I created this dataframe:
import pandas as pd
columns = pd.MultiIndex.from_tuples([("x", "", ""), ("values", "a", "a.b"), ("values", "c", "")])
df0 = pd.DataFrame([(0,10,20),(1,100,200)], columns=columns)
df0
I unload df0 to excel:
df0.to_excel("test.xlsx")
and load it again:
df1 = pd.read_excel("test.xlsx", header=[0,1,2])
df1
And I have Unnamed :... column names.
To make df1 look like inital df0 I run:
def rename_unnamed(df, label=""):
for i, columns in enumerate(df.columns.levels):
columns = columns.tolist()
for j, row in enumerate(columns):
if "Unnamed: " in row:
columns[j] = ""
df.columns.set_levels(columns, level=i, inplace=True)
return df
rename_unnamed(df1)
Well done. But is there any pandas way from box to do this?
Since pandas 0.21.0 the code should be like this
def rename_unnamed(df):
"""Rename unamed columns name for Pandas DataFrame
See https://stackoverflow.com/questions/41221079/rename-multiindex-columns-in-pandas
Parameters
----------
df : pd.DataFrame object
Input dataframe
Returns
-------
pd.DataFrame
Output dataframe
"""
for i, columns in enumerate(df.columns.levels):
columns_new = columns.tolist()
for j, row in enumerate(columns_new):
if "Unnamed: " in row:
columns_new[j] = ""
if pd.__version__ < "0.21.0": # https://stackoverflow.com/a/48186976/716469
df.columns.set_levels(columns_new, level=i, inplace=True)
else:
df = df.rename(columns=dict(zip(columns.tolist(), columns_new)),
level=i)
return df
Mixing answers from #jezrael and #dinya, and limited for pandas above 0.21.0 (after 2017) an option to solve this will be:
for i, columns_old in enumerate(df.columns.levels):
columns_new = np.where(columns_old.str.contains('Unnamed'), '-', columns_old)
df.rename(columns=dict(zip(columns_old, columns_new)), level=i, inplace=True)
You can use numpy.where with condition by contains:
for i, col in enumerate(df1.columns.levels):
columns = np.where(col.str.contains('Unnamed'), '', col)
df1.columns.set_levels(columns, level=i, inplace=True)
print (df1)
x values
a c
a.b
0 0 10 20
1 1 100 200
Related
I need to update values in column DF.EMAIL if have duplicates values in DF.EMAIL column to 0
generate DF
data = [('2345', 'leo#gmai.com'),
('2398', 'leo#hotmai.com'),
('2398', 'leo#hotmai.com'),
('2328', 'leo#yahoo.con'),
('3983', 'leo#yahoo.com.ar')]
serialize DF
df = sc.parallelize(data).toDF(['ID', 'EMAIL'])
# show DF
df.show()
Partial Solution
# create column with value 0 if don't have duplicates
# if have duplicates set value 1
df_join = df.join(
df.groupBy(df.columns).agg((count("*")>1).cast("int").alias("duplicate_indicator")),
on=df.columns,
how="inner"
)
# Update to 1 if have duplicates
df1 = df_join.withColumn(
"EMAIL",
when(df_join.duplicate_indicator == 1,"") \
.otherwise(df_join.EMAIL)
)
Syntax-wise, this looks more compact but yours might perform better.
df = (df.withColumn('count', count('*').over(Window.partitionBy('ID')))
.withColumn('EMAIL', when(col('count') > 1, '').otherwise(col('EMAIL'))))
I have a list of filepaths in the first column of a dataframe. My goal is to create a second column that represents file categories, with categories reflecting the words in the filepath.
import pandas as pd
import numpy as np
data = {'filepath': ['C:/barracuda/document.doc', 'C:/dog/document.doc', 'C:/cat/document.doc']
}
df = pd.DataFrame(data)
df["Animal"] =(df['filepath'].str.contains("dog|cat",case=False,regex=True))
df["Fish"] =(df['filepath'].str.contains("barracuda",case=False))
df = df.loc[:, 'filepath':'Fish'].replace(True, pd.Series(df.columns, df.columns))
df = df.loc[:, 'filepath':'Fish'].replace(False,np.nan)
def squeeze_nan(x):
original_columns = x.index.tolist()
squeezed = x.dropna()
squeezed.index = [original_columns[n] for n in range(squeezed.count())]
return squeezed.reindex(original_columns, fill_value=np.nan)
df = df.apply(squeeze_nan, axis=1)
print(df)
This code works. The problem arises when I have 200 statements beginning with df['columnName'] =. Because I have so many, I get the error:
PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling frame.insert many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use newframe = frame.copy()
To fix this I have tried:
dfAnimal = df.copy
dfAnimal['Animal'] = dfAnimal['filepath'].str.contains("dog|cat",case=False,regex=True)
dfFish = df.copy
dfFish["Fish"] =dfFish['filepath'].str.contains("barracuda",case=False)
df = pd.concat(dfAnimal,dfFish)
The above gives me errors such as method object is not iterable and method object is not subscriptable. I then tried df = df.loc[df['filepath'].isin(['cat','dog'])] but this only works when 'cat' or 'dog' is the only word in the column. How do I avoid the performance error?
Try creating all your new columns in a dict, and then convert that dict into a dataframe, and then use pd.concat to add the resulting dataframe (containing the new columns) to the original dataframe:
new_columns = {
'Animal': df['filepath'].str.contains("dog|cat",case=False,regex=True),
'Fish': df['filepath'].str.contains("barracuda",case=False),
}
new_df = pd.DataFrame(new_columns)
df = pd.concat([df, new_df], axis=1)
Added to your original code, it would be something like this:
import pandas as pd
import numpy as np
data = {'filepath': ['C:/barracuda/document.doc', 'C:/dog/document.doc', 'C:/cat/document.doc']
}
df = pd.DataFrame(data)
##### These are the new lines #####
new_columns = {
'Animal': df['filepath'].str.contains("dog|cat",case=False,regex=True),
'Fish': df['filepath'].str.contains("barracuda",case=False),
}
new_df = pd.DataFrame(new_columns)
df = pd.concat([df, new_df], axis=1)
##### End of new lines #####
df = df.loc[:, 'filepath':'Fish'].replace(True, pd.Series(df.columns, df.columns))
df = df.loc[:, 'filepath':'Fish'].replace(False,np.nan)
def squeeze_nan(x):
original_columns = x.index.tolist()
squeezed = x.dropna()
squeezed.index = [original_columns[n] for n in range(squeezed.count())]
return squeezed.reindex(original_columns, fill_value=np.nan)
df = df.apply(squeeze_nan, axis=1)
print(df)
so I would like to change the first number in the number column to +233 given the first number is 0, basically I would like all rows in number to be like that of row Paul
Both columns are string objects.
Expectations:
The first character of the values in the column named df["numbers"] should be replaced to "+233" if only == "0"
df = pd.DataFrame([[ken, 080222333222],
[ben, +233948433],
[Paul, 0800000073]],
columns=['name', 'number'])`
Hope I understood your edition, try this:
Notice - I removed the first 0 and replaced it with +233
import pandas as pd
df = pd.DataFrame([["ken", "080222333222"], ["ben", "+233948433"], ["Paul", "0800000073"]], columns=['name', 'number'])
def convert_number(row):
if row[0] == '0':
row = "+233" + row[1:]
return row
df['number'] = df['number'].apply(convert_number)
print(df)
You can used replace directly
df['relace_Col']=df.number.str.replace(r'^\d', '+233',1)
which produced
name number relace_Col
0 ken 080222333222 +23380222333222
1 ben +233948433 +233948433
2 Paul 0800000073 +233800000073
The full code to reproduce the above
import pandas as pd
df = pd.DataFrame([['ken', '080222333222'], ['ben', '+233948433'],
['Paul', '0800000073']], columns=['name', 'number'])
df['relace_Col']=df.number.str.replace(r'^\d', '+233',1)
print(df)
I want to compare two Data Frames and print out my differences in a selective way. Here is what I want to accomplish in pictures:
Dataframe 1
Dataframe 2
Desired Output - Dataframe 3
What I have tried so far?
import pandas as pd
import numpy as np
df1 = pd.read_excel("01.xlsx")
df2 = pd.read_excel("02.xlsx")
def diff_pd(df1, df2):
"""Identify differences between two pandas DataFrames"""
assert (df1.columns == df2.columns).all(), \
"DataFrame column names are different"
if any(df1.dtypes != df2.dtypes):
"Data Types are different, trying to convert"
df2 = df2.astype(df1.dtypes)
if df1.equals(df2):
return None
else: # need to account for np.nan != np.nan returning True
diff_mask = (df1 != df2) & ~(df1.isnull() & df2.isnull())
ne_stacked = diff_mask.stack()
changed = ne_stacked[ne_stacked]
changed.index.names = ['id', 'Naziv usluge']
difference_locations = np.where(diff_mask)
changed_from = df1.values[difference_locations]
changed_to = df2.values[difference_locations]
return pd.DataFrame({'Service Previous': changed_from, 'Service Current': changed_to},
index=changed.index)
df3 = diff_pd(df1, df2)
df3 = df3.fillna(0)
df3 = df3.reset_index()
print(df3)
To be fair i found that code on another thread, but it does get job done, but I still have some issues.
My dataframes are not equal, what do I do?
I don't fully understand the code I provided.
Thank you!
How about something easier to start with ...
Try this
import pandas as pd
data1={'Name':['Tom','Bob','Mary'],'Age':[20,30,40],'Pay':[10,10,20]}
data2={'Name':['Tom','Bob','Mary'],'Age':[40,30,20]}
df1=pd.DataFrame.from_records(data1)
df2=pd.DataFrame.from_records(data2)
# Checking Columns
for col in df1.columns:
if col not in df2.columns:
print(f"DF2 Missing Col {col}")
# Check Col Values
for col in df1.columns:
if col in df2.columns:
# Ok we have the same column
if list(df1[col]) == list(df2[col]):
print(f"Columns {col} are the same")
else:
print(f"Columns {col} have differences")
It should output
DF2 Missing Col Pay
Columns Age have differences
Columns Name are the same
Python3.7 needed or change the f-string formatting.
I'm working on a small tool that does some calculations on a dataframe, let's say something like this:
df['column_c'] = df['column_a'] + df['column_b']
for this to work the dataframe need to have the columns 'column_a' and 'column_b'. I would like this code to work if the columns are named slightly different named in the import file (csv or xlsx). For example 'columnA', 'Col_a', ect).
The easiest way would be renaming the columns inside the imported file, but let's assume this is not possible. Therefore I would like to do some think like this:
if column name is in list ['columnA', 'Col_A', 'col_a', 'a'... ] rename it to 'column_a'
I was thinking about having a dictionary with possible column names, when a column name would be in this dictionary it will be renamed to 'column_a'. An additional complication would be the fact that the columns can be in arbitrary order.
How would one solve this problem?
I recommend you formulate the conversion logic and write a function accordingly:
lst = ['columnA', 'Col_A', 'col_a', 'a']
def converter(x):
return 'column_'+x[-1].lower()
res = list(map(converter, lst))
['column_a', 'column_a', 'column_a', 'column_a']
You can then use this directly in pd.DataFrame.rename:
df = df.rename(columns=converter)
Example usage:
df = pd.DataFrame(columns=['columnA', 'col_B', 'c'])
df = df.rename(columns=converter)
print(df.columns)
Index(['column_a', 'column_b', 'column_c'], dtype='object')
Simply
for index, column_name in enumerate(df.columns):
if column_name in ['columnA', 'Col_A', 'col_a' ]:
df.columns[index] = 'column_a'
with dictionary
dico = {'column_a':['columnA', 'Col_A', 'col_a' ], 'column_b':['columnB', 'Col_B', 'col_b' ]}
for index, column_name in enumerate(df.columns):
for name, ex_names in dico:
if column_name in ex_names:
df.columns[index] = name
This should solve it:
df=pd.DataFrame({'colA':[1,2], 'columnB':[3,4]})
def rename_df(col):
if col in ['columnA', 'Col_A', 'colA' ]:
return 'column_a'
if col in ['columnB', 'Col_B', 'colB' ]:
return 'column_b'
return col
df = df.rename(rename_df, axis=1)
if you have the list of other names like list_othername_A or list_othername_B, you can do:
for col_name in df.columns:
if col_name in list_othername_A:
df = df.rename(columns = {col_name : 'column_a'})
elif col_name in list_othername_B:
df = df.rename(columns = {col_name : 'column_b'})
elif ...
EDIT: using the dictionary of #djangoliv, you can do even shorter:
dico = {'column_a':['columnA', 'Col_A', 'col_a' ], 'column_b':['columnB', 'Col_B', 'col_b' ]}
#create a dict to rename, kind of reverse dico:
dict_rename = {col:key for key in dico.keys() for col in dico[key]}
# then just rename:
df = df.rename(columns = dict_rename )
Note that this method does not work if in df you have two columns 'columnA' and 'Col_A' but otherwise, it should work as rename does not care if any key in dict_rename is not in df.columns.