How do i set xticks to 'a different interval'
For instance:
plt.plot(1/(np.arange(0.1,3,0.1)))
returns:
If I would like the x axis to be on a scale from 0 to 3, how can i do that? I've tried
plt.xticks([0,1,2])
but that returns:
You want to learn about plt.xlim and adjacent functions. This causes the X axis to have limits (minimum, maximum) that you specify. Otherwise Matplotlib decides for you based on the values you try to plot.
y = 1 / np.arange(0.1,3,0.1)
plt.plot(y)
plt.xlim(0, 3) # minimum 0, maximum 3
plt.show()
Your plot uses only Y values, so the X values are automatically chosen to be 1, 2, 3, ... to pair up with each Y value you provide.
If you desire to determine the X too, you can do that:
x = np.arange(0.1,3,0.1)
y = 1/x
plt.plot(x, y)
plt.xticks([0,1,2,3]) # ticks at those positions, if you don't like the automatic ones
plt.show()
You can use numpy.arange() to get the desired range with a specific step:
import matplotlib.pyplot as plt
import numpy as np
y = 1/(np.arange(0.1,3,0.1))
plt.tight_layout()
plt.plot(y)
plt.xticks(np.arange(0, len(y), 6), [str(round(i, 2)) for i in np.arange(0, 3, (3*6)/len(y))])
plt.show()
Also, you can see more examples of xticks() on the official matplotlib documentation.
I am using matplotlib in Python and want to use the same plot but with several different axes that are all functions of the first one, but that do not linearly depend on the first y value.
As an example, let's assume a plot that shows a simple line y=x.
Now I have a random function like f(y)=5y^2 + 2.
My ideal output graph should now still be a line, but the equidistant ticks should not be y=1, 2, 3, 4, but f(y)=7, 22, 47, 82, so that I can overlay the two graphs with 2 different axes.
Is this even possible, as the distance between the ticks is not even nor can it be expressed in a log plot? Therefore I simply want to put a function on each tick value, without changing the graph nor the ticks' positions.
In a graphics program this would be straightforward, by simply using the same plot and manually rewriting each tick.
https://drive.google.com/file/d/1fp2vrFvlz-9xdJPmqdQjyMQK7gzPX24G/view?usp=sharing
Thank you in advance! The example code is not really helpful, as it is just the standard matplotlib code but the most important scaling part is missing.
I know that I can set the ticks manually with yticks, but this does not solve the scaling problem and all ticks would appear very close together.
plt.plot(["time_max_axis"], ["position_max_axis"])
plt.xlabel("Time (ms)")
plt.ylabel("Max position (mm)")
plt.ylim(0, z0_mm)
plt.show()
plt.plot(["time_max_axis"], ["frequency_axis"])
plt.xlabel("Oscillation frequency (kHz)")
plt.ylabel("Max position (mm)")
plt.ylim(fion_kHz, fion_kHz * (1 + (f_shift4 + f_shift6) / 100))
plt.show()
import matplotlib.pyplot as plt
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)
x = np.arange(50)
y = x/10 + np.random.rand(50)
fig, axs = plt.subplots(1,2, gridspec_kw={'width_ratios': [1, 20]})
plt.subplots_adjust(wspace=0, hspace=0)
axs[1].plot(x, y)
axs[1].plot(x, 2*y)
axs[1].plot(x, 3*y)
axs[1].grid()
axs[1].set_ylim(0)
axs[1].set_xlim(0)
axs[1].set_ylabel('max displacement $z_{max}$ (mm)')
ymin, ymax = axs[1].get_ylim()
majorlocator = ymax // 8 # 8 horizontal grid lines
ytickloc = np.arange(0, int(ymax), majorlocator)
axs[1].yaxis.set_major_locator(MultipleLocator(majorlocator))
ax1 = axs[1].twinx() # ghost axis of axs[1]
ax1.yaxis.set_ticks_position('left')
ax1.set_yticks([ymin, ymax])
ax1.set_yticklabels(['', f'$z_0$ = {round(ymax,2)}'])
axs[0].spines['top'].set_visible(False)
axs[0].spines['right'].set_visible(False)
axs[0].spines['bottom'].set_visible(False)
axs[0].spines['left'].set_visible(False)
axs[0].set_xticks([])
axs[0].set_yticks(ytickloc)
ytick2 = 5 * ytickloc**2 + 2 # f = 5y^2 + 2
ytick2 = list(ytick2)
ymin2 = ytick2[0]
ytick2[0] = ''
axs[0].set_yticklabels(ytick2)
axs[0].set_ylim(ymin, ymax)
axs[0].set_ylim(0)
axs[0].set_ylabel('Oscillation frequency $f_{osc}$ (kHz)')
ymax2 = 5 * ymax**2 + 2 # f = 5y^2 + 2
ax0 = axs[0].twinx() # ghost axis of axs[0]
ax0.yaxis.set_ticks_position('left')
ax0.spines['top'].set_visible(False)
ax0.spines['right'].set_visible(False)
ax0.spines['bottom'].set_visible(False)
ax0.spines['left'].set_visible(False)
ax0.set_yticks([ymin, ymax])
ax0.set_yticklabels([f'$\\bf{{f_{{ion}}}} = {round(ymin2, 2)}$', f'$f_{{max}}$ = {round(ymax2,2)}'])
plt.tight_layout()
Output:
I would like to calculate several functions including ln(x) on an interval going from 1 to 10. However, I would like to plot on an interval of x ranging from x[-1, 10].
So far, I could not modify the ticks as I want, the labels are following the size of my ln(x) rather than the value of x itself:
axiss = np.linspace(-1,10,12)
x = np.linspace(-1, 10, 1002)
s = int(np.where(x == 1)[0])
fig, ax = plt.subplots()
ax.plot(np.log(x[s:-1]), label='ln(x)')
ax.plot(1/x[s:-1], label='1/x')
ax.plot(-1/(x[s:-1]**2), label='-1/x2')
ax.plot(2/(x[s:-1]**3), label='2/x3')
ax.legend()
ax.set_xlim(-100, 1000)
ax.set_xticklabels(axiss)
How could I do to define a range for my x-axis, but only calculate the functions on a part of it ?
I tried:
ax.plot(x, np.log(x[s:-1]), label='ln(x)')
but of course I have a length issue.
Thank you !
ps: yes I already searched online for ways to do it, asking here is the last resort that I have
You can explicity give both x and y lists to matplotlib. This also avoids the need to set the xtick labels manually.
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-1, 10, 1001) # don't divide by 0.0
x_for_ln = np.linspace(0.001, 10, 1001)
fig, ax = plt.subplots()
ax.plot(x_for_ln, np.log(x_for_ln), label='ln(x)')
ax.plot(x, 1/x, label='1/x')
ax.plot(x, -1/(x**2), label='-1/x2')
ax.plot(x, 2/(x**3), label='2/x3')
ax.legend()
ax.set_ylim(-10, 10)
is this possible?
I have a barchart representing the difference between two dataframe columns divided by the original dataframe column
difference = (df - full_df)/full_df
I then plot the difference
difference.plot(kind='barh',color = ['r' if x > 0 else 'b' for x in difference.values]).\
set_yticklabels([str(tick)[:45] for tick in difference.index])
plt.xticks(fontsize=20)
plt.gca().set_title('Selected minus full feature set averages divided by full', fontsize=30)
axs[1].yaxis.tick_right()
axs[1].yaxis.grid(color='gray', linestyle='dashed')
axs[1].xaxis.grid(color='gray', linestyle='dashed')
plt.yticks(fontsize=23)
plt.tight_layout()
Most the positive x numbers are going to be in the range of 0 < x < 10. All of the negative numbers should between -1 < x < 0. Is there a way to set the xtick intervals below zero to .1 (or something like that) and the xtick intervals above 0 to 1 so the x axis would look like:
[-1,-.9,-.8,-.7,-.6,-.5,-.4,-.3,-.2,-.1,0,1,2,3,4,5,6,7,8,9, to inf] ?
I may not understand your question correctly, but I think are looking for a plot with negative x and positive x on different scales, but taking up the same amount of space. I think the easiest solution would be to scale your x negative axis data so that it fits well with the y axis data and then relabel the ticks on their original scale.
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
# original data
data_x = x = [-1,-.9,-.8,-.7,-.6,-.5,-.4,-.3,-.2,-.1,0,1,2,3,4,5,6,7,8,9,]
data_y = y = range(len(data_x))
# scale negative x values
x_mod =[i*10 if i < 0 else i for i in x]
# draw plots
with sns.axes_style('whitegrid'):
fig, ax = plt.subplots(2,1,figsize=(5,8))
# unscaled
ax1 = ax[0]
ax2 = ax[1]
ax1.plot(data_x, data_y)
ax1.vlines(0, 0, 20, color='black') # mark x = 0
ax1.set_title('unscaled data')
# scaled
ax2.plot(x_mod, data_y)
# fix the xticks and their labeling
xticks = list(np.concatenate([np.arange(-1,0, 0.2),np.arange(0,11,2)]))
xtick_locs = list(np.concatenate([np.arange(-1,0, 0.2) *10, np.arange(0,11,2)]))
ax2.set(xticks=xtick_locs, xticklabels = xticks)
ax2.vlines(0, 0, 20, color='black')
ax2.set_title('scaled data')
I am trying to fix how python plots my data.
Say:
x = [0,5,9,10,15]
y = [0,1,2,3,4]
matplotlib.pyplot.plot(x,y)
matplotlib.pyplot.show()
The x axis' ticks are plotted in intervals of 5. Is there a way to make it show intervals of 1?
You could explicitly set where you want to tick marks with plt.xticks:
plt.xticks(np.arange(min(x), max(x)+1, 1.0))
For example,
import numpy as np
import matplotlib.pyplot as plt
x = [0,5,9,10,15]
y = [0,1,2,3,4]
plt.plot(x,y)
plt.xticks(np.arange(min(x), max(x)+1, 1.0))
plt.show()
(np.arange was used rather than Python's range function just in case min(x) and max(x) are floats instead of ints.)
The plt.plot (or ax.plot) function will automatically set default x and y limits. If you wish to keep those limits, and just change the stepsize of the tick marks, then you could use ax.get_xlim() to discover what limits Matplotlib has already set.
start, end = ax.get_xlim()
ax.xaxis.set_ticks(np.arange(start, end, stepsize))
The default tick formatter should do a decent job rounding the tick values to a sensible number of significant digits. However, if you wish to have more control over the format, you can define your own formatter. For example,
ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f'))
Here's a runnable example:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
x = [0,5,9,10,15]
y = [0,1,2,3,4]
fig, ax = plt.subplots()
ax.plot(x,y)
start, end = ax.get_xlim()
ax.xaxis.set_ticks(np.arange(start, end, 0.712123))
ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f'))
plt.show()
Another approach is to set the axis locator:
import matplotlib.ticker as plticker
loc = plticker.MultipleLocator(base=1.0) # this locator puts ticks at regular intervals
ax.xaxis.set_major_locator(loc)
There are several different types of locator depending upon your needs.
Here is a full example:
import matplotlib.pyplot as plt
import matplotlib.ticker as plticker
x = [0,5,9,10,15]
y = [0,1,2,3,4]
fig, ax = plt.subplots()
ax.plot(x,y)
loc = plticker.MultipleLocator(base=1.0) # this locator puts ticks at regular intervals
ax.xaxis.set_major_locator(loc)
plt.show()
I like this solution (from the Matplotlib Plotting Cookbook):
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
x = [0,5,9,10,15]
y = [0,1,2,3,4]
tick_spacing = 1
fig, ax = plt.subplots(1,1)
ax.plot(x,y)
ax.xaxis.set_major_locator(ticker.MultipleLocator(tick_spacing))
plt.show()
This solution give you explicit control of the tick spacing via the number given to ticker.MultipleLocater(), allows automatic limit determination, and is easy to read later.
In case anyone is interested in a general one-liner, simply get the current ticks and use it to set the new ticks by sampling every other tick.
ax.set_xticks(ax.get_xticks()[::2])
if you just want to set the spacing a simple one liner with minimal boilerplate:
plt.gca().xaxis.set_major_locator(plt.MultipleLocator(1))
also works easily for minor ticks:
plt.gca().xaxis.set_minor_locator(plt.MultipleLocator(1))
a bit of a mouthfull, but pretty compact
This is a bit hacky, but by far the cleanest/easiest to understand example that I've found to do this. It's from an answer on SO here:
Cleanest way to hide every nth tick label in matplotlib colorbar?
for label in ax.get_xticklabels()[::2]:
label.set_visible(False)
Then you can loop over the labels setting them to visible or not depending on the density you want.
edit: note that sometimes matplotlib sets labels == '', so it might look like a label is not present, when in fact it is and just isn't displaying anything. To make sure you're looping through actual visible labels, you could try:
visible_labels = [lab for lab in ax.get_xticklabels() if lab.get_visible() is True and lab.get_text() != '']
plt.setp(visible_labels[::2], visible=False)
This is an old topic, but I stumble over this every now and then and made this function. It's very convenient:
import matplotlib.pyplot as pp
import numpy as np
def resadjust(ax, xres=None, yres=None):
"""
Send in an axis and I fix the resolution as desired.
"""
if xres:
start, stop = ax.get_xlim()
ticks = np.arange(start, stop + xres, xres)
ax.set_xticks(ticks)
if yres:
start, stop = ax.get_ylim()
ticks = np.arange(start, stop + yres, yres)
ax.set_yticks(ticks)
One caveat of controlling the ticks like this is that one does no longer enjoy the interactive automagic updating of max scale after an added line. Then do
gca().set_ylim(top=new_top) # for example
and run the resadjust function again.
I developed an inelegant solution. Consider that we have the X axis and also a list of labels for each point in X.
Example:
import matplotlib.pyplot as plt
x = [0,1,2,3,4,5]
y = [10,20,15,18,7,19]
xlabels = ['jan','feb','mar','apr','may','jun']
Let's say that I want to show ticks labels only for 'feb' and 'jun'
xlabelsnew = []
for i in xlabels:
if i not in ['feb','jun']:
i = ' '
xlabelsnew.append(i)
else:
xlabelsnew.append(i)
Good, now we have a fake list of labels. First, we plotted the original version.
plt.plot(x,y)
plt.xticks(range(0,len(x)),xlabels,rotation=45)
plt.show()
Now, the modified version.
plt.plot(x,y)
plt.xticks(range(0,len(x)),xlabelsnew,rotation=45)
plt.show()
Pure Python Implementation
Below's a pure python implementation of the desired functionality that handles any numeric series (int or float) with positive, negative, or mixed values and allows for the user to specify the desired step size:
import math
def computeTicks (x, step = 5):
"""
Computes domain with given step encompassing series x
# params
x - Required - A list-like object of integers or floats
step - Optional - Tick frequency
"""
xMax, xMin = math.ceil(max(x)), math.floor(min(x))
dMax, dMin = xMax + abs((xMax % step) - step) + (step if (xMax % step != 0) else 0), xMin - abs((xMin % step))
return range(dMin, dMax, step)
Sample Output
# Negative to Positive
series = [-2, 18, 24, 29, 43]
print(list(computeTicks(series)))
[-5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
# Negative to 0
series = [-30, -14, -10, -9, -3, 0]
print(list(computeTicks(series)))
[-30, -25, -20, -15, -10, -5, 0]
# 0 to Positive
series = [19, 23, 24, 27]
print(list(computeTicks(series)))
[15, 20, 25, 30]
# Floats
series = [1.8, 12.0, 21.2]
print(list(computeTicks(series)))
[0, 5, 10, 15, 20, 25]
# Step – 100
series = [118.3, 293.2, 768.1]
print(list(computeTicks(series, step = 100)))
[100, 200, 300, 400, 500, 600, 700, 800]
Sample Usage
import matplotlib.pyplot as plt
x = [0,5,9,10,15]
y = [0,1,2,3,4]
plt.plot(x,y)
plt.xticks(computeTicks(x))
plt.show()
Notice the x-axis has integer values all evenly spaced by 5, whereas the y-axis has a different interval (the matplotlib default behavior, because the ticks weren't specified).
Generalisable one liner, with only Numpy imported:
ax.set_xticks(np.arange(min(x),max(x),1))
Set in the context of the question:
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
x = [0,5,9,10,15]
y = [0,1,2,3,4]
ax.plot(x,y)
ax.set_xticks(np.arange(min(x),max(x),1))
plt.show()
How it works:
fig, ax = plt.subplots() gives the ax object which contains the axes.
np.arange(min(x),max(x),1) gives an array of interval 1 from the min of x to the max of x. This is the new x ticks that we want.
ax.set_xticks() changes the ticks on the ax object.
xmarks=[i for i in range(1,length+1,1)]
plt.xticks(xmarks)
This worked for me
if you want ticks between [1,5] (1 and 5 inclusive) then replace
length = 5
Since None of the above solutions worked for my usecase, here I provide a solution using None (pun!) which can be adapted to a wide variety of scenarios.
Here is a sample piece of code that produces cluttered ticks on both X and Y axes.
# Note the super cluttered ticks on both X and Y axis.
# inputs
x = np.arange(1, 101)
y = x * np.log(x)
fig = plt.figure() # create figure
ax = fig.add_subplot(111)
ax.plot(x, y)
ax.set_xticks(x) # set xtick values
ax.set_yticks(y) # set ytick values
plt.show()
Now, we clean up the clutter with a new plot that shows only a sparse set of values on both x and y axes as ticks.
# inputs
x = np.arange(1, 101)
y = x * np.log(x)
fig = plt.figure() # create figure
ax = fig.add_subplot(111)
ax.plot(x, y)
ax.set_xticks(x)
ax.set_yticks(y)
# which values need to be shown?
# here, we show every third value from `x` and `y`
show_every = 3
sparse_xticks = [None] * x.shape[0]
sparse_xticks[::show_every] = x[::show_every]
sparse_yticks = [None] * y.shape[0]
sparse_yticks[::show_every] = y[::show_every]
ax.set_xticklabels(sparse_xticks, fontsize=6) # set sparse xtick values
ax.set_yticklabels(sparse_yticks, fontsize=6) # set sparse ytick values
plt.show()
Depending on the usecase, one can adapt the above code simply by changing show_every and using that for sampling tick values for X or Y or both the axes.
If this stepsize based solution doesn't fit, then one can also populate the values of sparse_xticks or sparse_yticks at irregular intervals, if that is what is desired.
You can loop through labels and show or hide those you want:
for i, label in enumerate(ax.get_xticklabels()):
if i % interval != 0:
label.set_visible(False)