using python to do 3-D surface fitting - python

i can use module(scipy.optimize.least_squares) to do 1-D curve fitting(of course,i can also use curve_fit module directly) , like this
def f(par,data,obs):
return par[0]*data+par[1]-obs
def get_f(x,a,b):
return x*a+b
data = np.linspace(0, 50, 100)
obs = get_f(data,3.2,2.3)
par = np.array([1.0, 1.0])
res_lsq = least_squares(f, par, args=(data, obs))
print res_lsq.x
i can get right fitting parameter (3.2,2.3),but when I generalize this method to multi-dimension,like this
def f(par,data,obs):
return par[0]*data[0,:]+par[1]*data[1,:]-obs
def get_f(x,a,b):
return x[0]*a+b*x[1]
data = np.asarray((np.linspace(0, 50, 100),(np.linspace(0, 50, 100)) ) )
obs = get_f(data,1.,1.)
par = np.array([3.0, 5.0])
res_lsq = least_squares(f, par, args=(data, obs))
print res_lsq.x
I find i can not get right answer, i.e (1.,1.),i have no idea whether i have made a mistake.

The way you generate data and observations in the "multi-dimensional" case effectively results in get_f returning (a+b)*x[0] (input values x[0], x[1] are always the same) and, similarly, f returning (par[0]+par[1])*data[0]-obs. Of course, with a=1 and b=1, the exact same obs would be generated by any other values a, b such that a+b=1. Scipy correctly returns one of the (infinite) possible values satisfying this constraint, depending on the initial estimate.

Related

Adding constraints to my fitting model using lmfit

I am trying to fit a complex conductivity model (the drude-smith-anderson model) using lmfit.minimize. In that fitting, I want constraints on my parameters c and c1 such that 0<c<1, -1<c1<0 and 0<1+c1-c<1. So, I am using the following code:
#reference: Juluri B.K. "Fitting Complex Metal Dielectric Functions with Differential Evolution Method". http://juluribk.com/?p=1597.
#reference: https://lmfit.github.io/lmfit-py/fitting.html
#import libraries (numdifftools needs to be installed but doesn't need to be imported)
import matplotlib.pyplot as plt
import numpy as np
import lmfit as lmf
import math as mt
#define the complex conductivity model
def model(params,w):
sigma0 = params["sigma0"].value
tau = params["tau"].value
c = params["c"].value
d = params["d"].value
c1 = params["c1"].value
druidanderson = (sigma0/(1-1j*2*mt.pi*w*tau))*(1 + c1/(1-1j*2*mt.pi*w*tau)) - sigma0*c/(1-1j*2*mt.pi*w*d*tau)
return druidanderson
#defining the complex residues (chi squared is sum of squares of residues)
def complex_residuals(params,w,exp_data):
delta = model(params,w)
residual = (abs((delta.real - exp_data.real) / exp_data.real) + abs(
(delta.imag - exp_data.imag) / exp_data.imag))
return residual
# importing data from CSV file
importpath = input("Path of CSV file: ") #Asking the location of where your data file is kept (give input in form of path\name.csv)
frequency = np.genfromtxt(rf"{importpath}",delimiter=",", usecols=(0)) #path to be changed to the file from which data is taken
conductivity = np.genfromtxt(rf"{importpath}",delimiter=",", usecols=(1)) + 1j*np.genfromtxt(rf"{importpath}",delimiter=",", usecols=(2)) #path to be changed to the file from which data is taken
frequency = frequency[np.logical_not(np.isnan(frequency))]
conductivity = conductivity[np.logical_not(np.isnan(conductivity))]
w_for_fit = frequency
eps_for_fit = conductivity
#defining the bounds and initial guesses for the fitting parameters
params = lmf.Parameters()
params.add("sigma0", value = float(input("Guess for \u03C3\u2080: ")), min =10 , max = 5000) #bounds have to be changed manually
params.add("tau", value = float(input("Guess for \u03C4: ")), min = 0.0001, max =10) #bounds have to be changed manually
params.add("c1", value = float(input("Guess for c1: ")), min = -1 , max = 0) #bounds have to be changed manually
params.add("constraint", value = float(input("Guess for constraint: ")), min = 0, max=1)
params.add("c", expr="1+c1-constraint", min = 0, max = 1) #bounds have to be changed manually
params.add("d", value = float(input("Guess for \u03C4_1/\u03C4: ")),min = 100, max = 100000) #bounds have to be changed manually
# minimizing the chi square
minimizer_results = lmf.minimize(complex_residuals, params, args=(w_for_fit, eps_for_fit), method = 'differential_evolution', strategy='best1bin',
popsize=50, tol=0.01, mutation=(0, 1), recombination=0.9, seed=None, callback=None, disp=True, polish=True, init='latinhypercube')
lmf.printfuncs.report_fit(minimizer_results, show_correl=False)
As a result for the fit, I get the following output:
sigma0: 3489.38961 (init = 1000)
tau: 1.2456e-04 (init = 0.01)
c1: -0.99816132 (init = -1)
constraint: 0.98138820 (init = 1)
c: 0.00000000 == '1+c1-constraint'
d: 7333.82306 (init = 1000)
These values don't make any sense as 1+c1-c = -0.97954952 which is not 0 and is thus invalid. How to fix this issue?
Your code is not runnable. The use of input() is sort of stunning - please do not do that. Write code that is pleasant to read and separates i/o from logic.
To make a floating point residual from a complex array, use complex_array.view(float)
Guessing any parameter value to be at or very close to its limit (here, c) is a very bad idea, likely to make the fit harder.
More to your question, you defined c as "evaluate 1+c1-constant and then apply the bounds min=0, max=1". That is literally, precisely, and exactly what your
params.add("c", expr="1+c1-constraint", min = 0, max = 1)
means: calculate c as 1+c1-constraint, and then apply the bounds [0, 1]. The code is doing exactly what you told it to do.
Unless you know what you are doing (I suspect maybe not ;)), I would strongly advise doing a fit with the default leastsq method before trying to use differential_evolution. It turns out that differential_evolution is not a very good global fitting method (shgo is generally better, though no "global" solver should be considered as very reliable). But, unless you know that you need such a method, you probably do not.
I would also strongly advise you to plot your data and some models evaluated with what you think are reasonable parameters.

lmfit - SineModel+ConstantModel appears inaccurate fit

I'm trying to fit a simple sine function to some experimental data using lmfit and I find that the SineModel with a constant model offset returns, what looks like an inaccurate fit to the data (to me). I suppose it may be helpful to highlight that I am most interested in the frequency of the peaks (and I appreciate that I can simply use a scipy.find_peaks() but would prefer to show a fit to the data).
I use the function below for lmfit model:
def Sine(self, x_axis, y_axis):
sine = SineModel()
const = ConstantModel()
x_fit = np.linspace(min(x_axis), max(x_axis), x_axis.size)
guess_sine = sine.guess(y_axis, x=x_fit)
pars = sine.guess(y_axis, x=x_fit)
sine_offset = SineModel() + ConstantModel()
pars.add('c', value=1, vary=True)
result = sine_offset.fit(y_axis, pars, x=x_fit)
return result
Sine function output (graph and report results) are provided here:
SineModel+ConstModel
I then tried to define my own function, defining my own parameters and evaluating in the same lmfit method, providing sensible "guess" initial values etc.
def Sine_User2(self, x_axis, y_axis):
def sine_func(x, amplitude, freq, shift, c):
return amplitude * np.sin(freq * x + shift) + c
sinemodel = Model(sine_func)
# Take a FFT of the data to provide a guess starting location for the curve fitting
x = np.array(x_axis)
y = np.array(y_axis)
ff = np.fft.fftfreq(len(x), (x[1] - x[0])) # assume uniform spacing
Fyy = abs(np.fft.fft(y))
guess_freq = abs(ff[np.argmax(Fyy[1:]) + 1]) * 2. * np.pi
guess_amp = np.std(y) * 2.**0.5
guess_offset = np.mean(y)
x_fit = np.linspace(min(x_axis), max(x_axis), x_axis.size)
params = sinemodel.make_params(amplitude = guess_amp, freq = guess_freq, shift = 0, c = guess_offset )
result = sinemodel.fit(y_axis, params, x = x_fit)
return result
The output of the user defined model appears to provide a much closer fit to the data, however, the report does not provide uncertainties citing a warning that the "Uncertainties could not be estimated":
SineUser2 function outputs (graph and report results) are provided here: User Defined Model
I then tried to include min/max values to the parameters by replacing the "sinmodel.make_params" line with:
params = Parameters()
params.add('amplitude', value=guess_amp, min = 0)
params.add('freq', value=guess_freq, min=0)
params.add('shift', value=0, min=-2*np.pi, max=2*np.pi)
params.add('c', value=guess_offset)
But the results resort back to the SineModel+ConstModel results seen in the first linked graph/report results. Therefore it must be something to do with the way I'm setting initial values.
The fit using the "SineUser2" function appears to be better. Is there a way to improve the fit for "Sine" function in the first block of code.
Why are the uncertainties not calculated in the second function "Sine_User2"?
Data (.csv):
Wavelength (nm),Power (dBm),,,,,
1549.9,-13.76008731,,,,,
1549.905,-13.69423162,,,,,
1549.91,-12.59004339,,,,,
1549.915,-11.31061848,,,,,
1549.92,-10.58731809,,,,,
1549.925,-10.19024329,,,,,
1549.93,-10.07301418,,,,,
1549.935,-10.19513172,,,,,
1549.94,-10.45582159,,,,,
1549.945,-11.15984161,,,,,
1549.95,-12.15876596,,,,,
1549.955,-13.44674933,,,,,
1549.96,-13.56388277,,,,,
1549.965,-12.2513065,,,,,
1549.97,-11.08699015,,,,,
1549.975,-10.43829185,,,,,
1549.98,-10.12861158,,,,,
1549.985,-10.0962929,,,,,
1549.99,-10.1852173,,,,,
1549.995,-10.55438183,,,,,
1550,-11.19555345,,,,,
1550.005,-12.28715299,,,,,
1550.01,-13.5153863,,,,,
1550.015,-13.47019261,,,,,
1550.02,-12.12394732,,,,,
1550.025,-11.01946751,,,,,
1550.03,-10.42138778,,,,,
1550.035,-10.14438079,,,,,
1550.04,-10.05681218,,,,,
1550.045,-10.17148605,,,,,
1550.05,-10.56046759,,,,,
1550.055,-11.11621478,,,,,
1550.06,-12.19930263,,,,,
1550.065,-13.48428349,,,,,
1550.07,-13.43424913,,,,,
1550.075,-12.08019952,,,,,
1550.08,-11.08731704,,,,,
1550.085,-10.45730899,,,,,
1550.09,-10.11278169,,,,,
1550.095,-10.00651194,,,,,
,,,,,,

How to return the generated function to the form of mathematical expression and perform derivation and other operations on it in python?

After using curve_fitting from scipy,the scatter data is fitted by Gaussian approximation,the code is as follows:
x = np.linspace(1,len(y),len(y))
n = len(x)
mean = sum(x*y)/n
sigma = np.sqrt(sum(y*(x-mean)**2)/n)
def gaus(x,a,x0,sigma):
return a*np.exp(-(x-x0)**2/(2*sigma**2))/(sigma*np.sqrt(2*np.pi))
popt,pcov = curve_fit(gaus,x,y,maxfev = 200000)
When I call it, the generated p1 is just an array corresponding to x:
p1 = gaus(x,*popt)
,The returned array is:
[0.09933219 0.10139629 0.10350315 0.10565368 0.10784877 0.11008935
0.11237635 0.11471073 0.11709347 0.11952557 0.12200806 0.12454196
0.12712835 0.1297683 0.13246293 0.13521337 0.13802076 0.14088628
0.14381113 0.14679655 0.14984377 0.15295407 0.15612876 0.15936917
0.16267665 0.16605259 0.1694984 0.17301552 0.17660543 0.18026962
0.18400963 0.18782703 0.19172341 0.19570039 0.19975966 0.20390289
0.20813183 0.21244823 0.21685392 0.22135072 0.22594052 0.23062523
0.23540682 0.24028728 0.24526864 0.250353 0.25554246 0.26083921
0.26624545 0.27176344 0.27739549 0.28314393 0.28901118 0.29499968
0.30111193 0.30735049 0.31371794 0.32021696 0.32685025 0.33362057
0.34053076 0.34758369 0.3547823 0.36212959 0.36962863 0.37728255
0.38509452 0.39306781 0.40120574 0.4095117 0.41798914 0.42664161
0.4354727 0.4444861 0.45368554 0.46307487 0.472658 0.4824389
0.49242166 0.50261042 0.51300944 0.52362302 0.53445559 0.54551166
0.55679582]
In this case, how can I find it's first derivative expression, the second derivative and so on for the generated function?
This can be achieved using scipy.interpolate.InterpolatedUnivariateSpline.
First, you need to create a spline of your data as:
from scipy.interpolate import InterpolatedUnivariateSpline
spl = InterpolatedUnivariateSpline(x, p1)
Afterward, you can use the spl object to pass x and n (the number of derivative), to get a new spline as np.ndarray at x with its nth derivative as:
der1 = spl(x, 1)
der2 = spl(x, 2)

Simultaneous Fit of Two ODE's to data in Scipy

NOTE: Fit differential equation with scipy has been tried and a few other answers also. None seem to work.
I have two data sets d1 & d2 which I am trying to fit with two coupled ODE's (solver given below). d1 and d2 correspond to lab data for an experiment control & treatment.
When I do the fit for the first ODE (only control case), it works fine and I get the desired parameters. When I do the same for the treatment case, using the fit parameters obtained from the control case, my code doesn't seem to optimize anything whatsoever.
from scipy.integrate import odeint
import scipy
d1 = [113.75981939, 224.732254 , 437.00727486, 533.3249591 ,900.19498288, 1460.34662166, 2276.34857406, 3288.90246842,3888.70188293, 5102.45452895]
d2 = [118.69478959, 201.30146742, 287.50835473, 437.70461121,511.9610845, 982.88626039, 1115.37610645, 1235.95872766,1622.57717685, 1776.95184626]
time = [ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
'''
#ODE's
dS/dt = r*S*(1-(S/K))-(kappa*S*T)
dT/dt = a*S-d*T
'''
#Curve Fit Section
#First get r,K from control data, i.e, case where kappa = 0
def func(y,t,r,K):
S = y
dydt = r*S*(1-(S/K))
return dydt
y0 = [100]
t = time
guess = [0.3,5000] #[guess_r,guess_K]
def fit(params):
r,K = params
test_solve = odeint(func,y0,t,args=(r,K))
return np.linalg.norm(test_solve[:,0]-d1)
res = scipy.optimize.minimize(fit,np.array(guess))
r,K = res.x #Returns the r, K parameter values that fit the control data perfectly.
#Curve fit for treatment case
#ODE Solver for Control and Treatment Model
def func(y,t,r,K,a,kappa,d):
S,T = y
dydt = [r*S*(1-(S/K))-(kappa*S*T),a*S-d*T]
return dydt
y0 = [100,0]
t = time
guess_t = [r,K,2,3,0.01]
#Fitting the experimental data set
def fit(params):
r,K,a,d,kappa = params
test_solve = odeint(func,y0,t,args=(r,K,a,d,kappa))
return np.linalg.norm(test_solve[:,0]-d2)
res2 = scipy.optimize.minimize(fit,np.array(guess_t))
result - res2.x is the same as the guess_t array - no change,i.e, no fit
When I try the second fit after using the parameters obtained from the first, I get no meaningful result. It doesn't work. What am I doing wrong here?
EDIT : The parameter values one gets (from a Matlab fit) - r=0.2629, K=7625.2, a=7.845, d=189.49. k =0.0026. The code above returns very similar values for r & K but not for the other 3 parameters (a,kappa,d). Not sure what is happening.
EDIT 2: I keep getting this error. Any idea what is going wrong?
/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/scipy/integrate/odepack.py:247: ODEintWarning: Excess work done on this call (perhaps wrong Dfun type). Run with full_output = 1 to get quantitative information.
warnings.warn(warning_msg, ODEintWarning

lmfit minimize (or scipy.optimize leastsq) on complex equation/data

Edit:
Modeling and fitting with this approach work fine, the data in here is not good.-------------------
I want to do a curve-fitting on a complex dataset. After thorough reading and searching, I found that i can use a couple of methods (e.g. lmfit optimize, scipy leastsq).
But none gives me a good fit at all.
here is the fit equation:
here is the data to be fitted (list of y values):
[(0.00011342104914066835+8.448890220616275e-07j),
(0.00011340386404065371+7.379293582429708e-07j),
(0.0001133540327309949+6.389834505824625e-07j),
(0.00011332170913939336+5.244566142401774e-07j),
(0.00011331311156154074+4.3841061618015007e-07j),
(0.00011329383047059048+3.6163513508002877e-07j),
(0.00011328700094846502+3.0542249453666894e-07j),
(0.00011327650033983806+2.548725558622188e-07j),
(0.00011327702539337786+2.2508174567697671e-07j),
(0.00011327342238146558+1.9607648998100523e-07j),
(0.0001132710747364799+1.721721661949941e-07j),
(0.00011326933241850936+1.5246061350710235e-07j),
(0.00011326798040984542+1.3614817802178457e-07j),
(0.00011326752037650585+1.233483784504962e-07j),
(0.00011326758290166552+1.1258801448459512e-07j),
(0.00011326813100914905+1.0284749122099354e-07j),
(0.0001132684076390416+9.45791423595816e-08j),
(0.00011326982474882009+8.733105218572698e-08j),
(0.00011327158639135678+8.212191452217794e-08j),
(0.00011327366823516856+7.747920115589205e-08j),
(0.00011327694366034208+7.227069986108343e-08j),
(0.00011327915327873038+6.819405851172907e-08j),
(0.00011328181165961218+6.468392148750885e-08j),
(0.00011328531688122571+6.151393311227958e-08j),
(0.00011328857849500441+5.811704586613896e-08j),
(0.00011329241716561626+5.596645863242474e-08j),
(0.0001132970129528527+5.4722461511610696e-08j),
(0.0001133002881788021+5.064523218904898e-08j),
(0.00011330507671740223+5.0307457368330284e-08j),
(0.00011331106068787993+4.7703959367963307e-08j),
(0.00011331577350707601+4.634615394867111e-08j),
(0.00011332064001939156+4.6914747648361504e-08j),
(0.00011333034985824086+4.4992151257444304e-08j),
(0.00011334188526870483+4.363662798446445e-08j),
(0.00011335491299924776+4.364164366097129e-08j),
(0.00011337451201475147+4.262881852644385e-08j),
(0.00011339778209066752+4.275096587356569e-08j),
(0.00011342832992628646+4.4463907608604945e-08j),
(0.00011346526768580432+4.35706649329342e-08j),
(0.00011351108008292451+4.4155812379491554e-08j),
(0.00011356967192325835+4.327004709646922e-08j),
(0.00011364164970635006+4.420660396556604e-08j),
(0.00011373150199883139+4.3672898914161596e-08j),
(0.00011384660942003356+4.326171366194325e-08j),
(0.00011399193321804955+4.1493065523925126e-08j),
(0.00011418043916260295+4.0762418512759096e-08j),
(0.00011443271767970721+3.91359909722939e-08j),
(0.00011479600563688605+3.845666332695652e-08j),
(0.0001153652105925112+3.6224677316584614e-08j),
(0.00011638635682516399+3.386843079212692e-08j),
(0.00011836223959714231+3.6692295450490655e-08j)]
here is the list of x values:
[999.9999960000001,
794.328231,
630.957342,
501.18723099999994,
398.107168,
316.22776400000004,
251.188642,
199.52623,
158.489318,
125.89254,
99.999999,
79.432823,
63.095734,
50.118722999999996,
39.810717,
31.622776,
25.118864000000002,
19.952623000000003,
15.848932000000001,
12.589253999999999,
10.0,
7.943282000000001,
6.309573,
5.011872,
3.981072,
3.1622779999999997,
2.511886,
1.9952619999999999,
1.584893,
1.258925,
1.0,
0.7943279999999999,
0.630957,
0.5011869999999999,
0.398107,
0.316228,
0.251189,
0.199526,
0.15848900000000002,
0.125893,
0.1,
0.079433,
0.063096,
0.050119,
0.039811,
0.031623000000000005,
0.025119,
0.019953,
0.015849000000000002,
0.012589,
0.01]
and here is the code which works but not the way I want:
import numpy as np
import matplotlib.pyplot as plt
from lmfit import minimize, Parameters
#%% the equation
def ColeCole(params, fr): #fr is x values array and params are the fitting parameters
sig0 = params['sig0']
m = params['m']
tau = params['tau']
c = params['c']
w = fr*2*np.pi
num = 1
denom = 1+(1j*w*tau)**c
sigComplex = sig0*(1.0+(m/(1-m))*(1-num/denom))
return sigComplex
def res(params, fr, data): #calculating reseduals of fit
resedual = ColeCole(params, fr) - data
return resedual.view(np.float)
#%% Adding model parameters and fitting
params = Parameters()
params.add('sig0', value=0.00166)
params.add('m', value=0.19,)
params.add('tau', value=0.05386)
params.add('c', value=0.80)
params['tau'].min = 0 # these conditions must be met but even if I remove them the fit is ugly!!
params['m'].min = 0
out= minimize(res, params , args= (np.array(fr2), np.array(data)))
#%%plotting Imaginary part
fig, ax = plt.subplots()
plotX = fr2
plotY = data.imag
fitplot = ColeCole(out.params, fr2)
ax.semilogx(plotX,plotY,'o',label='imc')
ax.semilogx(plotX,fitplot.imag,label='fit')
#%%plotting real part
fig2, ax2 = plt.subplots()
plotX2 = fr2
plotY2 = data.real
fitplot2 = ColeCole(out.params, fr2)
ax2.semilogx(plotX2,plotY2,'o',label='imc')
ax2.semilogx(plotX2,fitplot2.real,label='fit')
I might be doing it completely wrong, please help me if you know the proper solution to do a curve fitting on complex data.
I would suggest first converting the complex data to numpy arrays and get real, imag pairs separately and then using lmfit Model to model that same sort of data. Perhaps something like this:
cdata = np.array((0.00011342104914066835+8.448890220616275e-07j,
0.00011340386404065371+7.379293582429708e-07j,
0.0001133540327309949+6.389834505824625e-07j,
0.00011332170913939336+5.244566142401774e-07j,
0.00011331311156154074+4.3841061618015007e-07j,
0.00011329383047059048+3.6163513508002877e-07j,
0.00011328700094846502+3.0542249453666894e-07j,
0.00011327650033983806+2.548725558622188e-07j,
0.00011327702539337786+2.2508174567697671e-07j,
0.00011327342238146558+1.9607648998100523e-07j,
0.0001132710747364799+1.721721661949941e-07j,
0.00011326933241850936+1.5246061350710235e-07j,
0.00011326798040984542+1.3614817802178457e-07j,
0.00011326752037650585+1.233483784504962e-07j,
0.00011326758290166552+1.1258801448459512e-07j,
0.00011326813100914905+1.0284749122099354e-07j,
0.0001132684076390416+9.45791423595816e-08j,
0.00011326982474882009+8.733105218572698e-08j,
0.00011327158639135678+8.212191452217794e-08j,
0.00011327366823516856+7.747920115589205e-08j,
0.00011327694366034208+7.227069986108343e-08j,
0.00011327915327873038+6.819405851172907e-08j,
0.00011328181165961218+6.468392148750885e-08j,
0.00011328531688122571+6.151393311227958e-08j,
0.00011328857849500441+5.811704586613896e-08j,
0.00011329241716561626+5.596645863242474e-08j,
0.0001132970129528527+5.4722461511610696e-08j,
0.0001133002881788021+5.064523218904898e-08j,
0.00011330507671740223+5.0307457368330284e-08j,
0.00011331106068787993+4.7703959367963307e-08j,
0.00011331577350707601+4.634615394867111e-08j,
0.00011332064001939156+4.6914747648361504e-08j,
0.00011333034985824086+4.4992151257444304e-08j,
0.00011334188526870483+4.363662798446445e-08j,
0.00011335491299924776+4.364164366097129e-08j,
0.00011337451201475147+4.262881852644385e-08j,
0.00011339778209066752+4.275096587356569e-08j,
0.00011342832992628646+4.4463907608604945e-08j,
0.00011346526768580432+4.35706649329342e-08j,
0.00011351108008292451+4.4155812379491554e-08j,
0.00011356967192325835+4.327004709646922e-08j,
0.00011364164970635006+4.420660396556604e-08j,
0.00011373150199883139+4.3672898914161596e-08j,
0.00011384660942003356+4.326171366194325e-08j,
0.00011399193321804955+4.1493065523925126e-08j,
0.00011418043916260295+4.0762418512759096e-08j,
0.00011443271767970721+3.91359909722939e-08j,
0.00011479600563688605+3.845666332695652e-08j,
0.0001153652105925112+3.6224677316584614e-08j,
0.00011638635682516399+3.386843079212692e-08j,
0.00011836223959714231+3.6692295450490655e-08j))
fr = np.array((999.9999960000001, 794.328231, 630.957342,
501.18723099999994, 398.107168, 316.22776400000004,
251.188642, 199.52623, 158.489318, 125.89254, 99.999999,
79.432823, 63.095734, 50.118722999999996, 39.810717,
31.622776, 25.118864000000002, 19.952623000000003,
15.848932000000001, 12.589253999999999, 10.0,
7.943282000000001, 6.309573, 5.011872, 3.981072,
3.1622779999999997, 2.511886, 1.9952619999999999, 1.584893,
1.258925, 1.0, 0.7943279999999999, 0.630957,
0.5011869999999999, 0.398107, 0.316228, 0.251189, 0.199526,
0.15848900000000002, 0.125893, 0.1, 0.079433, 0.063096,
0.050119, 0.039811, 0.031623000000000005, 0.025119, 0.019953,
0.015849000000000002, 0.012589, 0.01))
data = np.concatenate((cdata.real, cdata.imag))
# model function for lmfit
def colecole_function(x, sig0, m, tau, c):
w = x*2*np.pi
denom = 1+(1j*w*tau)**c
sig = sig0*(1.0+(m/(1.0-m))*(1-1.0/denom))
return np.concatenate((sig.real, sig.imag))
mod = Model(colecole_function)
params = mod.make_params(sig0=0.002, m=-0.19, tau=0.05, c=0.8)
params['tau'].min = 0
result = mod.fit(data, params, x=fr)
print(result.fit_report())
You would then want to plot the results like
nf = len(fr)
plt.plot(fr, data[:nf], label='data(real)')
plt.plot(fr, result.best_fit[:nf], label='fit(real)')
and similarly
plt.plot(fr, data[nf:], label='data(imag)')
plt.plot(fr, result.best_fit[nf:], label='fit(imag)')
Note that I think you're going to want to allow m to be negative (or maybe I misuderstand your model). I did not work carefully on getting a great fit, but I think this should get you started.

Categories

Resources