pandas Series to Dataframe using Series indexes as columns - python

I have a Series, like this:
series = pd.Series({'a': 1, 'b': 2, 'c': 3})
I want to convert it to a dataframe like this:
a b c
0 1 2 3
pd.Series.to_frame() doesn't work, it got result like,
0
a 1
b 2
c 3
How can I construct a DataFrame from Series, with index of Series as columns?

You can also try this :
df = DataFrame(series).transpose()
Using the transpose() function you can interchange the indices and the columns.
The output looks like this :
a b c
0 1 2 3

You don't need the transposition step, just wrap your Series inside a list and pass it to the DataFrame constructor:
pd.DataFrame([series])
a b c
0 1 2 3
Alternatively, call Series.to_frame, then transpose using the shortcut .T:
series.to_frame().T
a b c
0 1 2 3

you can also try this:
a = pd.Series.to_frame(series)
a['id'] = list(a.index)
Explanation:
The 1st line convert the series into a single-column DataFrame.
The 2nd line add an column to this DataFrame with the value same as the index.

Try reset_index. It will convert your index into a column in your dataframe.
df = series.to_frame().reset_index()

This
pd.DataFrame([series]) #method 1
produces a slightly different result than
series.to_frame().T #method 2
With method 1, the elements in the resulted dataframe retain the same type. e.g. an int64 in series will be kept as an int64.
With method 2, the elements in the resulted dataframe become objects IF there is an object type element anywhere in the series. e.g. an int64 in series will be become an object type.
This difference may cause different behaviors in your subsequent operations depending on the version of pandas.

Related

df.index vs df["index"] after resetting index [duplicate]

This question already has an answer here:
Proper way to access a column of a pandas dataframe
(1 answer)
Closed last month.
import pandas as pd
df1 = pd.DataFrame({
"value": [1, 1, 1, 2, 2, 2]})
print(df1)
print("-------------------------")
print(df1.reset_index())
print("-------------------------")
print(df1.reset_index().index)
print("-------------------------")
print(df1.reset_index()["index"])
produces the output
value
0 1
1 1
2 1
3 2
4 2
5 2
-------------------------
index value
0 0 1
1 1 1
2 2 1
3 3 2
4 4 2
5 5 2
-------------------------
RangeIndex(start=0, stop=6, step=1)
-------------------------
0 0
1 1
2 2
3 3
4 4
5 5
Name: index, dtype: int64
I am wondering why print(df1.reset_index().index) and
print(df1.reset_index()["index"]) prints different things in this case? The latter prints the "index" column, while the former prints the indices.
If we want to access the reset indices (the column), then it seems we have to use brackets?
The .index attribute in a pandas DataFrame will always point to the Index (row label) of the DataFrame not a column named "index".
If we want to access the reset indices (the column), then it seems we
have to use brackets?
Yes, or you can assign a name when reseting the index for example:
df1.reset_index(names='the_index').the_index
# 0 0
# 1 1
# 2 2
# 3 3
# 4 4
# 5 5
# Name: the_index, dtype: int64
Several things happened. First, when you don't specify and index, pandas uses a RangeIndex object as a virtual index of the dataframe. The dataframe is a collection of numpy arrays which are naturally indexed from 0, 1, 2, and etc. Since RangeIndex is just 0, 1, etc... it doesn't actually create its values in memory. Had you printed the index of the original df1, it would be a RangeIndex, just like df1.reset_index().index.
reset_index has an optional drop parameter. By default, pandas will take the existing index and turn it into a column of the dataframe. This was a RangeIndex object but it had to be expanded into a realized column to fit with the other columns in the df. Had you included drop=True, there would be no "index" column.
When you reset the index, dataframes always have to have some index and the default is that virtual RangeIndex you see.
DataFrames have a shortcut where some columns can be addressed by attribute name rather than item (the square brackets). But, if the column name doesn't meet python's attribute naming rules or if it clashes with an existing attribute, you can't reference it that way. .index is the dataframe index so if you happen to also have a column "index", you need to access it via the square bracket item protocol.
One could argue that pandas should never have allowed the attribute access path because it can't be used consistently. I wouldn't argue that (except I totally would).
It does this because you are printing different things:
print(df1.reset_index().index)
is the same as:
df = df1.reset_index()
print(df.index)
This firstly adds an Id index to the dataframe then prints the actual index of the df.
print(df1.reset_index()["index"])
is the equivalent of
df = df1.reset_index()
print(df["index"])
It firstly adds an Id index to the dataframe but keeps both "index" and "values" columns. It then prints the Column named "Index" (which is NOT the index of the df)
If you want to make the "index" column the index, you must use:
df = df1.set_index("index")

Adding a new column in pandas dataframe from another dataframe with differing indices

This is my original dataframe.
This is my second dataframe containing one column.
I want to add the column of second dataframe to the original dataframe at the end. Indices are different for both dataframes. I did like this.
df1['RESULT'] = df2['RESULT']
It doesn't return an error and the column is added but all values are NaNs. How do I add these columns with their values?
Assuming the size of your dataframes are the same, you can assign the RESULT_df['RESULT'].values to your original dataframe. This way, you don't have to worry about indexing issues.
# pre 0.24
feature_file_df['RESULT'] = RESULT_df['RESULT'].values
# >= 0.24
feature_file_df['RESULT'] = RESULT_df['RESULT'].to_numpy()
Minimal Code Sample
df
A B
0 -1.202564 2.786483
1 0.180380 0.259736
2 -0.295206 1.175316
3 1.683482 0.927719
4 -0.199904 1.077655
df2
C
11 -0.140670
12 1.496007
13 0.263425
14 -0.557958
15 -0.018375
Let's try direct assignment first.
df['C'] = df2['C']
df
A B C
0 -1.202564 2.786483 NaN
1 0.180380 0.259736 NaN
2 -0.295206 1.175316 NaN
3 1.683482 0.927719 NaN
4 -0.199904 1.077655 NaN
Now, assign the array returned by .values (or .to_numpy() for pandas versions >0.24). .values returns a numpy array which does not have an index.
df2['C'].values
array([-0.141, 1.496, 0.263, -0.558, -0.018])
df['C'] = df2['C'].values
df
A B C
0 -1.202564 2.786483 -0.140670
1 0.180380 0.259736 1.496007
2 -0.295206 1.175316 0.263425
3 1.683482 0.927719 -0.557958
4 -0.199904 1.077655 -0.018375
You can also call set_axis() to change the index of a dataframe/column. So if the lengths are the same, then with set_axis(), you can coerce the index of one dataframe to be the same as the other dataframe.
df1['A'] = df2['A'].set_axis(df1.index)
If you get SettingWithCopyWarning, then to silence it, you can create a copy by either calling join() or assign().
df1 = df1.join(df2['A'].set_axis(df1.index))
# or
df1 = df1.assign(new_col = df2['A'].set_axis(df1.index))
set_axis() is especially useful if you want to add multiple columns from another dataframe. You can just call join() after calling it on the new dataframe.
df1 = df1.join(df2[['A', 'B', 'C']].set_axis(df1.index))

How to retrieve value of n-th element in pandas Series object?

I have a series object (1 column of a DataFrame) and would like to extract the value of the first element. Is there a way to do this simply without converting to a list and without knowing the key? Or is the only way to access it by converting it to a list first using tolist()[n]?
I think you can use iloc:
print df
col
0 a
1 b
2 c
3 d
4 e
print df.iloc[0]
col a
Name: 0, dtype: object

Pandas dataframe: slicing column values using second column for slice index

I'm trying to create a column of microsatellite motifs in a pandas dataframe. I have one column that gives the length of the motif and another that has the whole microsatellite.
Here's an example of the columns of interest.
motif_len sequence
0 3 ATTATTATTATT
1 4 ATCTATCTATCT
2 3 ATCATCATCATC
I would like to slice the values in sequence using the values in motif_len to give a single repeat(motif) of each microsatellite. I'd then like to add all these motifs as a third column in the data frame to give something like this.
motif_len sequence motif
0 3 ATTATTATTATT ATT
1 4 ATCTATCTATCT ATCT
2 3 ATCATCATCATC ATC
I've tried a few things with no luck.
>>df['motif'] = df.sequence.str[:df.motif_len]
>>df['motif'] = df.sequence.str[:df.motif_len.values]
Both make the motif column but all the values are NaN.
I think I understand why these don't work. I'm passing a series/array as the upper index in the slice rather than the a value from the mot_len column.
I also tried to create a series by iterating through each
Any ideas?
You can call apply on the df pass axis=1 to apply row-wise and use the column values to slice the str:
In [5]:
df['motif'] = df.apply(lambda x: x['sequence'][:x['motif_len']], axis=1)
df
Out[5]:
motif_len sequence motif
0 3 ATTATTATTATT ATT
1 4 ATCTATCTATCT ATCT
2 3 ATCATCATCATC ATC

How do I find duplicate indices in a DataFrame?

I have a pandas DataFrame with a multi-level index ("instance" and "index"). I want to find all the first-level ("instance") index values which are non-unique and to print out those values.
My frame looks like this:
A
instance index
a 1 10
2 12
3 4
b 1 12
2 5
3 2
b 1 12
2 5
3 2
I want to find "b" as the duplicate 0-level index and print its value ("b") out.
You can use the get_duplicates() method:
>>> df.index.get_level_values('instance').get_duplicates()
[0, 1]
(In my example data 0 and 1 both appear multiple times.)
The get_level_values() method can accept a label (such as 'instance') or an integer and retrieves the relevant part of the MultiIndex.
Assuming that your df has an index made of 'instance' and 'index' you could do this:
df1 = df.reset_index().pivot_table(index=['instance','index'], values='A', aggfunc='count')
df1[df1 > 1].index.get_level_values(0).drop_duplicates()
Which yields:
Index([u'b'], dtype='object')
Adding .values at the end (.drop_duplicates().values) will make an array:
array(['b'], dtype=object)
Or the same with one line using .groupby:
df[df.groupby(level=['instance','index']).count() > 1].dropna().index.get_level_values(0).drop_duplicates()
This should give you the whole row which isn't quite what you asked for but might be close enough:
df[df.index.get_level_values('instance').duplicated()]
You want the duplicated method:
df['Instance'].duplicated()

Categories

Resources