when i train the RNN using keras, i have a error - python

I train the KDD CUP Dataset using Keras, RNN.
When I train, I have this error.
"ValueError: ('Bad input argument to theano function with name
"/usr/local/lib/python2.7/dist-packages/Keras-1.0.5-py2.7.egg/keras/backend/theano_backend.py:527"
at index 0 (0-based)', "invalid literal for long() with base 10: 'SF'")"
This is my code:
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility
import keras
from keras.preprocessing import sequence
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Embedding
from keras.layers import LSTM, SimpleRNN, GRU
import pandas as pd
max_features = 5000000
maxlen = 50 # cut texts after this number of words (among top max_features most common words)
batch_size = 32
nb_epoch = 100
print('Loading data...')
train_data=pd.read_csv('./data.csv')
labels = (train_data.ix[:,41:42].values)
train = (train_data.ix[:,0:41].values)
#labels = np_utils.to_categorical(labels)
test_data=pd.read_csv('./testdata.csv')
test = (test_data.ix[:,0:41].values)
'''
print('labels')
print(labels)
print('train')
print(train)
print('test')
print(test)
'''
print(train_data.shape[1])
print(train.shape)
print(labels.shape)
print('Build model...')
model = Sequential()
model.add(Embedding(max_features, 128, dropout=0.2))
model.add(LSTM(128, dropout_W=0.2, dropout_U=0.2)) # try using a GRU instead, for fun
model.add(Dense(1))
model.add(Activation('sigmoid'))
# try using different optimizers and different optimizer configs
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
print('Train...')
model.fit(train, labels, batch_size=batch_size, nb_epoch=nb_epoch, validation_split=0.25, verbose=1, shuffle=True)
store = model.predict(test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])

Related

Confusion Matrix - ValueError: Found input variables with inconsistent numbers of samples

For the sake of reproducibility, the training and validations datasets I am using are shared here
The validation_dataset.csv is the ground truth of training_dataset.csv.
What I am doing below is feeding the datasets into a simple CNN layer that extracts the useful features of the images and feed that as 1D into the LSTM network for classification.
from keras.models import Sequential
from keras.layers import Dense, Flatten, Activation
from keras.layers.convolutional import Conv1D
from keras.layers import LSTM
from keras.layers.convolutional import MaxPooling1D
from keras.layers import TimeDistributed
from keras.layers import Dropout
from keras import optimizers
from keras.callbacks import EarlyStopping
import pandas as pd
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
from confusion_matrix import plot_confusion_matrix
import scikitplot as skplt
from numpy import genfromtxt
train_set = genfromtxt('data/train/training_dataset.csv', delimiter=',')
validation_set = genfromtxt('data/validation/validation_dataset.csv', delimiter=',')
train_set = train_set[..., None]
validation_set = validation_set[..., None]
X_train, X_test, y_train, y_test = train_test_split(train_set, validation_set, test_size=0.30, random_state=0)
batch_size=16
epochs=5
# Create the model
model = Sequential()
model.add(Conv1D(filters=5, kernel_size=3, activation='relu', padding='same'))
model.add(MaxPooling1D(pool_size=2))
model.add(LSTM(50, return_sequences=True))
model.add(Dropout(0.5))
model.add(LSTM(10))
model.add(Dense(1,kernel_initializer='random_normal'))
model.add(Activation('relu'))
adam = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0)
sgd = optimizers.SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=adam, loss='mean_squared_error', metrics=['mae', 'mape', 'mean_squared_error', 'acc'])
model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs)
print(model.summary())
# Evaluate the model
scores = model.evaluate(X_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))
skplt.metrics.plot_confusion_matrix(y_test, scores, x_tick_rotation=50, title=' ', normalize=True)
Finally, I want to plot the confusion matrix of the model using
skplt.metrics.plot_confusion_matrix(y_test, scores, x_tick_rotation=50, title=' ', normalize=True)
However, it is raising an error ValueError: Found input variables with inconsistent numbers of samples: [5394, 5].
How can we fix this error?
The second argument to skplt.metrics.plot_confusion_matrix must be the predicted labels (see https://scikit-plot.readthedocs.io/en/stable/metrics.html). But, you pass scores, which does not contain the predicted labels.
The fix would be to do:
y_pred = model.predict(X_test)
skplt.metrics.plot_confusion_matrix(y_test,
y_pred,
x_tick_rotation=50,
title=' ',
normalize=True)
I was working on SVM few days ago and when i tried to plot confusion matrix the following lines of code worked for me.
predicted=model.predict(X_test) #predicted output
cm=metrics.confusion_matrix(y_test, predicted)
df_cm = pd.DataFrame(cm, range(2), range(2))
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True, annot_kws={"size": 16})
plt.title('CONFUSION MATRIX ',fontdict={'fontsize': 14, 'fontweight': 'bold'})
plt.show()

Code to perform an attack to a CNN with foolbox, what's wrong?

I have to perform a simple FSGM attack to a convolutional neural network. The code for the CNN works correctly, and the model is saved without a problem, but when i try to perform the attack an error is shown.
HERE'S THE CODE FOR THE CNN
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, MaxPooling2D
import matplotlib.pyplot as plt
from keras.datasets import mnist
from keras.utils import to_categorical
import json
import tensorflow as tf
#Using TensorFlow backend.
#download mnist data and split into train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
#plot the first image in the dataset
plt.imshow(X_train[0])
#check image shape
X_train[0].shape
#reshape data to fit model
X_train = X_train.reshape(60000,28,28,1)
X_test = X_test.reshape(10000,28,28,1)
#one-hot encode target column
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
y_train[0]
#create model
model = Sequential()
#add model layers
model.add(Conv2D(32, kernel_size=(5,5), activation='relu', input_shape= (28,28,1)))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64, kernel_size=(5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(10, activation='softmax'))
#compile model using accuracy as a measure of model performance
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics= ['accuracy'])
#train model
model.fit(X_train, y_train,validation_data=(X_test, y_test), epochs=5)
json.dump({'model':model.to_json()},open("model.json", "w"))
model.save_weights("model_weights.h5")
THEN I TRY TO PERFORM THE ATTACK WITH THE FOLLOWING CODE:
import json
import foolbox
import keras
import numpy as np
from keras import backend
from keras.models import load_model
from keras.datasets import mnist
from keras.utils import np_utils
from foolbox.attacks import FGSM
from foolbox.criteria import Misclassification
from foolbox.distances import MeanSquaredDistance
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
import numpy as np
import tensorflow as tf
from keras.models import model_from_json
import os
############## Loading the model and preprocessing #####################
backend.set_learning_phase(False)
model = tf.keras.models.model_from_json(json.load(open("model.json"))["model"],custom_objects={})
model.load_weights("model_weights.h5")
fmodel = foolbox.models.KerasModel(model, bounds=(0,1))
_,(images, labels) = mnist.load_data()
images = images.reshape(10000,28,28)
images= images.astype('float32')
images /= 255
######################### Attacking the model ##########################
attack=foolbox.attacks.FGSM(fmodel, criterion=Misclassification())
adversarial=attack(images[12],labels[12]) # for single image
adversarial_all=attack(images,labels) # for all the images
adversarial =adversarial.reshape(1,28,28,1) #reshaping it for model prediction
model_predictions = model.predict(adversarial)
print(model_predictions)
########################## Visualization ################################
images=images.reshape(10000,28,28)
adversarial =adversarial.reshape(28,28)
plt.figure()
plt.subplot(1,3,1)
plt.title('Original')
plt.imshow(images[12])
plt.axis('off')
plt.subplot(1, 3, 2)
plt.title('Adversarial')
plt.imshow(adversarial)
plt.axis('off')
plt.subplot(1, 3, 3)
plt.title('Difference')
difference = adversarial - images[124]
plt.imshow(difference / abs(difference).max() * 0.2 + 0.5)
plt.axis('off')
plt.show()
this error is shown when the adversarial examples are generated:
c_api.TF_GetCode(self.status.status))
InvalidArgumentError: Matrix size-incompatible: In[0]: [1,639232], In[1]: [1024,10]
[[{{node dense_4_5/MatMul}}]]
[[{{node dense_4_5/BiasAdd}}]]
What could it be?
here is my solution.
First of all modify the model code as follows
import tensorflow as tf
import json
# download mnist data and split into train and test sets
(X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data()
# reshape data to fit model
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1)
X_train, X_test = X_train/255, X_test/255
# one-hot encode target column
y_train = tf.keras.utils.to_categorical(y_train)
y_test = tf.keras.utils.to_categorical(y_test)
# create model
model = tf.keras.models.Sequential()
# add model layers
model.add(tf.keras.layers.Conv2D(32, kernel_size=(5, 5),
activation='relu', input_shape=(28, 28, 1)))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(tf.keras.layers.Conv2D(64, kernel_size=(5, 5), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(10, activation='softmax'))
# compile model using accuracy as a measure of model performance
model.compile(optimizer='adam', loss='categorical_crossentropy',
metrics=['accuracy'])
# train model
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5)
json.dump({'model': model.to_json()}, open("model.json", "w"))
model.save_weights("model_weights.h5")
You just forgot to divide each pixel by the maximum value of RGB (255)
As for the attacker code
import json
import foolbox
from foolbox.attacks import FGSM
from foolbox.criteria import Misclassification
import numpy as np
import tensorflow as tf
############## Loading the model and preprocessing #####################
tf.enable_eager_execution()
tf.keras.backend.set_learning_phase(False)
model = tf.keras.models.model_from_json(
json.load(open("model.json"))["model"], custom_objects={})
model.load_weights("model_weights.h5")
model.compile(optimizer='adam', loss='categorical_crossentropy',
metrics=['accuracy'])
_, (images, labels) = tf.keras.datasets.mnist.load_data()
images = images.reshape(images.shape[0], 28, 28, 1)
images = images/255
images = images.astype(np.float32)
fmodel = foolbox.models.TensorFlowEagerModel(model, bounds=(0, 1))
######################### Attacking the model ##########################
attack = foolbox.attacks.FGSM(fmodel, criterion=Misclassification())
adversarial = np.array([attack(images[0], label=labels[0])])
model_predictions = model.predict(adversarial)
print('real label: {}, label prediction; {}'.format(
labels[0], np.argmax(model_predictions)))
I used TensorFlowEagerModel instead of KerasModel for simplicty. The error you were encountering was due to the fact that model.predict expects a 4d matrix while you were passing a 3d matrix, so I just wrapped up the attack to the image example into a numpy array to make it 4d.
Hope it helps

Data reshape with Keras and Jupyter

I'm trying to train a baseline ANN model for a binary classification with Keras (tensorflow backend) and Jupyter notebooks.
The code is the following:
array=df6.values
X= array[:,0:384]
Y = array[:,385]
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
seed = 7
np.random.seed(seed)
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
def create_baseline():
model = Sequential()
model.add(Dense(60, input_dim=60, kernel_initializer='normal', activation='relu'))
model.add(Dense(10, kernel_initializer='normal', activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
estimator = KerasClassifier(build_fn=create_baseline, epochs=100, batch_size=5, verbose=0)
kfold = StratifiedKFold(n_splits=2, shuffle=True, random_state=seed)
results = cross_val_score(estimator, X, encoded_Y, cv=kfold)
print("Baseline: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
Finally the error is the following:
ValueError: Error when checking input: expected dense_5_input to have shape (None, 60) but got array with shape (8, 384)
Also my dataset has 18 rows and 385 columns
I would like to know how to reshape correctly for a correct estimation of results. Thank you so much!
input_dim = 384
This argument refers to the shape of your input, which is X.

How to use hyperopt for hyperparameter optimization of Keras deep learning network?

I want to build a non linear regression model using keras to predict a +ve continuous variable.
For the below model how do I select the following hyperparameters?
Number of Hidden layers and Neurons
Dropout ratio
Use BatchNormalization or not
Activation function out of linear, relu, tanh, sigmoid
Best optimizer to use among adam, rmsprog, sgd
Code
def dnn_reg():
model = Sequential()
#layer 1
model.add(Dense(40, input_dim=13, kernel_initializer='normal'))
model.add(Activation('tanh'))
model.add(Dropout(0.2))
#layer 2
model.add(Dense(30, kernel_initializer='normal'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.4))
#layer 3
model.add(Dense(5, kernel_initializer='normal'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.4))
model.add(Dense(1, kernel_initializer='normal'))
model.add(Activation('relu'))
# Compile model
model.compile(loss='mean_squared_error', optimizer='adam')
return model
I have considered random gridsearch but instead want to use hyperopt which I believe will be faster. I initially implemented the tuning using https://github.com/maxpumperla/hyperas. Hyperas is not working with latest version of keras. I suspect that keras is evolving fast and it's difficult for the maintainer to make it compatible. So I think using hyperopt directly will be a better option.
PS: I am new to bayesian optimization for hyper parameter tuning and hyperopt.
I've had a lot of success with Hyperas. The following are the things I've learned to make it work.
1) Run it as a python script from the terminal (not from an Ipython notebook)
2) Make sure that you do not have any comments in your code (Hyperas doesn't like comments!)
3) Encapsulate your data and model in a function as described in the hyperas readme.
Below is an example of a Hyperas script that worked for me (following the instructions above).
from __future__ import print_function
from hyperopt import Trials, STATUS_OK, tpe
from keras.datasets import mnist
from keras.layers.core import Dense, Dropout, Activation
from keras.models import Sequential
from keras.utils import np_utils
import numpy as np
from hyperas import optim
from keras.models import model_from_json
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD , Adam
import tensorflow as tf
from hyperas.distributions import choice, uniform, conditional
__author__ = 'JOnathan Hilgart'
def data():
"""
Data providing function:
This function is separated from model() so that hyperopt
won't reload data for each evaluation run.
"""
import numpy as np
x = np.load('training_x.npy')
y = np.load('training_y.npy')
x_train = x[:15000,:]
y_train = y[:15000,:]
x_test = x[15000:,:]
y_test = y[15000:,:]
return x_train, y_train, x_test, y_test
def model(x_train, y_train, x_test, y_test):
"""
Model providing function:
Create Keras model with double curly brackets dropped-in as needed.
Return value has to be a valid python dictionary with two customary keys:
- loss: Specify a numeric evaluation metric to be minimized
- status: Just use STATUS_OK and see hyperopt documentation if not feasible
The last one is optional, though recommended, namely:
- model: specify the model just created so that we can later use it again.
"""
model_mlp = Sequential()
model_mlp.add(Dense({{choice([32, 64,126, 256, 512, 1024])}},
activation='relu', input_shape= (2,)))
model_mlp.add(Dropout({{uniform(0, .5)}}))
model_mlp.add(Dense({{choice([32, 64, 126, 256, 512, 1024])}}))
model_mlp.add(Activation({{choice(['relu', 'sigmoid'])}}))
model_mlp.add(Dropout({{uniform(0, .5)}}))
model_mlp.add(Dense({{choice([32, 64, 126, 256, 512, 1024])}}))
model_mlp.add(Activation({{choice(['relu', 'sigmoid'])}}))
model_mlp.add(Dropout({{uniform(0, .5)}}))
model_mlp.add(Dense({{choice([32, 64, 126, 256, 512, 1024])}}))
model_mlp.add(Activation({{choice(['relu', 'sigmoid'])}}))
model_mlp.add(Dropout({{uniform(0, .5)}}))
model_mlp.add(Dense(9))
model_mlp.add(Activation({{choice(['softmax','linear'])}}))
model_mlp.compile(loss={{choice(['categorical_crossentropy','mse'])}}, metrics=['accuracy'],
optimizer={{choice(['rmsprop', 'adam', 'sgd'])}})
model_mlp.fit(x_train, y_train,
batch_size={{choice([16, 32, 64, 128])}},
epochs=50,
verbose=2,
validation_data=(x_test, y_test))
score, acc = model_mlp.evaluate(x_test, y_test, verbose=0)
print('Test accuracy:', acc)
return {'loss': -acc, 'status': STATUS_OK, 'model': model_mlp}
enter code here
if __name__ == '__main__':
import gc; gc.collect()
with K.get_session(): ## TF session
best_run, best_model = optim.minimize(model=model,
data=data,
algo=tpe.suggest,
max_evals=2,
trials=Trials())
X_train, Y_train, X_test, Y_test = data()
print("Evalutation of best performing model:")
print(best_model.evaluate(X_test, Y_test))
print("Best performing model chosen hyper-parameters:")
print(best_run)
it induced by different gc sequence, if python collect session first , the program will exit successfully, if python collect swig memory(tf_session) first, the program exit with failure.
you can force python to del session by:
del session
or if you are using keras, you cant get the session instance, you can run following code at end of your code:
import gc; gc.collect()
This can be also another approach:
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
from sklearn.metrics import roc_auc_score
import sys
X = []
y = []
X_val = []
y_val = []
space = {'choice': hp.choice('num_layers',
[ {'layers':'two', },
{'layers':'three',
'units3': hp.uniform('units3', 64,1024),
'dropout3': hp.uniform('dropout3', .25,.75)}
]),
'units1': hp.uniform('units1', 64,1024),
'units2': hp.uniform('units2', 64,1024),
'dropout1': hp.uniform('dropout1', .25,.75),
'dropout2': hp.uniform('dropout2', .25,.75),
'batch_size' : hp.uniform('batch_size', 28,128),
'nb_epochs' : 100,
'optimizer': hp.choice('optimizer',['adadelta','adam','rmsprop']),
'activation': 'relu'
}
def f_nn(params):
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import Adadelta, Adam, rmsprop
print ('Params testing: ', params)
model = Sequential()
model.add(Dense(output_dim=params['units1'], input_dim = X.shape[1]))
model.add(Activation(params['activation']))
model.add(Dropout(params['dropout1']))
model.add(Dense(output_dim=params['units2'], init = "glorot_uniform"))
model.add(Activation(params['activation']))
model.add(Dropout(params['dropout2']))
if params['choice']['layers']== 'three':
model.add(Dense(output_dim=params['choice']['units3'], init = "glorot_uniform"))
model.add(Activation(params['activation']))
model.add(Dropout(params['choice']['dropout3']))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer=params['optimizer'])
model.fit(X, y, nb_epoch=params['nb_epochs'], batch_size=params['batch_size'], verbose = 0)
pred_auc =model.predict_proba(X_val, batch_size = 128, verbose = 0)
acc = roc_auc_score(y_val, pred_auc)
print('AUC:', acc)
sys.stdout.flush()
return {'loss': -acc, 'status': STATUS_OK}
trials = Trials()
best = fmin(f_nn, space, algo=tpe.suggest, max_evals=50, trials=trials)
print('best: ', best)
Source

Convolutional Neural Net-Keras-val_acc Keyerror 'acc'

I am trying to implement CNN by Theano. I used Keras library. My data set is 55 alphabet images, 28x28.
In the last part I get this error:
train_acc=hist.history['acc']
KeyError: 'acc'
Any help would be much appreciated. Thanks.
This is part of my code:
from keras.models import Sequential
from keras.models import Model
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD, RMSprop, adam
from keras.utils import np_utils
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from urllib.request import urlretrieve
import pickle
import os
import gzip
import numpy as np
import theano
import lasagne
from lasagne import layers
from lasagne.updates import nesterov_momentum
from nolearn.lasagne import NeuralNet
from nolearn.lasagne import visualize
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from PIL import Image
import PIL.Image
#from Image import *
import webbrowser
from numpy import *
from sklearn.utils import shuffle
from sklearn.cross_validation import train_test_split
from tkinter import *
from tkinter.ttk import *
import tkinter
from keras import backend as K
K.set_image_dim_ordering('th')
%%%%%%%%%%
batch_size = 10
# number of output classes
nb_classes = 6
# number of epochs to train
nb_epoch = 5
# input iag dimensions
img_rows, img_clos = 28,28
# number of channels
img_channels = 3
# number of convolutional filters to use
nb_filters = 32
# number of convolutional filters to use
nb_pool = 2
# convolution kernel size
nb_conv = 3
%%%%%%%%
model = Sequential()
model.add(Convolution2D(nb_filters, nb_conv, nb_conv,
border_mode='valid',
input_shape=(1, img_rows, img_clos)))
convout1 = Activation('relu')
model.add(convout1)
model.add(Convolution2D(nb_filters, nb_conv, nb_conv))
convout2 = Activation('relu')
model.add(convout2)
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adadelta')
%%%%%%%%%%%%
hist = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
show_accuracy=True, verbose=1, validation_data=(X_test, Y_test))
hist = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
show_accuracy=True, verbose=1, validation_split=0.2)
%%%%%%%%%%%%%%
train_loss=hist.history['loss']
val_loss=hist.history['val_loss']
train_acc=hist.history['acc']
val_acc=hist.history['val_acc']
xc=range(nb_epoch)
#xc=range(on_epoch_end)
plt.figure(1,figsize=(7,5))
plt.plot(xc,train_loss)
plt.plot(xc,val_loss)
plt.xlabel('num of Epochs')
plt.ylabel('loss')
plt.title('train_loss vs val_loss')
plt.grid(True)
plt.legend(['train','val'])
print (plt.style.available) # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])
plt.figure(2,figsize=(7,5))
plt.plot(xc,train_acc)
plt.plot(xc,val_acc)
plt.xlabel('num of Epochs')
plt.ylabel('accuracy')
plt.title('train_acc vs val_acc')
plt.grid(True)
plt.legend(['train','val'],loc=4)
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])
In a not-so-common case (as I expected after some tensorflow updates), despite choosing metrics=["accuracy"] in the model definitions, I still got the same error.
The solution was: replacing metrics=["acc"] with metrics=["accuracy"] everywhere. In my case, I was unable to plot the parameters of the history of my training. I had to replace
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
to
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
Your log variable will be consistent with the metrics when you compile your model.
For example, the following code
model.compile(loss="mean_squared_error", optimizer=optimizer)
model.fit_generator(gen,epochs=50,callbacks=ModelCheckpoint("model_{acc}.hdf5")])
will gives a KeyError: 'acc' because you didn't set metrics=["accuracy"] in model.compile.
This error also happens when metrics are not matched. For example
model.compile(loss="mean_squared_error",optimizer=optimizer, metrics="binary_accuracy"])
model.fit_generator(gen,epochs=50,callbacks=ModelCheckpoint("model_{acc}.hdf5")])
still gives a KeyError: 'acc' because you set a binary_accuracy metric but asking for accuracy later.
If you change the above code to
model.compile(loss="mean_squared_error",optimizer=optimizer, metrics="binary_accuracy"])
model.fit_generator(gen,epochs=50,callbacks=ModelCheckpoint("model_{binary_accuracy}.hdf5")])
it will work.
You can use print(history.history.keys()) to find out what metrics you have and what they are called. In my case also, it was called "accuracy", not "acc"
In my case switching from
metrics=["accuracy"]
to
metrics=["acc"]
was the solution.
from keras source :
warnings.warn('The "show_accuracy" argument is deprecated, '
'instead you should pass the "accuracy" metric to '
'the model at compile time:\n'
'`model.compile(optimizer, loss, '
'metrics=["accuracy"])`')
The right way to get the accuracy is indeed to compile your model like this:
model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=["accuracy"])
does it work?
Make sure to check this "breaking change":
Metrics and losses are now reported under the exact name specified by the user (e.g. if you pass metrics=['acc'], your metric will be reported under the string "acc", not "accuracy", and inversely metrics=['accuracy'] will be reported under the string "accuracy".
If you are using Tensorflow 2.3 then you can specify like this
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
loss=tf.keras.losses.CategoricalCrossentropy(), metrics=[tf.keras.metrics.CategoricalAccuracy(name="acc")])
In the New version of TensorFlow, some things have changed so we have to replace it with :
acc = history.history['accuracy']
print(history.history.keys())
output--
dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])
so you need to change "acc" to "accuracy" and "val_acc" to "val_accuracy"
For Practice
3.5-classifying-movie-reviews.ipynb
Change
acc = history.history['acc']
val_acc = history.history['val_acc']
To
acc = history.history['binary_accuracy']
val_acc = history.history['val_binary_accuracy']
&
Change
acc_values = history_dict['acc']
val_acc_values = history_dict['val_acc']
To
acc_values = history_dict['binary_accuracy']
val_acc_values = history_dict['val_binary_accuracy']
================
Practice
3.6-classifying-newswires.ipynb
Change
acc = history.history['acc']
val_acc = history.history['val_acc']
To
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

Categories

Resources