How to find initial guess for leastsq function in Python? - python

I have a dataset for which I need to fit the plot. I am using leastsq() for fitting. However, currently I need to give initial guess values manually which is really affecting the fitting. Is there any way to first calculate the initial guess values which I can pass in leastsq()?

No, you can't really calculate an initial guess.
You'll just have to make an educated guess, and that really depends on your data and model.
If the initial guess affects the fitting, there is likely something else going on; you're probably getting stuck in local minima. Your model may be too complex, or your data range may be so large that you run into floating point precision limits and the fitting algorithm can't detect any changes for parameter changes. The latter can often be avoided by normalizing your data (and model), or, for example, using log(-log) space instead of linear space.
Or avoid leastsq altogether, and use a different minimization method (which will likely be much slower, but may produce overall better and more consistent results), such as the Nelder-Mead amoebe method.

Related

Approximate maximum of an unknown curve

I have a data set that looks like this:
I used the scipy.signal.find_peaks function to determine the peaks of the data set, and it works out fine enough, but since this function determines the local maxima of the data, it is not neglecting the noise in the data which causes overshoot. Therefore what I'm determining isn't actually the location of the most likely maxima, but rather the location of an 'outlier'.
Is there another, more exact way to approximate the local maxima?
I'm not sure that you can consider those points to be outliers so easily, as they look to be close to the place I would expect them to be. But if you don't think they are a valid approximation let me tell you three other ways you can use.
First option
I would construct a physical model of these peaks (a mathematical formula) and do a fitting analysis around the peaks. You can for instance, suppose that the shape of the plot is the sum of some background model (maybe constant or maybe more complicated) plus some Gaussian peaks (or Lorentzian).
This is what we usually do in physics. Of course it will be more accurate taking knowledge from the underlying processes, which I don't have.
Having a good model, this way is definitely better as taking the maximum values, as even if they are not outliers, they still have errors which you want to reduce.
Second option
But if you want a easier way, just a rough estimation and you already found the location of the three peaks programmatically, you can make the average of a few points around the maximum. If you do it so, the function np.where or np.argwhere tend to be useful for this kind of things.
Third option
The easiest option is taking the value by hand. It could sound unacceptable for academic proposes and it probably is. Even worst, it is not a programmatic way, and this is SO. But at the end, it depends on why and for what you need those values and on the confidence interval you need for your measurement.

How can I statistically compare a lightcurve data set with the simulated lightcurve?

With python I want to compare a simulated light curve with the real light curve. It should be mentioned that the measured data contain gaps and outliers and the time steps are not constant. The model, however, contains constant time steps.
In a first step I would like to compare with a statistical method how similar the two light curves are. Which method is best suited for this?
In a second step I would like to fit the model to my measurement data. However, the model data is not calculated in Python but in an independent software. Basically, the model data depends on four parameters, all of which are limited to a certain range, which I am currently feeding mannualy to the software (planned is automatic).
What is the best method to create a suitable fit?
A "Brute-Force-Fit" is currently an option that comes to my mind.
This link "https://imgur.com/a/zZ5xoqB" provides three different plots. The simulated lightcurve, the actual measurement and lastly both together. The simulation is not good, but by playing with the parameters one can get an acceptable result. Which means the phase and period are the same, magnitude is in the same order and even the specular flashes should occur at the same period.
If I understand this correctly, you're asking a more foundational question that could be better answered in https://datascience.stackexchange.com/, rather than something specific to Python.
That said, as a data science layperson, this may be a problem suited for gradient descent with a mean-square-error cost function. You initialize the parameters of the curve (possibly randomly), then calculate the square error at your known points.
Then you make tiny changes to each parameter in turn, and calculate how the cost function is affected. Then you change all the parameters (by a tiny amount) in the direction that decreases the cost function. Repeat this until the parameters stop changing.
(Note that this might trap you in a local minimum and not work.)
More information: https://towardsdatascience.com/implement-gradient-descent-in-python-9b93ed7108d1
Edit: I overlooked this part
The simulation is not good, but by playing with the parameters one can get an acceptable result. Which means the phase and period are the same, magnitude is in the same order and even the specular flashes should occur at the same period.
Is the simulated curve just a sum of sine waves, and are the parameters just phase/period/amplitude of each? In this case what you're looking for is the Fourier transform of your signal, which is very easy to calculate with numpy: https://docs.scipy.org/doc/scipy/reference/tutorial/fftpack.html

Fitting with monte carlo in python

I use a python package called emcee to fit a function to some data points. The fit looks great, but when I want to plot the value of each parameter at each step I get this:
In their example (with a different function and data points) they get this:
Why is my function converging so fast, and why does it have that weird shape in the beginning. I apply MCMC using likelihood and posterior probability. And even if the fit looks very good, the error on parameters of function are very small (10^10 smaller than the actual value) and I think it is because of the random walks. Any idea how to fix it? Here is their code for fitting: http://dan.iel.fm/emcee/current/user/line/ I used the same code with the obvious modifications for my data points and fitting function.
I would not say that your function is converging faster than the emcee line-fitting example you're linked to. In the example, the walkers start exploring the most likely values in the parameter space almost immediately, whereas in your case it takes more than 200 iterations to reach the high probability region.
The jump in your trace plots looks like a burn-in. It is a common feature of MCMC sampling algorithms where your walkers are given starting points away from the bulk of the posterior and then must find their way to it. It looks like in your case the likelihood function is fairly smooth so you only need a hundred or so iterations to achieve this, giving your function this "weird shape" you're talking about.
If you can constrain the starting points better, do so; if not, you might consider discarding this initial length before further analysis is made (see here and here for discussions on burn in lengths).
As for whether the errors are realistic or not, you need to inspect the resulting posterior models for that, because the ratio of the actual parameter value to its uncertainties does not have a say in this. For example, if we take your linked example and change the true value of b to 10^10, the resulting errors will be ten magnitudes smaller while remaining perfectly valid.

Python - trying to perform a more robust linear fit

I have this data that I fit a linear function to and the fit determines other work (never mind, not important). I'm using numpy.polyfit, and when I simply include the data and the degree of the fit, nothing else, it produces this plot:
Now, the fit is okay, but the general consensus is the line of best fit is being skewed by those red data points above it and I should actually be fitting to the data just below it which forms a nice linear shape (beginning around that congested blob of blue points). So I attempted to add a weighting to my call to polyfit, and I chose an arbitrary weighting of 1/sqrt(y-values), so basically the smaller y-values will be weighted towards more favourably. This gave the following:
Which admittedly is better but I'm still unsatisfied, as now it appears the line is too low. I would ideally like a middle-ground, but since I chose really an arbitrary weighting, I was wondering if in general there is a way to perform a more robust fit using Python, or even if this can be done using polyfit? Using a separate package if it works will be fine too.
This question doesn't really have much to do with programming or python and more to do with statistics or linear algebra.
You could try seeing the error difference between a best fit line or best fit quadratic see which has less error. But a lot of it is context related.
If you have 500 data points, then you could find a 500th order polynomial to model your dataset with zero error. But if you weight your data points then it needs to make sense for the data.
If you want your best fit line to "look right" then just cut the foreplay and draw it where you want it. If you want it to make sense then ask a mathematician for a formula that makes sense then follow it.
statsmodels has robust linear estimators, RLM, with various weight functions that should work well in cases like this.
http://www.statsmodels.org/dev/generated/statsmodels.robust.robust_linear_model.RLM.html
http://www.statsmodels.org/dev/examples/index.html#robust
These are M-estimators that are robust to "y outliers", but not to "x outliers" that are influential outlying regressors.

Parallel many dimensional optimization

I am building a script that generates input data [parameters] for another program to calculate. I would like to optimize the resulting data. Previously I have been using the numpy powell optimization. The psuedo code looks something like this.
def value(param):
run_program(param)
#Parse output
return value
scipy.optimize.fmin_powell(value,param)
This works great; however, it is incredibly slow as each iteration of the program can take days to run. What I would like to do is coarse grain parallelize this. So instead of running a single iteration at a time it would run (number of parameters)*2 at a time. For example:
Initial guess: param=[1,2,3,4,5]
#Modify guess by plus minus another matrix that is changeable at each iteration
jump=[1,1,1,1,1]
#Modify each variable plus/minus jump.
for num,a in enumerate(param):
new_param1=param[:]
new_param1[num]=new_param1[num]+jump[num]
run_program(new_param1)
new_param2=param[:]
new_param2[num]=new_param2[num]-jump[num]
run_program(new_param2)
#Wait until all programs are complete -> Parse Output
Output=[[value,param],...]
#Create new guess
#Repeat
Number of variable can range from 3-12 so something such as this could potentially speed up the code from taking a year down to a week. All variables are dependent on each other and I am only looking for local minima from the initial guess. I have started an implementation using hessian matrices; however, that is quite involved. Is there anything out there that either does this, is there a simpler way, or any suggestions to get started?
So the primary question is the following:
Is there an algorithm that takes a starting guess, generates multiple guesses, then uses those multiple guesses to create a new guess, and repeats until a threshold is found. Only analytic derivatives are available. What is a good way of going about this, is there something built already that does this, is there other options?
Thank you for your time.
As a small update I do have this working by calculating simple parabolas through the three points of each dimension and then using the minima as the next guess. This seems to work decently, but is not optimal. I am still looking for additional options.
Current best implementation is parallelizing the inner loop of powell's method.
Thank you everyone for your comments. Unfortunately it looks like there is simply not a concise answer to this particular problem. If I get around to implementing something that does this I will paste it here; however, as the project is not particularly important or the need of results pressing I will likely be content letting it take up a node for awhile.
I had the same problem while I was in the university, we had a fortran algorithm to calculate the efficiency of an engine based on a group of variables. At the time we use modeFRONTIER and if I recall correctly, none of the algorithms were able to generate multiple guesses.
The normal approach would be to have a DOE and there where some algorithms to generate the DOE to best fit your problem. After that we would run the single DOE entries parallely and an algorithm would "watch" the development of the optimizations showing the current best design.
Side note: If you don't have a cluster and needs more computing power HTCondor may help you.
Are derivatives of your goal function available? If yes, you can use gradient descent (old, slow but reliable) or conjugate gradient. If not, you can approximate the derivatives using finite differences and still use these methods. I think in general, if using finite difference approximations to the derivatives, you are much better off using conjugate gradients rather than Newton's method.
A more modern method is SPSA which is a stochastic method and doesn't require derivatives. SPSA requires much fewer evaluations of the goal function for the same rate of convergence than the finite difference approximation to conjugate gradients, for somewhat well-behaved problems.
There are two ways of estimating gradients, one easily parallelizable, one not:
around a single point, e.g. (f( x + h directioni ) - f(x)) / h;
this is easily parallelizable up to Ndim
"walking" gradient: walk from x0 in direction e0 to x1,
then from x1 in direction e1 to x2 ...;
this is sequential.
Minimizers that use gradients are highly developed, powerful, converge quadratically (on smooth enough functions).
The user-supplied gradient function
can of course be a parallel-gradient-estimator.
A few minimizers use "walking" gradients, among them Powell's method,
see Numerical Recipes p. 509.
So I'm confused: how do you parallelize its inner loop ?
I'd suggest scipy fmin_tnc
with a parallel-gradient-estimator, maybe using central, not one-sided, differences.
(Fwiw,
this
compares some of the scipy no-derivative optimizers on two 10-d functions; ymmv.)
I think what you want to do is use the threading capabilities built-in python.
Provided you your working function has more or less the same run-time whatever the params, it would be efficient.
Create 8 threads in a pool, run 8 instances of your function, get 8 result, run your optimisation algo to change the params with 8 results, repeat.... profit ?
If I haven't gotten wrong what you are asking, you are trying to minimize your function one parameter at the time.
you can obtain it by creating a set of function of a single argument, where for each function you freeze all the arguments except one.
Then you go on a loop optimizing each variable and updating the partial solution.
This method can speed up by a great deal function of many parameters where the energy landscape is not too complex (the dependency between the parameters is not too strong).
given a function
energy(*args) -> value
you create the guess and the function:
guess = [1,1,1,1]
funcs = [ lambda x,i=i: energy( guess[:i]+[x]+guess[i+1:] ) for i in range(len(guess)) ]
than you put them in a while cycle for the optimization
while convergence_condition:
for func in funcs:
optimize fot func
update the guess
check for convergence
This is a very simple yet effective method of simplify your minimization task. I can't really recall how this method is called, but A close look to the wikipedia entry on minimization should do the trick.
You could do parallel at two parts: 1) parallel the calculation of single iteration or 2) parallel start N initial guessing.
On 2) you need a job controller to control the N initial guess discovery threads.
Please add an extra output on your program: "lower bound" that indicates the output values of current input parameter's decents wont lower than this lower bound.
The initial N guessing thread can compete with each other; if any one thread's lower bound is higher than existing thread's current value, then this thread can be dropped by your job controller.
Parallelizing local optimizers is intrinsically limited: they start from a single initial point and try to work downhill, so later points depend on the values of previous evaluations. Nevertheless there are some avenues where a modest amount of parallelization can be added.
As another answer points out, if you need to evaluate your derivative using a finite-difference method, preferably with an adaptive step size, this may require many function evaluations, but the derivative with respect to each variable may be independent; you could maybe get a speedup by a factor of twice the number of dimensions of your problem. If you've got more processors than you know what to do with, you can use higher-order-accurate gradient formulae that require more (parallel) evaluations.
Some algorithms, at certain stages, use finite differences to estimate the Hessian matrix; this requires about half the square of the number of dimensions of your matrix, and all can be done in parallel.
Some algorithms may also be able to use more parallelism at a modest algorithmic cost. For example, quasi-Newton methods try to build an approximation of the Hessian matrix, often updating this by evaluating a gradient. They then take a step towards the minimum and evaluate a new gradient to update the Hessian. If you've got enough processors so that evaluating a Hessian is as fast as evaluating the function once, you could probably improve these by evaluating the Hessian at every step.
As far as implementations go, I'm afraid you're somewhat out of luck. There are a number of clever and/or well-tested implementations out there, but they're all, as far as I know, single-threaded. Your best bet is to use an algorithm that requires a gradient and compute your own in parallel. It's not that hard to write an adaptive one that runs in parallel and chooses sensible step sizes for its numerical derivatives.

Categories

Resources