Matplotlib doesn't forget previous data when saving figures with savefig - python

import matplotlib.pyplot as plt
plt.plot([1,2,3],[1,2,3],'ro')
plt.axis([-4,4,-4,4])
plt.savefig('azul.png')
plt.plot([0,1,2],[0,0,0],'ro')
plt.axis([-4,4,-4,4])
plt.savefig('amarillo.png')
Output:
Why does this happen and how to solve?

What you see is a completely expected behaviour. You can plot as many data as often as you want to the same figure, which is very often very useful.
If you want to create several figures in the same script using the matplotlib state machine, you need to first close one figure before generating the next.
So in this very simple case, just add plt.close() between figure creation.
import matplotlib.pyplot as plt
plt.plot([1,2,3],[1,2,3],'bo')
plt.axis([-4,4,-4,4])
plt.savefig('azul.png')
plt.close()
plt.plot([0,1,2],[0,0,0],'yo')
plt.axis([-4,4,-4,4])
plt.savefig('amarillo.png')

Related

Jupyter and %matplotlib inline lost axis

I am having a really weird issue with using the %matplotlib inline code in my jupyter notebook for plotting graphs using both pyplot and the pandas plotting function.
The problem is they show up without any axes, and basically just show the graph area without anything aside from data points.
I found adding:
import matplotlib as mpl
mpl.rcParams.update(mpl.rcParamsDefault)
reverse it, but I find it odd that should do that every time as the effect disappears as soon as I run %matplotlib inlinecommand.
an example could be
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.scatter(A,A)
plt.tight_layout()
plt.xlabel('here')
plt.show()
This would generate the graph below:
Weird enough if I uses the savefig it get plotted with the axis, if I uses the right-click -> new output -> save as figure, I also get the graph with the figures !!
like this:
Can anyone help me understand what is wrong, which global setting did I mess up, and how do I revert it?
(I don't remember messing around with any settings aside from some settings for pandas, but don't think they should have had an impact)
as mentioned running mpl.rcParams.update(mpl.rcParamsDefault) command does bring it back to normal until I run %matplotlib inline` again !!
Any help would be much appreciated.
Okay I am sorry I think I can answer the question myself now.
With the helpfull #Mr. T asking for the imgur link made me realize what was going on. I had starting using the dark jupyter lab theme, and the graph would generate plots with transparent background, ie. the text and lines where there, but I just couldn't see them.
The trick is to change the background color preferably globally, but that will be a task for tomorrow.

Incorrect backend configuration with macosx in (old) matplotlib: plt.ion different from savefig, here overwritten alpha keyword

I am using interactive python with plt.ion() for generating figures (v2.7) and have noticed that the figure looks different from the figure exported by savefig (this is not a DPI issue (cf. matplotlib savefig() plots different from show()) - I think it might be a backend issue, but would appreciate help as I don't understand this properly).
Specifically, I wanted visualise the importance of a series of points by the intensity of their colour, which I thought I could do with the "alpha" keyword in matplotlib.
When I just do this, this works fine,
but when I want to add a line to the figure, the alpha keyword seemed to not work any more, and plt.ion() shows this:
I initially thought that perhaps the following issue on github may be related:
https://github.com/matplotlib/matplotlib/issues/4580
but then I noticed that exporting the figure actually produced the following file (i.e. as desired):
It would be great to understand a bit better what is going on, and how I can avoid such issues in the future. Is plt.ion()/plt.show() not the best way to show figures in interactive python, or is this an issue with the alpha keyword?
The code is here:
import numpy as np
from numpy import random as random
from matplotlib import pyplot as plt
fig2,ax2=plt.subplots(1,1,figsize=(3,3),sharey=True)
for ii in range(1):
ax2.plot(np.linspace(0,200,200), [0.1]*200, c= 'k')
for i in range(200):
test2=random.randint(5)
ydata= random.rand(test2)
test = random.rand(test2)
for j in range(test2):
ax2.plot(i,ydata[j],'o',ms=4, c= 'Darkblue',alpha=test[j],markeredgecolor='None')

Reproducing default plot behaviour of pandas.DataFrame.plot

As a frequent user of pandas, I often want to plot my data.
Using the df.plot() is very convenient, and I like the layout it gives me.
I often have the problem that when I show the generated graph to someone else, they like it, but want some tiny changes.
This often digresses into me trying to recreate the exact graph in matplotlib, which turns into a couple of hundred rows of code and it still does not work quite the same way as the df.plot()
Is there a way to get the settings for the default plotting behaviour from pandas and just ad something to the plot?
Example:
df = pd.DataFrame([1,2,3,6],index=[15,16,17,18], columns=['values'])
df.plot(kind='bar')
This little piece of code makes this pretty graph:
Trying to recreate this with matplotlib turns into a few hours of digging through documentation and still not comming up with quite the right solution.
Not to mention how many lines of configuration code it is.
import matplotlib.pyplot as plt
import matplotlib.ticker as plticker
import matplotlib.patches as mpatches
fig, ax1 = plt.subplots()
ax1.bar(df.index, df['values'], 0.4, align='center')
loc = plticker.MultipleLocator(base=1.0)
ax1.xaxis.set_major_locator(loc)
ax1.xaxis.set_ticklabels(["","15", "16", "17", "18"])
plt.show()
TLDR;
How can I easily copy the behaviour of df.plot() and extend it, without having to recreate everything manually?

Matplotlib - Tcl_AsyncDelete: async handler deleted by the wrong thread?

I'm asking this question because I can't solve one problem in Python/Django (actually in pure Python it's ok) which leads to RuntimeError: tcl_asyncdelete async handler deleted by the wrong thread. This is somehow related to the way how I render matplotlib plots in Django. The way I do it is:
...
import matplotlib.pyplot as plt
...
fig = plt.figure()
...
plt.close()
I extremely minimized my code. But the catch is - even if I have just one line of code:
fig = plt.figure()
I see this RuntimeError happening. I hope I could solve the problem, If I knew the correct way of closing/cleaning/destroying plots in Python/Django.
By default matplotlib uses TK gui toolkit, when you're rendering an image without using the toolkit (i.e. into a file or a string), matplotlib still instantiates a window that doesn't get displayed, causing all kinds of problems. In order to avoid that, you should use an Agg backend. It can be activated like so --
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot
For more information please refer to matplotlib documentation -- http://matplotlib.org/faq/howto_faq.html#matplotlib-in-a-web-application-server
The above (accepted) answer is a solution in a terminal environment. If you debug in an IDE, you still might wanna use 'TkAgg' for displaying data. In order to prevent this issue, apply these two simple rules:
everytime you display your data, initiate a new fig = plt.figure()
don't close old figures manually (e.g. when using a debug mode)
Example code:
import matplotlib
matplotlib.use('TkAgg')
from matplotlib import pyplot as plt
fig = plt.figure()
plt.plot(data[:,:,:3])
plt.show()
This proves to be the a good intermediate solution under MacOS and PyCharm IDE.
If you don't need to show plots while debugging, the following works:
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
However, if you would like to plot while debugging, you need to do 3 steps:
1.Keep backend to 'TKAgg' as follows:
import matplotlib
matplotlib.use('TKAgg')
from matplot.lib import pyplot as plt
or simply
import matplotlib.pyplot as plt
2.As Fábio also mentioned, you need to add fig(no. #i)=plt.figure(no.#i) for each figure #i. As the following example for plot no.#1, add:
fig1 = plt.figure(1)
plt.plot(yourX,yourY)
plt.show()
3.Add breakpoints. You need to add two breakpoints at least, one somewhere at the beginning of your codes (before the first plot), and the other breakpoint at a point where you would like all plots (before to the second breakpoint) are plotted. All figures are plotted and you even don't need to close any figure manually.
For me, this happened due to parallel access to data by both Matplotlib and by Tensorboard, after Tensorboard's server was running for a week straight.
Rebotting tensorboard tensorboard --logdir . --samples_per_plugin images=100 solved this for me.
I encountered this problem when plotting graphs live with matplotlib in my tkinter application.
The easiest solution I found, was to always delete subplots. I found you didn't need to instantiate a new figure, you only needed to delete the old subplot (using del subplot), then remake it.
Before plotting a new graph, make sure to delete the old subplot.
Example:
f = Figure(figsize=(5,5), dpi=100)
a = f.add_subplot(111)
(For Loop code that updates graph every 5 seconds):
del a #delete subplot
a = f.add_subplot(111) #redefine subplot
Finding this simple solution to fix this "async handler bug" was excruciatingly painful, I hope this helps someone else :)

Figure-specific vs general properties in matplotlib

I am trying to understand how methods and attributes are organized in matplotlib. For example, say I have a figure:
import matplotlib.pyplot as plt
my_fig = plt.imshow(image)
I have noticed that some figure properties are set via module methods, e.g.:
plt.axis('off')
while others are set for the figure itself using object methods:
my_fig.set_cmap('hot')
Can figure properties be specified in either way?
How can I turn off the axis by calling methods on my object my_fig?
The plt methods are part of the pyplot API, which is intended to provide Matlab-like convenience for interactive use (and certainly appears to be very influenced by Matlab). But it's just one small facet of the whole matplotlib API (which is much more OOP). In practice I seem to end up mixing them both myself in SW; it's largely a matter of taste whether you go through the pyplot API or access the objects. pyplot is certainly very convenient although as you want to do more complex/exotic things you'll find what you can do with pyplot alone limited and you'll need to get to know at least the full API's Axes, Figure, Legend and Path objects better.
Pyplot is a collection of command style functions that make matplotlib work like MATLAB, matplotlib.figure.Figure is part of the object-oriented API.
In most cases you can configure figure settings via itself like this:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
image=mpimg.imread('stinkbug.png')
my_fig = plt.imshow(image)
my_fig.axes.axes.get_xaxis().set_visible(False)
my_fig.axes.axes.get_yaxis().set_visible(False)
plt.show()
enter code here
required stinkbug.png:
result:

Categories

Resources