Values Importance for Binary Classifier in Python - python

I'm creating a binary classifier in Python 3.5
So having the number of features (x1..xn) and target value y just like this:
x1 x2 x3 y
Monday 10 12 1
Tuesday 18 20 0
Monday 12 22 1
Wednesday 19 19 0
Thursday 10 11 1
Thursday 10 12 1
Friday 19 12 0
Friday 18 21 0
Friday 12 10 1
So there is no problem for me to do the classifier (and all the needed steps as data preprocessing, cross validation and evaluation).
My question-how to estimate is there any significant variation of the y variable depending on the day of the week (Monday-Friday), column x1?
I know some technics as feature importance but using them I can only understand what exact feature (x1,x2 or x3) is the most valuable for predictor.
How can I understand the importance of distinct value within a column (x1, days of week) for target variable?
Thanks!

The values from x1 column could be transformed into columns with binary logic values ([0;1]) in them. Then the features importances technics could be applied.
http://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html

Related

Forecast next day without train and test split

Typically when we have a data frame we split it into train and test. For example, imagine my data frame is something like this:
> df.head()
Date y wind temperature
1 2019-10-03 00:00:00 33 12 15
2 2019-10-03 01:00:00 10 5 6
3 2019-10-03 02:00:00 39 6 5
4 2019-10-03 03:00:00 60 13 4
5 2019-10-03 04:00:00 21 3 7
I want to predict y based on the wind and temperature. We then do a split something like this:
df_train = df.loc[df.index <= split_date].copy()
df_test = df.loc[df.index > split_date].copy()
X1=df_train[['wind','temperature']]
y1=df_train['y']
X2=df_test[['wind','temperature']]
y2=df_test['y']
from sklearn.model_selection import train_test_split
X_train, y_train =X1, y1
X_test, y_test = X2,y2
model.fit(X_train,y_train)
And we then predict our test data. However, this uses the features of wind and temperature in the test data frame. If I want to predict (unknown) tomorrow y without knowing tomorrow's hourly temperature and wind, does the method no longer work? (For LSTM or XGBoost for example)
The way you train your model, each row is considered an independent sample, regardless of the order, i.e. what values are observed earlier or later. If you have reason to believe that the chronological order is relevant to predicting y from wind speed and temperature you will need to change your model.
You could try, e.g. to add another column with the values for wind speed and temperature one hour before (shift it by one row), or, if you believe that y might be depend on the weekday, compute the weekday from the date and add that as input feature.

Traversing groups of group by object pandas

I need help with some big pandas issue.
As a lot of people asked to have the real input and real desired output in order to answer the question, there it goes:
So I have the following dataframe
Date user cumulative_num_exercises total_exercises %_exercises
2017-01-01 1 2 7 28,57
2017-01-01 2 1 7 14.28
2017-01-01 4 3 7 42,85
2017-01-01 10 1 7 14,28
2017-02-02 1 2 14 14,28
2017-02-02 2 3 14 21,42
2017-02-02 4 4 14 28,57
2017-02-02 10 5 14 35,71
2017-03-03 1 3 17 17,64
2017-03-03 2 3 17 17,64
2017-03-03 4 5 17 29,41
2017-03-03 10 6 17 35,29
%_exercises_accum
28,57
42,85
85,7
100
14,28
35,7
64,27
100
17,64
35,28
64,69
100
-The column %_exercises is the value of the column (cumulative_num_exercises/total_exercises)*100
-The column %_exercises_accum is the value of the sum of the %_exercises for each month. (Note that at the end of each month, it reaches the value 100).
-I need to calculate, whith this data, the % of users that contributed to do a 50%, 80% and 90% of the total exercises, during each month.
-In order to do so, I have thought to create a new column, called category, which will later be used to count how many users contributed to each of the 3 percentages (50%, 80% and 90%). The category column takes the following values:
0 if the user did a %_exercises_accum = 0.
1 if the user did a %_exercises_accum < 50 and > 0.
50 if the user did a %_exercises_accum = 50.
80 if the user did a %_exercises_accum = 80.
90 if the user did a %_exercises_accum = 90.
And so on, because there are many cases in order to determine who contributes to which percentage of the total number of exercises on each month.
I have already determined all the cases and all the values that must be taken.
Basically, I traverse the dataframe using a for loop, and with two main ifs:
if (df.iloc[i][date] == df.iloc[i][date].shift()):
calculations to determine the percentage or percentages to which the user from the second to the last row of the same month group contributes
(because the same user can contribute to all the percentages, or to more than one)
else:
calculations to determine to which percentage of exercises the first
member of each
month group contributes.
The calculations involve:
Looking at the value of the category column in the previous row using shift().
Doing while loops inside the for, because when a user suddenly reaches a big percentage, we need to go back for the users in the same month, and change their category_column value to 50, as they have contributed to the 50%, but didn't reach it. for instance, in this situation:
Date %_exercises_accum
2017-01-01 1,24
2017-01-01 3,53
2017-01-01 20,25
2017-01-01 55,5
The desired output for the given dataframe at the beginning of the question would include the same columns as before (date, user, cumulative_num_exercises, total_exercises, %_exercises and %_exercises_accum) plus the category column, which is the following:
category
50
50
508090
90
50
50
5080
8090
50
50
5080
8090
Note that the rows with the values: 508090, or 8090, mean that that user is contributing to create:
508090: both 50%, 80% and 90% of total exercises in a month.
8090: both 80% and 90% of exercises in a month.
Does anyone know how can I simplify this for loop by traversing the groups of a group by object?
Thank you very much!
Given no sense of what calculations you wish to accomplish, this is my best guess at what you're looking for. However, I'd re-iterate Datanovice's point that the best way to get answers is to provide a sample output.
You can slice to each unique date using the following code:
dates = ['2017-01-01', '2017-01-01','2017-01-01','2017-01-01','2017-02-02','2017-02-02','2017-02-02','2017-02-02','2017-03-03','2017-03-03','2017-03-03','2017-03-03']
df = pd.DataFrame(
{'date':pd.to_datetime(dates),
'user': [1,2,4,10,1,2,4,10,1,2,4,10],
'cumulative_num_exercises':[2,1,3,1,2,3,4,5,3,3,5,6],
'total_exercises':[7,7,7,7,14,14,14,14,17,17,17,17]}
)
df = df.set_index('date')
for idx in df.index.unique():
hold = df.loc[idx]
### YOUR CODE GOES HERE ###

Python Scikit - Learn: Cross Validation with multi-index

Hi I want to use one of the scikit learn's functions for cross validation. What I want is that the splitting of the folds is determined by one of the indexes. For example lets say I have this data with "month" and "day" being the indexes:
Month Day Feature_1
January 1 10
2 20
February 1 30
2 40
March 1 50
2 60
3 70
April 1 80
2 90
Lets say I want to have a 1/4 of the data as test set for each validation. I want this fold seperation to be done by the first index which is the month. In this case the test set will be one of the months and the remaining 3 months will be the training set. As an example one of the train and test split will look like this:
TEST SET:
Month Day Feature_1
January 1 10
2 20
TRAINING SET:
Month Day Feature_1
February 1 30
2 40
March 1 50
2 60
3 70
April 1 80
2 90
How can I do this. Thank you.
This is called splitting by a group. Check out the user-guide in scikit-learn here to understand more about it:
...
To measure this, we need to ensure that all the samples in the
validation fold come from groups that are not represented at all in
the paired training fold.
...
You can use the GroupKFold or other strategies that have Group in the name. A sample can be
# I am not sure about this exact command,
# but after this, you should have individual columns for each index
df = df.reset_index()
print(df)
Month Day Feature_1
January 1 10
January 2 20
February 1 30
February 2 40
March 1 50
March 2 60
March 3 70
groups = df['Month']
from sklearn.model_selection import GroupKFold
gkf = GroupKFold(n_splits=3)
for train, test in gkf.split(X, y, groups=groups):
# Here "train", "test" are indices of location,
# you need to use "iloc" to get actual values
print("%s %s" % (train, test))
print(df.iloc[train, :])
print(df.iloc[test, :])
Update: For passing this into cross-validation methods, just pass the months data to groups param in those. Like below:
gkf = GroupKFold(n_splits=3)
y_pred = cross_val_predict(estimator, X_train, y_train, cv=gkf, groups=df['Month'])
Use -
indices = df.index.levels[0]
train_indices = np.random.choice(indices,size=int(len(indices)*0.75), replace=False)
test_indices = np.setdiff1d(indices, train_indices)
train = df[np.in1d(df.index.get_level_values(0), train_indices)]
test = df[np.in1d(df.index.get_level_values(0), test_indices)]
Output
Train
Feature_1
Month Day
January 1 10
2 20
February 1 30
2 40
March 1 50
2 60
3 70
Test
Feature_1
Month Day
April 1 80
2 90
Explanation
indices = df.index.levels[0] takes all the unique from level=0 index - Index(['April', 'February', 'January', 'March'], dtype='object', name='Month')
train_indices = np.random.choice(indices,size=int(len(indices)*0.75), replace=False) samples 75% of the indices chosen in previous step
Next we obtain the remaining indices to be test_indices
Finally we split train and test accordingly

Tricky groupby/moving average by date calculation

I am having trouble illustrating my problem with the form the data is in without complicating things. So bear with me as I would like to start with the following screen shot is for explaining the problem only (aka the data is not in this form) :
I would like to identify the past 14 days with a number > 0 across all bins (aka the total row has a value greater than 0). This would include all days except for days 5 and 12 (highlighted in red). I would then like to sum across bins horizontally for those 14 days (aka sum all days expect for 5 and 12, by bin), with the goal of ultimately calculating a 14 day average by Bin number.
Note the example above would be for one “Lane”, where my data has > 10,000. The example also only illustrates today being day 16. But I would like to apply this logic to every day in the data set. I.e. on day 20 (along with any other date), it would look at the last 14 days with a value across all bins, then use that data range to aggregate across Bin. This is a screenshot sample of how the data looks:
A simple example using the data as it is structured, with only 3 Bins, 1 Lane, and a 3 data point/date look back:
Lane Date Bin KG
AMS-ORD 2018-08-26 3 10
AMS-ORD 2018-08-29 1 25
AMS-ORD 2018-08-30 2 30
AMS-ORD 2018-09-03 2 20
AMS-ORD 2018-09-04 1 40
Note KG here is a sum. Again this is for one day (aka today), but I would like every date in my data set to follow the same logic. The output would look like the following:
Lane Date Bin KG Average
AMS-ORD 2018-09-04 1 40 13.33
AMS-ORD 2018-09-04 2 50 16.67
AMS-ORD 2018-09-04 3 0 -
I have messed around with .rolling(14).mean(), .tail(), and some others. The problem I have is specifying the correct date range for the correct Bin aggregation.

Average hourly week profile for a year excluding weekend days and holidays

With Pandas I have created a DataFrame from an imported .csv file (this file is generated through simulation). The DataFrame consists of half-hourly energy consumption data for a single year. I have already created a DateTimeindex for the dates.
I would like to be able to reformat this data into average hourly week and weekend profile results. With the week profile excluding holidays.
DataFrame:
Date_Time Equipment:Electricity:LGF Equipment:Electricity:GF
01/01/2000 00:30 0.583979872 0.490327348
01/01/2000 01:00 0.583979872 0.490327348
01/01/2000 01:30 0.583979872 0.490327348
01/01/2000 02:00 0.583979872 0.490327348
I found an example (Getting the average of a certain hour on weekdays over several years in a pandas dataframe) that explains doing this for several years, but not explicitly for a week (without holidays) and weekend.
I realised that there is no resampling techniques in Pandas that do this directly, I used several aliases (http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases) for creating Monthly and Daily profiles.
I was thinking of using the business day frequency and create a new dateindex with working days and compare that to my DataFrame datetimeindex for every half hour. Then return values for working days and weekend days when true or false respectively to create a new dataset, but am not sure how to do this.
PS; I am just getting into Python and Pandas.
Dummy data (for future reference, more likely to get an answer if you post some in a copy-paste-able form)
df = pd.DataFrame(data={'a':np.random.randn(1000)},
index=pd.date_range(start='2000-01-01', periods=1000, freq='30T'))
Here's an approach. First define a US (or modify as appropriate) business day offset with holidays, and generate and range covering your dates.
from pandas.tseries.holiday import USFederalHolidayCalendar
from pandas.tseries.offsets import CustomBusinessDay
bday_us = CustomBusinessDay(calendar=USFederalHolidayCalendar())
bday_over_df = pd.date_range(start=df.index.min().date(),
end=df.index.max().date(), freq=bday_us)
Then, develop your two grouping columns. An hour column is easy.
df['hour'] = df.index.hour
For weekday/weekend/holiday, define a function to group the data.
def group_day(date):
if date.weekday() in [5,6]:
return 'weekend'
elif date.date() in bday_over_df:
return 'weekday'
else:
return 'holiday'
df['day_group'] = df.index.map(group_day)
Then, just group by the two columns as you wish.
In [140]: df.groupby(['day_group', 'hour']).sum()
Out[140]:
a
day_group hour
holiday 0 1.890621
1 -0.029606
2 0.255001
3 2.837000
4 -1.787479
5 0.644113
6 0.407966
7 -1.798526
8 -0.620614
9 -0.567195
10 -0.822207
11 -2.675911
12 0.940091
13 -1.601885
14 1.575595
15 1.500558
16 -2.512962
17 -1.677603
18 0.072809
19 -1.406939
20 2.474293
21 -1.142061
22 -0.059231
23 -0.040455
weekday 0 9.192131
1 2.759302
2 8.379552
3 -1.189508
4 3.796635
5 3.471802
... ...
18 -5.217554
19 3.294072
20 -7.461023
21 8.793223
22 4.096128
23 -0.198943
weekend 0 -2.774550
1 0.461285
2 1.522363
3 4.312562
4 0.793290
5 2.078327
6 -4.523184
7 -0.051341
8 0.887956
9 2.112092
10 -2.727364
11 2.006966
12 7.401570
13 -1.958666
14 1.139436
15 -1.418326
16 -2.353082
17 -1.381131
18 -0.568536
19 -5.198472
20 -3.405137
21 -0.596813
22 1.747980
23 -6.341053
[72 rows x 1 columns]

Categories

Resources