/s5/data/train"
path_test = "/home/JoeS/kaldi-trunk/egs/start/s5/data/test"
dnn_train = "/home/JoeS/kaldi-trunk/dnn/train/"
dnn_test = "/home/JoeS/kaldi-trunk/dnn/test/"
dnn = "/home/JoeS/kaldi-trunk/dnn/"
path = "/home/JoeS/kaldi-trunk/egs/start/s5/data/"
MFCC_dir = "/home/JoeS/kaldi-trunk/egs/start/s5/mfcc/raw_mfcc_train.txt"
train_filelist = path_train+"/wav_train.txt"
test_filelist = path_test+"/wav_test.txt"
os.chdir(path)
def find_all(a_str, sub):
start = 0
while True:
start = a_str.find(sub, start)
if start == -1: return
yield start
start += len(sub) # use start += 1 to find overlapping matches
def load_sound_files(file_paths , names_input, data_input):
raw_sounds = []
names_output = []
data_output = []
class_output = []
for fp in file_paths:
X,sr = librosa.load(fp)
raw_sounds.append(X)
index = list(find_all(fp,'-'))
input_index = names_input.index(fp[index[1]+1:index[2]])
names_output.append(names_input[input_index])
data_output.append(data_input[input_index])
class_output.append(binify(data_input[input_index][0]))
return raw_sounds, names_output, data_output, class_output
def generate_list_of_names_data(file_path):
# Proprocess
# extract name and data
name = []
data = []
with open(MFCC_dir) as mfcc_feature_list:
content = [x.strip('\n') for x in mfcc_feature_list.readlines()] # remove endlines
start_index_data = 0
end_index_data = 2
for number in range(0,42):
start = list(find_all(content[start_index_data],'['))[0]
end = list(find_all(content[end_index_data],']'))[0]
end_name = list(find_all(content[start_index_data],' '))[0]
substring_data = content[start_index_data][start+1 :]+content[end_index_data][: end]
substring_name = content[start_index_data][:end_name]
arr = np.array(substring_data.split(), dtype = float)
data.append(arr)
name.append(substring_name)
start_index_data = start_index_data + +3
end_index_data = end_index_data +3
return name, data
files_train_path = [dnn_train+f for f in listdir(dnn_train) if isfile(join(dnn_train, f))]
files_test_path = [dnn_test+f for f in listdir(dnn_test) if isfile(join(dnn_test, f))]
files_train_name = [f for f in listdir(dnn_train) if isfile(join(dnn_train, f))]
files_test_name = [f for f in listdir(dnn_test) if isfile(join(dnn_test, f))]
os.chdir(dnn_train)
train_name,train_data = generate_list_of_names_data(files_train_path)
train_data, train_names, train_output_data, train_class_output = load_sound_files(files_train_path,train_name,train_data)
max_length = 0 ## Used for variable sequence input
for element in train_data:
if element.size > max_length:
max_length = element.size
NUM_EXAMPLES = len(train_data)/2
test_data = train_data[NUM_EXAMPLES:]
test_output = train_output_data[NUM_EXAMPLES:]
train_data = train_data[:NUM_EXAMPLES]
train_output = train_output_data[:NUM_EXAMPLES]
print("--- %s seconds ---" % (time.time() - start_time))
##-------------------MAIN----------------------------##
if __name__ == '__main__':
data = tf.placeholder(tf.float32, [None, max_length, 1])
target = tf.placeholder(tf.float32, [None, 14, 1])
model = VariableSequenceLabelling(data, target)
sess = tf.Session()
sess.run(tf.initialize_all_variables())
for epoch in range(10):
for sample_set in range(100):
batch_train = train_data[sample_set]
batch_target = train_output[sample_set]
sess.run(model.optimize, {data: batch_train, target: batch_target})
test_set = test_data[epoch]
test_set_output = test_output[epoch]
error = sess.run(model.error, {data: test_set, target: test_set_output})
print('Epoch {:2d} error {:3.1f}%'.format(epoch + 1, 100 * error))
And the error message is
Traceback (most recent call last):
File "tensorflow_datapreprocess_mfcc_extraction_rnn.py", line 239, in <module>
sess.run(model.optimize, {data: batch_train, target: batch_target})
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 340, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 553, in _run
% (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (63945,) for Tensor u'Placeholder:0', which has shape '(?, 138915, 1)'
The error message I receive, as I understand is due to the use of max_length, and getting an input that does not have the proper size - meaning that the input isn't being zero padded properly?.. Or am I wrong? If so how do I fix it? The solution I seek doesn't seem to come natively from tensorflow, does other framework do this natively - and would it be recommendable to use a different one due to the missing function?

The shapes of Tensorflow placeholders must match the shapes of data that is fed to them. Here, you're trying to feed a [63945] tensor to a [?, 138915, 1] shaped placeholder. These are incompatible shapes and Tensorflow complains.
You must pad the input tensor using numpy to the desired shape before feeding it to Tensorflow. I suggest using numpy.pad. (Also note the number of dimensions must match --- you can use numpy.reshape to fix that, or change the placeholder shape and use a Tensorflow reshape.)
When working with long sequences, often padding to a common sequence length can cause memory problems. The standard workaround for that is to bucket sequences into buckets of similar lengths. The Tensorflow seq2seq example might be a useful source of inspiration: https://www.tensorflow.org/versions/r0.11/tutorials/seq2seq/index.html

Related

Why does Dropout deteriorates my model accuracy?

The Code below gives about 95 % accuracy if I do not use dropout in training.
The accuracy drops to 11 % if I use dropout.
The network is built using Numpy.
I have used a class Neural Networks which contains many layer objects.
The last layer has sigmoid activation and the rest have Relu.
The code is:
import numpy as np
import idx2numpy as idx
import matplotlib.pyplot as plt
np.random.seed(0)
img = r"C:\Users\Aaditya\OneDrive\Documents\ML\train-image"
lbl = r'C:\Users\Aaditya\OneDrive\Documents\ML\train-labels-idx1-ubyte'
t_lbl = r'C:\Users\Aaditya\OneDrive\Documents\ML\t10k-labels.idx1-ubyte'
t_img = r'C:\Users\Aaditya\OneDrive\Documents\ML\t10k-images.idx3-ubyte'
image = idx.convert_from_file(img)
iput = np.reshape(image, (60000,784))/255
otput = np.eye(10)[idx.convert_from_file(lbl)]
test_image = idx.convert_from_file(t_img)
test_input = np.reshape(test_image, (10000,784))/255
test_output = idx.convert_from_file(t_lbl)
def sigmoid(x):
sigmoid = 1/(1+ np.exp(-x))
return sigmoid
def tanh(x):
return np.tanh(x)
def relu(x):
return np.where(x>0,x,0)
def reluprime(x):
return (x>0).astype(x.dtype)
def sigmoid_prime(x):
return sigmoid(x)*(1-sigmoid(x))
def tanh_prime(x):
return 1 - tanh(x)**2
class Layer_Dense:
def __init__(self,n_inputs,n_neurons,activation="sigmoid",keep_prob=1):
self.n_neurons=n_neurons
if activation == "sigmoid":
self.activation = sigmoid
self.a_prime = sigmoid_prime
elif activation == "tanh":
self.activation = tanh
self.a_prime = tanh_prime
else :
self.activation = relu
self.a_prime = reluprime
self.keep_prob = keep_prob
self.weights = np.random.randn(n_inputs ,n_neurons)*0.1
self.biases = np.random.randn(1,n_neurons)*0.1
def cal_output(self,input,train=False):
output = np.array(np.dot(input,self.weights) + self.biases,dtype="float128")
if train == True:
D = np.random.randn(1,self.n_neurons)
self.D = (D>self.keep_prob).astype(int)
output = output * self.D
return output
def forward(self,input):
return self.activation(self.cal_output(input))
def back_propagate(self,delta,ap,lr=1,keep_prob=1):
dz = delta
self.weights -= 0.001*lr*(np.dot(ap.T,dz)*self.D)
self.biases -= 0.001*lr*(np.sum(dz,axis=0,keepdims=True)*self.D)
return np.multiply(np.dot(dz,self.weights.T),(1-ap**2))
class Neural_Network:
def __init__(self,input,output):
self.input=input
self.output=output
self.layers = []
def Add_layer(self,n_neurons,activation="relu",keepprob=1):
if len(self.layers) != 0:
newL = Layer_Dense(self.layers[-1].n_neurons,n_neurons,activation,keep_prob=keepprob)
else:
newL = Layer_Dense(self.input.shape[1],n_neurons,activation,keep_prob=keepprob)
self.layers.append(newL)
def predict(self,input):
output = input
for layer in self.layers:
output = layer.forward(output)
return output
def cal_zs(self,input):
self.activations = []
self.activations.append(input)
output = input
for layer in self.layers:
z = layer.cal_output(output,train=True)
activation = layer.activation(z)
self.activations.append(activation)
output = activation
def train(self,input=None,output=None,lr=10):
if input is None:
input=self.input
output=self.output
if len(input)>1000:
indices = np.arange(input.shape[0])
np.random.shuffle(indices)
input = input[indices]
output = output[indices]
for _ in range(100):
self.lr = lr
for i in range(int(len(input)/100)):
self.lr *=0.99
self.train(input[i*100:i*100+100],output[i*100:i*100+100],self.lr)
return
self.cal_zs(input)
for i in range(1,len(self.layers)+1):
if i==1:
delta = self.activations[-1] - output
self.delta = self.layers[-1].back_propagate(delta,self.activations[-2],lr)
else:
self.delta = self.layers[-i].back_propagate(self.delta,self.activations[-i-1],lr)
def MSE(self):
predict = self.predict(self.input)
error = (predict - self.output)**2
mse = sum(sum(error))
print(mse)
def Logloss(self):
predict = self.predict(self.input)
error = np.multiply(self.output,np.log(predict)) + np.multiply(1-self.output,np.log(1-predict))
logloss = -1*sum(sum(error))
print(logloss)
def accuracy(self):
predict = self.predict(test_input)
prediction = np.argmax(predict,axis=1)
correct = np.mean(prediction == test_output)
print(correct*100)
# def train(self,input,output):
model = Neural_Network(iput,otput)
# model.Add_layer(4)
model.Add_layer(64)
model.Add_layer(16)
model.Add_layer(10,"sigmoid")
lrc= 6
for _ in range(10):
model.accuracy()
model.Logloss()
model.train(lr=lrc)
model.accuracy()
I have used MNIST database the link is THIS
One of the reason can be that you might be dropping too much neurons. In below code
D = np.random.randn(1,self.n_neurons)
self.D = (D>self.keep_prob).astype(int)
Matrix generated in first line might contain many values which are less then zero. Because of that when comparing it with self.keep_prob (which has value 1) lot of neurons are getting dropped
Please try with one change
self.D = (D < self.keep_prob).astype(int)
There could be various reasons for that. One was specified by #anuragal.
Basically dropout is used to reduce overfitting and to help the network correct errors. But when you use dropout before your final layer, it could be that the network is unable to correct itself, thus leading to a lower accuracy
Another reason could be that I see your network is small. Usually, shallow networks aren't benefitted by dropouts

ValueError: only one element tensors can be converted to Python scalars

I'm following this tutorial.
I'm at the last part where we combine the models in a regression.
I'm coding this in jupyter as follows:
import shutil
import os
import time
from datetime import datetime
import argparse
import pandas
import numpy as np
from tqdm import tqdm
from tqdm import tqdm_notebook
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchsample.transforms import RandomRotate, RandomTranslate, RandomFlip, ToTensor, Compose, RandomAffine
from torchvision import transforms
import torch.nn.functional as F
from tensorboardX import SummaryWriter
import dataloader
from dataloader import MRDataset
import model
from sklearn import metrics
def extract_predictions(task, plane, train=True):
assert task in ['acl', 'meniscus', 'abnormal']
assert plane in ['axial', 'coronal', 'sagittal']
models = os.listdir('models/')
model_name = list(filter(lambda name: task in name and plane in name, models))[0]
model_path = f'models/{model_name}'
mrnet = torch.load(model_path)
_ = mrnet.eval()
train_dataset = MRDataset('data/',
task,
plane,
transform=None,
train=train,
)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=1,
shuffle=False,
num_workers=10,
drop_last=False)
predictions = []
labels = []
with torch.no_grad():
for image, label, _ in tqdm_notebook(train_loader):
logit = mrnet(image.cuda())
prediction = torch.sigmoid(logit)
predictions.append(prediction.item())
labels.append(label.item())
return predictions, labels
task = 'acl'
results = {}
for plane in ['axial', 'coronal', 'sagittal']:
predictions, labels = extract_predictions(task, plane)
results['labels'] = labels
results[plane] = predictions
X = np.zeros((len(predictions), 3))
X[:, 0] = results['axial']
X[:, 1] = results['coronal']
X[:, 2] = results['sagittal']
y = np.array(labels)
logreg = LogisticRegression(solver='lbfgs')
logreg.fit(X, y)
task = 'acl'
results_val = {}
for plane in ['axial', 'coronal', 'sagittal']:
predictions, labels = extract_predictions(task, plane, train=False)
results_val['labels'] = labels
results_val[plane] = predictions
y_pred = logreg.predict_proba(X_val)[:, 1]
metrics.roc_auc_score(y_val, y_pred)
However I get this error:
ValueError Traceback (most recent call last)
<ipython-input-2-979acb314bc5> in <module>
3
4 for plane in ['axial', 'coronal', 'sagittal']:
----> 5 predictions, labels = extract_predictions(task, plane)
6 results['labels'] = labels
7 results[plane] = predictions
<ipython-input-1-647731b6b5c8> in extract_predictions(task, plane, train)
54 logit = mrnet(image.cuda())
55 prediction = torch.sigmoid(logit)
---> 56 predictions.append(prediction.item())
57 labels.append(label.item())
58
ValueError: only one element tensors can be converted to Python scalars
Here's the MRDataset code in case:
class MRDataset(data.Dataset):
def __init__(self, root_dir, task, plane, train=True, transform=None, weights=None):
super().__init__()
self.task = task
self.plane = plane
self.root_dir = root_dir
self.train = train
if self.train:
self.folder_path = self.root_dir + 'train/{0}/'.format(plane)
self.records = pd.read_csv(
self.root_dir + 'train-{0}.csv'.format(task), header=None, names=['id', 'label'])
else:
transform = None
self.folder_path = self.root_dir + 'valid/{0}/'.format(plane)
self.records = pd.read_csv(
self.root_dir + 'valid-{0}.csv'.format(task), header=None, names=['id', 'label'])
self.records['id'] = self.records['id'].map(
lambda i: '0' * (4 - len(str(i))) + str(i))
self.paths = [self.folder_path + filename +
'.npy' for filename in self.records['id'].tolist()]
self.labels = self.records['label'].tolist()
self.transform = transform
if weights is None:
pos = np.sum(self.labels)
neg = len(self.labels) - pos
self.weights = torch.FloatTensor([1, neg / pos])
else:
self.weights = torch.FloatTensor(weights)
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
array = np.load(self.paths[index])
label = self.labels[index]
if label == 1:
label = torch.FloatTensor([[0, 1]])
elif label == 0:
label = torch.FloatTensor([[1, 0]])
if self.transform:
array = self.transform(array)
else:
array = np.stack((array,)*3, axis=1)
array = torch.FloatTensor(array)
# if label.item() == 1:
# weight = np.array([self.weights[1]])
# weight = torch.FloatTensor(weight)
# else:
# weight = np.array([self.weights[0]])
# weight = torch.FloatTensor(weight)
return array, label, self.weights
I've only trained my models using 1 and 2 epochs for each plane of the MRI instead of 35 as in the tutorial, not sure if that has anything to do with it. Other than that I'm stranded as to what this could be? I also removed normalize=False in the options for train_dataset as it kept giving me an error and I read that it could be removed, but I'm not so sure?
Only a tensor that contains a single value can be converted to a scalar with item(), try printing the contents of prediction, I imagine this is a vector of probabilities indicating which label is most likely. Using argmax on prediction will give you your actual predicted label (assuming your labels are 0-n).

Build prediction model from tensors in tensorflow without inputing data

I am trying to interface CasADi and Tensorflow. CasADi is a toolbox that uses symbolic variables and does automatic differentiation. It is often used for dynamic/static optimization problems.
I found an example where GPflow is used (https://web.casadi.org/blog/tensorflow/). In this case, the GP model is firstly trained with data as follows
data = np.random.normal(loc=0.5,scale=1,size=(N,nd))
value = np.random.random((N,1))
model = gpflow.models.GPR(data, value, gpflow.kernels.Constant(nd) + gpflow.kernels.Linear(nd) + gpflow.kernels.White(nd) + gpflow.kernels.RBF(nd))
gpflow.train.ScipyOptimizer().minimize(model)
Then the prediction model is build without passing the real values but a tensor
X = tf.placeholder(shape=(1,nd),dtype=np.float64)
[mean,_] = model._build_predict(X)
Such that CasADi can substitute real values by using a callback function that calls tensorflow.
I want to use the tf.keras.Sequential() model instead of a GPflow model since I want to implement a recurrent neural network. But for the sequential model the method _build_predict(X) does not exist. I tried to use just predict but I get the following error
InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder' with dtype double and shape [35039,1,8]
[[{{node Placeholder}}]]
Do you know what is the equivalent in this case?
Here the complete code using GPflow
from casadi import *
T = 10. # Time horizon
N = 20 # number of control intervals
# Declare model variables
x1 = MX.sym('x1')
x2 = MX.sym('x2')
x = vertcat(x1, x2)
u = MX.sym('u')
# Model equations
xdot = vertcat((1-x2**2)*x1 - x2 + u, x1)
# Formulate discrete time dynamics
if False:
# CVODES from the SUNDIALS suite
dae = {'x':x, 'p':u, 'ode':xdot}
opts = {'tf':T/N}
F = integrator('F', 'cvodes', dae, opts)
else:
# Fixed step Runge-Kutta 4 integrator
M = 4 # RK4 steps per interval
DT = T/N/M
f = Function('f', [x, u], [xdot])
X0 = MX.sym('X0', 2)
U = MX.sym('U')
X = X0
Q = 0
for j in range(M):
k1 = f(X, U)
k2 = f(X + DT/2 * k1, U)
k3 = f(X + DT/2 * k2, U)
k4 = f(X + DT * k3, U)
X=X+DT/6*(k1 +2*k2 +2*k3 +k4)
F = Function('F', [X0, U], [X],['x0','p'],['xf'])
# Start with an empty NLP
w=[]
w0 = []
lbw = []
ubw = []
g=[]
lbg = []
ubg = []
# "Lift" initial conditions
Xk = MX.sym('X0', 2)
w += [Xk]
lbw += [0, 1]
ubw += [0, 1]
w0 += [0, 1]
# Formulate the NLP
for k in range(N):
# New NLP variable for the control
Uk = MX.sym('U_' + str(k))
w += [Uk]
lbw += [-1]
ubw += [1]
w0 += [0]
# Integrate till the end of the interval
Fk = F(x0=Xk, p=Uk)
Xk_end = Fk['xf']
# New NLP variable for state at end of interval
Xk = MX.sym('X_' + str(k+1), 2)
w += [Xk]
lbw += [-0.25, -inf]
ubw += [ inf, inf]
w0 += [0, 0]
# Add equality constraint
g += [Xk_end-Xk]
lbg += [0, 0]
ubg += [0, 0]
nd = N+1
import gpflow
import time
from tensorflow_casadi import TensorFlowEvaluator
class GPR(TensorFlowEvaluator):
def __init__(self, model, session, opts={}):
X = tf.placeholder(shape=(1,nd),dtype=np.float64)
[mean,_] = model._build_predict(X)
mean = tf.reshape(mean,(1,1))
TensorFlowEvaluator.__init__(self,[X],[mean],session,opts)
self.counter = 0
self.time = 0
def eval(self,arg):
self.counter += 1
t0 = time.time()
ret = TensorFlowEvaluator.eval(self,arg)
self.time += time.time()-t0
return [ret]
# Create
np.random.seed(0)
data = np.random.normal(loc=0.5,scale=1,size=(N,nd))
value = np.random.random((N,1))
model = gpflow.models.GPR(data, value, gpflow.kernels.Constant(nd) + gpflow.kernels.Linear(nd) + gpflow.kernels.White(nd) + gpflow.kernels.RBF(nd))
gpflow.train.ScipyOptimizer().minimize(model)
import tensorflow as tf
with tf.Session() as session:
model.initialize()
GPR = GPR(model, session)
w = vertcat(*w)
# Create an NLP solver
prob = {'f': GPR(w[0::3]), 'x': w , 'g': vertcat(*g)}
options = {"ipopt": {"hessian_approximation": "limited-memory"}}
solver = nlpsol('solver', 'ipopt', prob,options);
# Solve the NLP
sol = solver(x0=w0, lbx=lbw, ubx=ubw, lbg=lbg, ubg=ubg)
print("Ncalls",GPR.counter)
print("Total time [s]",GPR.time)
w_opt = sol['x'].full().flatten()
# Plot the solution
x1_opt = w_opt[0::3]
x2_opt = w_opt[1::3]
u_opt = w_opt[2::3]
tgrid = [T/N*k for k in range(N+1)]
import matplotlib.pyplot as plt
plt.figure(1)
plt.clf()
plt.plot(tgrid, x1_opt, '--')
plt.plot(tgrid, x2_opt, '-')
plt.step(tgrid, vertcat(DM.nan(1), u_opt), '-.')
plt.xlabel('t')
plt.legend(['x1','x2','u'])
plt.grid()
plt.show()
and the class TensorFlowEvaluator
import casadi
import tensorflow as tf
class TensorFlowEvaluator(casadi.Callback):
def __init__(self,t_in,t_out,session, opts={}):
"""
t_in: list of inputs (tensorflow placeholders)
t_out: list of outputs (tensors dependeant on those placeholders)
session: a tensorflow session
"""
casadi.Callback.__init__(self)
assert isinstance(t_in,list)
self.t_in = t_in
assert isinstance(t_out,list)
self.t_out = t_out
self.construct("TensorFlowEvaluator", opts)
self.session = session
self.refs = []
def get_n_in(self): return len(self.t_in)
def get_n_out(self): return len(self.t_out)
def get_sparsity_in(self,i):
return casadi.Sparsity.dense(*self.t_in[i].get_shape().as_list())
def get_sparsity_out(self,i):
return casadi.Sparsity.dense(*self.t_out[i].get_shape().as_list())
def eval(self,arg):
# Associate each tensorflow input with the numerical argument passed by CasADi
d = dict((v,arg[i].toarray()) for i,v in enumerate(self.t_in))
# Evaluate the tensorflow expressions
ret = self.session.run(self.t_out,feed_dict=d)
return ret
# Vanilla tensorflow offers just the reverse mode AD
def has_reverse(self,nadj): return nadj==1
def get_reverse(self,nadj,name,inames,onames,opts):
# Construct tensorflow placeholders for the reverse seeds
adj_seed = [tf.placeholder(shape=self.sparsity_out(i).shape,dtype=tf.float64) for i in range(self.n_out())]
# Construct the reverse tensorflow graph through 'gradients'
grad = tf.gradients(self.t_out, self.t_in,grad_ys=adj_seed)
# Create another TensorFlowEvaluator object
callback = TensorFlowEvaluator(self.t_in+adj_seed,grad,self.session)
# Make sure you keep a reference to it
self.refs.append(callback)
# Package it in the nominal_in+nominal_out+adj_seed form that CasADi expects
nominal_in = self.mx_in()
nominal_out = self.mx_out()
adj_seed = self.mx_out()
return casadi.Function(name,nominal_in+nominal_out+adj_seed,callback.call(nominal_in+adj_seed),inames,onames)
if __name__=="__main__":
from casadi import *
a = tf.placeholder(shape=(2,2),dtype=tf.float64)
b = tf.placeholder(shape=(2,1),dtype=tf.float64)
y = tf.matmul(tf.sin(a), b)
with tf.Session() as session:
f_tf = TensorFlowEvaluator([a,b], [y], session)
a = MX.sym("a",2,2)
b = MX.sym("a",2,1)
y = f_tf(a,b)
yref = mtimes(sin(a),b)
f = Function('f',[a,b],[y])
fref = Function('f',[a,b],[yref])
print(f(DM([[1,2],[3,4]]),DM([[1],[3]])))
print(fref(DM([[1,2],[3,4]]),DM([[1],[3]])))
f = Function('f',[a,b],[jacobian(y,a)])
fref = Function('f',[a,b],[jacobian(yref,a)])
print(f(DM([[1,2],[3,4]]),DM([[1],[3]])))
print(fref(DM([[1,2],[3,4]]),DM([[1],[3]])))
And here is my attempt:
# design network
model = tf.keras.Sequential()
LSTM = tf.keras.layers.LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2]))
model.add(LSTM) #, input_shape=(train_X.shape[1], train_X.shape[2]))
model.add(tf.keras.layers.Dense(1))
model.compile(loss='mae', optimizer='adam')
# fit network
history = model.fit(train_X, train_y, epochs=50, batch_size=72, validation_data=(test_X, test_y), verbose=0, shuffle=False)
with tf.Session() as session:
testXshape = test_X.shape
GPR = GPR(model, session,testXshape)
Thanks!
I've let the TensorFlowEvaluator the same and created the GPR class this way:
class ValFcn(TensorFlowEvaluator):
import tensorflow as tf
def __init__(self, NN, session, opts={}):
self.X = self.tf.placeholder(shape=(1,4), dtype=self.tf.float32)
self.output = NN(self.X)
TensorFlowEvaluator.__init__(self, [self.X], [self.output], session, opts)
def eval(self, arg):
ret = TensorFlowEvaluator.eval(self, arg)
return ret
I was working with float32 so I had to change it there and in the TensorFlowEvaluator.
I'm actually using this model as a cost function term for an OCP.
Hope it works!

IndexError: index 82459 is out of bounds for axis 0 with size 82459

I am trying to run code (found here) for a visual question generation model. I am running the code using Windows Subsystem for Linux, in an Anaconda virtual environment for Python 2.7. I am using Tensorflow v1.3.0, as I experienced issues using more recent versions of Tensorflow -- the repository is relatively old.
I am receiving the following error (full traceback included):
Traceback (most recent call last):
File "main.py", line 70, in <module>
tf.app.run()
File "/home/username/anaconda2/envs/py27/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 48, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "main.py", line 64, in main
model.train()
File "/home/username/VQG-tensorflow/question_generator.py", line 124, in train
feats = self.img_feature[img_list,:]
IndexError: index 82459 is out of bounds for axis 0 with size 82459
I've included the source code for main.py and question_generator.py below. Obviously, the program is trying to access an index that doesn't exist. I can't figure out what would make it behave this way. Similar questions to this one (like this and this) were not helpful. I tried padding the array using the numpy.pad method, but that only led to a different and related error:
ValueError: Cannot feed value of shape (256, 4097) for Tensor u'Placeholder:0', which has shape '(256, 4096)'
Any and all help is greatly appreciated!
Source code for main.py:
#-*- coding: utf-8 -*-
import math
import os
import tensorflow as tf
import numpy as np
import cPickle
import skimage
import pprint
import tensorflow.python.platform
from keras.preprocessing import sequence
from data_loader import *
import vgg19
import question_generator
flags = tf.app.flags
pp = pprint.PrettyPrinter().pprint
tf.app.flags.DEFINE_string('input_img_h5', './data_img.h5', 'path to the h5file containing the image feature')
tf.app.flags.DEFINE_string('input_ques_h5', './data_prepro.h5', 'path to the h5file containing the preprocessed dataset')
tf.app.flags.DEFINE_string('input_json', './data_prepro.json', 'path to the json file containing additional info and vocab')
tf.app.flags.DEFINE_string('model_path', './models/', 'where should we save')
tf.app.flags.DEFINE_string('vgg_path', './vgg16.tfmodel', 'momentum for adam')
tf.app.flags.DEFINE_string('gpu_fraction', '2/3', 'define the gpu fraction used')
tf.app.flags.DEFINE_string('test_image_path', './assets/demo.jpg', 'the image you want to generate question')
tf.app.flags.DEFINE_string('test_model_path', './models/model-250', 'model we saved')
tf.app.flags.DEFINE_integer('batch_size', 256, 'tch_size for each iterations')
tf.app.flags.DEFINE_integer('dim_embed', 512, 'word embedding size')
tf.app.flags.DEFINE_integer('dim_hidden', 512, 'hidden size')
tf.app.flags.DEFINE_integer('dim_image', 4096, 'dimension of output from fc7')
tf.app.flags.DEFINE_integer('img_norm', 1, 'do normalization on image or not')
tf.app.flags.DEFINE_integer('maxlen', 26, 'max length of question')
tf.app.flags.DEFINE_integer('n_epochs', 250, 'how many epochs are we going to train')
tf.app.flags.DEFINE_float('learning_rate', '0.001', 'learning rate for adam')
tf.app.flags.DEFINE_float('momentum', 0.9, 'momentum for adam')
tf.app.flags.DEFINE_boolean('is_train', 'True', 'momentum for adam')
conf = flags.FLAGS
def calc_gpu_fraction(fraction_string):
idx, num = fraction_string.split('/')
idx, num = float(idx), float(num)
fraction = 1 / (num - idx + 1)
print " [*] GPU : %.4f" % fraction
return fraction
def main(_):
attrs = conf.__dict__['__flags']
pp(attrs)
dataset, img_feature, train_data = get_data(conf.input_json, conf.input_img_h5, conf.input_ques_h5, conf.img_norm)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=calc_gpu_fraction(conf.gpu_fraction))
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
model = question_generator.Question_Generator(sess, conf, dataset, img_feature, train_data)
if conf.is_train:
model.build_model()
model.train()
else:
model.build_generator()
model.test(test_image_path=conf.test_image_path, model_path=conf.test_model_path, maxlen=26)
if __name__ == '__main__':
tf.app.run()
Source code for question_generation.py:
import os
import tensorflow as tf
import numpy as np
import tensorflow.python.platform
from keras.preprocessing import sequence
from data_loader import *
import vgg19
tf.pack = tf.stack
tf.select = tf.where
tf.batch_matmul = tf.matmul
class Question_Generator():
def __init__(self, sess, conf, dataset, img_feature, train_data):
self.sess = sess
self.dataset = dataset
self.img_feature = img_feature
self.train_data = train_data
self.dim_image = conf.dim_image
self.dim_embed = conf.dim_embed
self.dim_hidden = conf.dim_hidden
self.batch_size = conf.batch_size
self.maxlen = conf.maxlen
self.n_lstm_steps = conf.maxlen+2
self.model_path = conf.model_path
if conf.is_train:
self.n_epochs = conf.n_epochs
self.learning_rate = conf.learning_rate
self.num_train = train_data['question'].shape[0] # total number of data
self.n_words = len(dataset['ix_to_word'].keys()) # vocabulary_size
# word embedding
self.Wemb = tf.Variable(tf.random_uniform([self.n_words, self.dim_embed], -0.1, 0.1), name='Wemb')
self.bemb = tf.Variable(tf.random_uniform([self.dim_embed], -0.1, 0.1), name='bemb')
# LSTM
self.lstm = tf.contrib.rnn.BasicLSTMCell(self.dim_hidden)
#self.lstm = tf.nn.rnn_cell.BasicLSTMCell(self.dim_hidden)
# fc7 encoder
self.encode_img_W = tf.Variable(tf.random_uniform([self.dim_image, self.dim_hidden], -0.1, 0.1), name='encode_img_W')
self.encode_img_b = tf.Variable(tf.random_uniform([self.dim_hidden], -0.1, 0.1), name='encode_img_b')
# feat -> word
self.embed_word_W = tf.Variable(tf.random_uniform([self.dim_hidden, self.n_words], -0.1, 0.1), name='embed_word_W')
self.embed_word_b = tf.Variable(tf.random_uniform([self.n_words], -0.1, 0.1), name='embed_word_b')
def build_model(self):
self.image = tf.placeholder(tf.float32, [self.batch_size, self.dim_image])
self.question = tf.placeholder(tf.int32, [self.batch_size, self.n_lstm_steps])
self.mask = tf.placeholder(tf.float32, [self.batch_size, self.n_lstm_steps])
image_emb = tf.nn.xw_plus_b(self.image, self.encode_img_W, self.encode_img_b) # (batch_size, dim_hidden)
state = self.lstm.zero_state(self.batch_size,tf.float32)
loss = 0.0
with tf.variable_scope("RNN"):
for i in range(self.n_lstm_steps):
if i == 0:
current_emb = image_emb
else:
tf.get_variable_scope().reuse_variables()
current_emb = tf.nn.embedding_lookup(self.Wemb, self.question[:,i-1]) + self.bemb
# LSTM
output, state = self.lstm(current_emb, state)
if i > 0:
# ground truth
labels = tf.expand_dims(self.question[:, i], 1)
indices = tf.expand_dims(tf.range(0, self.batch_size, 1), 1)
concated = tf.concat([indices, labels], 1)
#concated = tf.concat(1, [indices, labels])
onehot_labels = tf.sparse_to_dense(
concated, tf.pack([self.batch_size, self.n_words]), 1.0, 0.0)
# predict word
logit_words = tf.nn.xw_plus_b(output, self.embed_word_W, self.embed_word_b)
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logit_words, labels=onehot_labels)
cross_entropy = cross_entropy * self.mask[:,i]
current_loss = tf.reduce_sum(cross_entropy)
loss = loss + current_loss
self.loss = loss / tf.reduce_sum(self.mask[:,1:])
def build_generator(self):
self.image = tf.placeholder(tf.float32, [1, self.dim_image]) # only one image
image_emb = tf.nn.xw_plus_b(self.image, self.encode_img_W, self.encode_img_b)
state = tf.zeros([1, self.lstm.state_size])
self.generated_words = []
with tf.variable_scope("RNN"):
output, state = self.lstm(image_emb, state)
last_word = tf.nn.embedding_lookup(self.Wemb, [0]) + self.bemb
for i in range(self.maxlen):
tf.get_variable_scope().reuse_variables()
output, state = self.lstm(last_word, state)
logit_words = tf.nn.xw_plus_b(output, self.embed_word_W, self.embed_word_b)
max_prob_word = tf.argmax(logit_words, 1)
last_word = tf.nn.embedding_lookup(self.Wemb, max_prob_word)
last_word += self.bemb
self.generated_words.append(max_prob_word)
def train(self):
index = np.arange(self.num_train)
np.random.shuffle(index)
questions = self.train_data['question'][index,:]
img_list = self.train_data['img_list'][index]
print("img feature length: " + str(len(self.img_feature)))
print("img list: " + str(img_list))
#self.img_feature = np.pad(self.img_feature, (0,1),'constant', constant_values=(0,0)) #pad array to prevent bug
print("img feature length: " + str(len(self.img_feature)))
feats = self.img_feature[img_list,:]
self.saver = tf.train.Saver(max_to_keep=50)
train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
tf.initialize_all_variables().run()
for epoch in range(self.n_epochs):
counter = 0
for start, end in zip( \
range(0, len(feats), self.batch_size),
range(self.batch_size, len(feats), self.batch_size)
):
current_feats = feats[start:end]
current_questions = questions[start:end]
current_question_matrix = sequence.pad_sequences(current_questions, padding='post', maxlen=self.maxlen+1)
current_question_matrix = np.hstack( [np.full( (len(current_question_matrix),1), 0), current_question_matrix] ).astype(int)
current_mask_matrix = np.zeros((current_question_matrix.shape[0], current_question_matrix.shape[1]))
nonzeros = np.array( map(lambda x: (x != 0).sum()+2, current_question_matrix ))
# +2 -> #START# and '.'
for ind, row in enumerate(current_mask_matrix):
row[:nonzeros[ind]] = 1
_, loss_value = self.sess.run([train_op, self.loss], feed_dict={
self.image: current_feats,
self.question : current_question_matrix,
self.mask : current_mask_matrix
})
if np.mod(counter, 100) == 0:
print "Epoch: ", epoch, " batch: ", counter ," Current Cost: ", loss_value
counter = counter + 1
if np.mod(epoch, 25) == 0:
print "Epoch ", epoch, " is done. Saving the model ... "
self.save_model(epoch)
def test(self, test_image_path, model_path, maxlen):
ixtoword = self.dataset['ix_to_word']
images = tf.placeholder("float32", [1, 224, 224, 3])
image_val = read_image(test_image_path)
vgg = vgg19.Vgg19()
with tf.name_scope("content_vgg"):
vgg.build(images)
fc7 = self.sess.run(vgg.relu7, feed_dict={images:image_val})
saver = tf.train.Saver()
saver.restore(self.sess, model_path)
generated_word_index = self.sess.run(self.generated_words, feed_dict={self.image:fc7})
generated_word_index = np.hstack(generated_word_index)
generated_sentence = ''
for x in generated_word_index:
if x==0:
break
word = ixtoword[str(x)]
generated_sentence = generated_sentence + ' ' + word
print ' '
print '--------------------------------------------------------------------------------------------------------'
print generated_sentence
def save_model(self, epoch):
if not os.path.exists(self.model_path):
os.makedirs(self.model_path)
self.saver.save(self.sess, os.path.join(self.model_path, 'model'), global_step=epoch)
This is a really basic problem. What you didn't understand when you were running this code is that arrays (lists in Python) are 0-indexed. If you have a list of length n, then when you try to access the nth element in that list, you will receive an index error.

LSTM setting/resetting the state when using a variable batch size

I have built this LSTM class:
import tensorflow as tf
import Constants
class LSTM():
def __init__(self,
inputShape,
outputShape,
numLayers=Constants.numLayers,
numHidden=Constants.numHidden,
learningRate=Constants.learningRate,
forgetBias=Constants.forgetBias):
self.inputs = tf.placeholder(tf.float32, [None] + inputShape)
self.labels = tf.placeholder(tf.float32, [None] + outputShape)
self.inputTensors = tf.unstack(self.inputs, axis=1)
self.weights = tf.Variable(tf.random_normal([numHidden] + outputShape))
self.bias = tf.Variable(tf.random_normal(outputShape))
layers = [tf.contrib.rnn.LSTMCell(numHidden, forget_bias=forgetBias, state_is_tuple=True)] * numLayers
self.cell = tf.contrib.rnn.MultiRNNCell(layers, state_is_tuple=True)
self.optimiser = tf.train.GradientDescentOptimizer(learningRate)
self.forgetBias = forgetBias
self.batchDict = None
self.outputs = None
self.finalStates = None
self.predictions = None
self.loss = None
self.accuracy = None
self.optimise = None
self.session = tf.Session()
self.__buildGraph()
def __buildGraph(self):
outputs, finalStates = tf.nn.static_rnn(self.cell, self.inputTensors, dtype=tf.float32)
predictions = tf.add(tf.matmul(outputs[-1], self.weights), self.bias)
self.predictions = tf.minimum(tf.maximum(predictions, 0), 1)
self.loss = tf.losses.mean_squared_error(predictions=self.predictions, labels=self.labels)
self.accuracy = tf.reduce_mean(1 - tf.abs(self.labels - self.predictions) / 1.0)
self.optimise = self.optimiser.minimize(self.loss)
self.session.run(tf.global_variables_initializer())
def __execute(self, operation):
return self.session.run(operation, self.batchDict)
def setBatch(self, inputs, labels):
self.batchDict = {self.inputs: inputs, self.labels: labels}
def batchLabels(self):
return self.__execute(self.labels)
def batchPredictions(self):
return self.__execute(self.predictions)
def batchLoss(self):
return self.__execute(self.loss)
def batchAccuracy(self):
return self.__execute(self.accuracy)
def processBatch(self):
self.__execute(self.optimise)
def kill(self):
self.session.close()
and I run it like so:
import DataWorker
import Constants
from Model import LSTM
inputShape = [Constants.sequenceLength, DataWorker.numFeatures]
outputShape = [1]
LSTM = LSTM(inputShape, outputShape)
# #############################################
# TRAINING
# #############################################
for epoch in range(Constants.numEpochs):
print("***** EPOCH:", epoch + 1, "*****\n")
IDPointer, TSPointer = 0, 0
epochComplete = False
batchNum = 0
while not epochComplete:
batchNum += 1
batchX, batchY, IDPointer, TSPointer, epochComplete = DataWorker.generateBatch(IDPointer, TSPointer)
LSTM.setBatch(batchX, batchY)
LSTM.processBatch()
if batchNum % Constants.printStep == 0 or epochComplete:
print("Batch:\t\t", batchNum)
print("Last Pred:\t", LSTM.batchPredictions()[-1][0])
print("Last Label:\t", LSTM.batchLabels()[-1][0])
print("Loss:\t\t", LSTM.batchLoss())
print("Accuracy:\t", str("%.2f" % (LSTM.batchAccuracy() * 100) + "%\n"))
# #############################################
# TESTING
# #############################################
testX, testY = DataWorker.generateTestBatch()
LSTM.setBatchDict(testX, testY)
testAccuracy = LSTM.batchAccuracy()
print("Testing Accuracy:", str("%.2f" % (testAccuracy * 100) + "%"))
LSTM.kill()
This all works well as it should. However, I am using time series data which consists of financial stocks spanning over ranges of timestamps far greater than the number of time steps that my LSTM is unrolled for - Constants.sequenceLength. Because of this, it takes many sequential batches for a single stock t be processed, and so the state/memory of my LSTM needs to be passed between batches. As well as this, after a batch that completes the lifespan of an ID, the next batch would be passing in a new ID from the initial timestamp of my dataset, and so I would want to reset the memory.
There are many questions asking something similar, and all of the answers are adequate, however, none seem to address the issue of using variable batch sizes - batch sizes initialised to None and then inferred when a batch is passed in. My batches are usually a constant size, but do change under certain circumstances and I cannot change this. How can I have control over passing the state between batches, as well as resetting the state, if I have not specified the batch size?

Categories

Resources