Get max row of pandas dataframe without a tiebraker policy - python

I have a pandas dataframe similar to the following and I want to group it by "group" and for each group (a, b, c & d) get the max values based on the "value1" column.
In case of a tie, I want to get all rows that tied at the top.
So, for this example input:
group value1 value2
0 a 1.1 7.1
1 a 2.0 8.0
2 a 3.0 9.0
3 b 4.0 10.0
4 b 4.0 11.0
5 b 6.0 12.0
6 c 7.0 43.0
7 c 8.0 12.0
8 d 9.0 34.0
9 d 1.0 5.0
10 d 2.0 6.0
11 d 9.0 2.0
12 d 4.0 3.0
I would like to get this:
group value1 value2
2 a 3.0 9.0
5 b 6.0 12.0
7 c 8.0 12.0
8 d 9.0 34.0
11 d 9.0 2.0 # no tiebreaker policy
This is what I have so far but head(1) does not deliver. What has to go in there instead?
temp_df.sort_values('temp', ascending=False).groupby('Node').head(1)

use apply with a lambda that compares the value against the max value, this will return a boolean mask that you can use to mask the original df:
In [125]:
df[df.groupby('group')['value1'].apply(lambda x: x== x.max())]
Out[125]:
group value1 value2
2 a 3.0 9.0
5 b 6.0 12.0
7 c 8.0 12.0
8 d 9.0 34.0
11 d 9.0 2.0
Here is the mask:
In [126]:
df.groupby('group')['value1'].apply(lambda x: x== x.max())
Out[126]:
0 False
1 False
2 True
3 False
4 False
5 True
6 False
7 True
8 True
9 False
10 False
11 True
12 False
Name: value1, dtype: bool

Related

How to interpolate in Pandas using only previous values?

This is my dataframe:
df = pd.DataFrame(np.array([ [1,5],[1,6],[1,np.nan],[2,np.nan],[2,8],[2,4],[2,np.nan],[2,10],[3,np.nan]]),columns=['id','value'])
id value
0 1 5
1 1 6
2 1 NaN
3 2 NaN
4 2 8
5 2 4
6 2 NaN
7 2 10
8 3 NaN
This is my expected output:
id value
0 1 5
1 1 6
2 1 7
3 2 NaN
4 2 8
5 2 4
6 2 2
7 2 10
8 3 NaN
This is my current output using this code:
df.value.interpolate(method="krogh")
0 5.000000
1 6.000000
2 9.071429
3 10.171429
4 8.000000
5 4.000000
6 2.357143
7 10.000000
8 36.600000
Basically, I want to do two important things here:
Groupby ID then Interpolate using only above values not below row values
This should do the trick:
df["value_interp"]=df.value.combine_first(df.groupby("id")["value"].apply(lambda y: y.expanding().apply(lambda x: x.interpolate(method="krogh").to_numpy()[-1], raw=False)))
Outputs:
id value value_interp
0 1.0 5.0 5.0
1 1.0 6.0 6.0
2 1.0 NaN 7.0
3 2.0 NaN NaN
4 2.0 8.0 8.0
5 2.0 4.0 4.0
6 2.0 NaN 0.0
7 2.0 10.0 10.0
8 3.0 NaN NaN
(It interpolates based only on the previous values within the group - hence index 6 will return 0 not 2)
You can group by id and then loop over groups to make interpolations. For id = 2 interpolation will not give you value 2
import pandas as pd
import numpy as np
df = pd.DataFrame(np.array([ [1,5],[1,6],[1,np.nan],[2,np.nan],[2,8],[2,4],[2,np.nan],[2,10],[3,np.nan]]),columns=['id','value'])
data = []
for name, group in df.groupby('id'):
group_interpolation = group.interpolate(method='krogh', limit_direction='forward', axis=0)
data.append(group_interpolation)
df = (pd.concat(data)).round(1)
Output:
id value
0 1.0 5.0
1 1.0 6.0
2 1.0 7.0
3 2.0 NaN
4 2.0 8.0
5 2.0 4.0
6 2.0 4.7
7 2.0 10.0
8 3.0 NaN
Current pandas.Series.interpolate does not support what you want so to achieve your goal you need to do 2 grouby's that will account for your desire to use only previous rows. The idea is as follows: to combine into one group only missing value (!!!) and previous rows (it might have limitations if you have several missing values in a row, but it serves well for your toy example)
Suppose we have a df:
print(df)
ID Value
0 1 5.0
1 1 6.0
2 1 NaN
3 2 NaN
4 2 8.0
5 2 4.0
6 2 NaN
7 2 10.0
8 3 NaN
Then we will combine any missing values within a group with previous rows:
df["extrapolate"] = df.groupby("ID")["Value"].apply(lambda grp: grp.isnull().cumsum().shift().bfill())
print(df)
ID Value extrapolate
0 1 5.0 0.0
1 1 6.0 0.0
2 1 NaN 0.0
3 2 NaN 1.0
4 2 8.0 1.0
5 2 4.0 1.0
6 2 NaN 1.0
7 2 10.0 2.0
8 3 NaN NaN
You may see, that when grouped by ["ID","extrapolate"] the missing value will fall into the same group as nonnull values of previous rows.
Now we are ready to do extrapolation (with spline of order=1):
df.groupby(["ID","extrapolate"], as_index=False).apply(lambda grp:grp.interpolate(method="spline",order=1)).drop("extrapolate", axis=1)
ID Value
0 1.0 5.0
1 1.0 6.0
2 1.0 7.0
3 2.0 NaN
4 2.0 8.0
5 2.0 4.0
6 2.0 0.0
7 2.0 10.0
8 NaN NaN
Hope this helps.

How to add the sum of some column at the end of dataframe

I have a pandas dataframe with 11 columns. I want to add the sum of all values of columns 9 and column 10 to the end of table. So far I tried 2 methods:
Assigning the data to the cell with dataframe.iloc[rownumber, 8]. This results in an out of bound error.
Creating a vector with some blank: ' ' by using the following code:
total = ['', '', '', '', '', '', '', '', dataframe['Column 9'].sum(), dataframe['Column 10'].sum(), '']
dataframe = dataframe.append(total)
The result was not nice as it added the total vector as a vertical vector at the end rather than a horizontal one. What can I do to solve the issue?
You need use pandas.DataFrame.append with ignore_index=True
so use:
dataframe=dataframe.append(dataframe[['Column 9','Column 10']].sum(),ignore_index=True).fillna('')
Example:
import pandas as pd
import numpy as np
df=pd.DataFrame()
df['col1']=[1,2,3,4]
df['col2']=[2,3,4,5]
df['col3']=[5,6,7,8]
df['col4']=[5,6,7,8]
Using Append:
df=df.append(df[['col2','col3']].sum(),ignore_index=True)
print(df)
col1 col2 col3 col4
0 1.0 2.0 5.0 5.0
1 2.0 3.0 6.0 6.0
2 3.0 4.0 7.0 7.0
3 4.0 5.0 8.0 8.0
4 NaN 14.0 26.0 NaN
Whitout NaN values:
df=df.append(df[['col2','col3']].sum(),ignore_index=True).fillna('')
print(df)
col1 col2 col3 col4
0 1 2.0 5.0 5
1 2 3.0 6.0 6
2 3 4.0 7.0 7
3 4 5.0 8.0 8
4 14.0 26.0
Create new DataFrame with sums. This example DataFrame has columns 'a' and 'b'. df1 is the DataFrame what need to be summed up and df3 is one line DataFrame only with sums:
data = [[df1.a.sum(),df1.b.sum()]]
df3 = pd.DataFrame(data,columns=['a','b'])
Then append it to end:
df1.append(df3)
simply try this:(replace test with your dataframe name)
row wise sum(which you have asked for):
test['Total'] = test[['col9','col10']].sum(axis=1)
print(test)
column wise sum:
test.loc['Total'] = test[['col9','col10']].sum()
test.fillna('',inplace=True)
print(test)
IICU , this is what you need (change numbers 8 & 9 to suit your needs)
df['total']=df.iloc[ : ,[8,9]].sum(axis=1) #horizontal sum
df['total1']=df.iloc[ : ,[8,9]].sum().sum() #Vertical sum
df.loc['total2']=df.iloc[ : ,[8,9]].sum() # vertical sum in rows for only columns 8 & 9
Example
a=np.arange(0, 11, 1)
b=np.random.randint(10, size=(5,11))
df=pd.DataFrame(columns=a, data=b)
0 1 2 3 4 5 6 7 8 9 10
0 0 5 1 3 4 8 6 6 8 1 0
1 9 9 8 9 9 2 3 8 9 3 6
2 5 7 9 0 8 7 8 8 7 1 8
3 0 7 2 8 8 3 3 0 4 8 2
4 9 9 2 5 2 2 5 0 3 4 1
**output**
0 1 2 3 4 5 6 7 8 9 10 total total1
0 0.0 5.0 1.0 3.0 4.0 8.0 6.0 6.0 8.0 1.0 0.0 9.0 48.0
1 9.0 9.0 8.0 9.0 9.0 2.0 3.0 8.0 9.0 3.0 6.0 12.0 48.0
2 5.0 7.0 9.0 0.0 8.0 7.0 8.0 8.0 7.0 1.0 8.0 8.0 48.0
3 0.0 7.0 2.0 8.0 8.0 3.0 3.0 0.0 4.0 8.0 2.0 12.0 48.0
4 9.0 9.0 2.0 5.0 2.0 2.0 5.0 0.0 3.0 4.0 1.0 7.0 48.0
total2 NaN NaN NaN NaN NaN NaN NaN NaN 31.0 17.0 NaN NaN NaN

construct dataframe from a series of keys and a key:value dataframe

I have a pandas series of keys and would like to create a dataframe by selecting values from other dataframes.
eg.
data_df = pandas.DataFrame({'key' : ['a','b','c','d','e','f'],
'value1': [1.1,2,3,4,5,6],
'value2': [7.1,8,9,10,11,12]
})
keys = pandas.Series(['a','b','a','c','e','f','a','b','c'])
data_df
# key value1 value2
#0 a 1.1 7.1
#1 b 2.0 8.0
#2 c 3.0 9.0
#3 d 4.0 10.0
#4 e 5.0 11.0
#5 f 6.0 12.0
I would like to get the result like this
result
key value1 value2
0 a 1.1 7.1
1 b 2.0 8.0
2 a 1.1 7.1
3 c 3.0 9.0
4 e 5.0 11.0
5 f 6.0 12.0
6 a 1.1 7.1
7 b 2.0 8.0
8 c 3.0 9.0
one way I have successfully done this is by using
def append_to_series(key):
new_series=data_df[data_df['key']==key].iloc[0]
return new_series
pd.DataFrame(key_df.apply(append_to_series))
However, this function is very slow and not clean. Is there a way to do this more efficiently?
convert the series intodataframe with column name key
use pd.merge() to merge value1,value2
keys = pd.DataFrame(['a','b','a','c','e','f','a','b','c'],columns=['key'])
res = pd.merge(keys,data_df,on=['key'],how='left')
print(res)
key value1 value2
0 a 1.1 7.1
1 b 2.0 8.0
2 a 1.1 7.1
3 c 3.0 9.0
4 e 5.0 11.0
5 f 6.0 12.0
6 a 1.1 7.1
7 b 2.0 8.0
8 c 3.0 9.0
Create index by key column and then use DataFrame.reindex or DataFrame.loc:
Notice: Necessary unique values of original key column.
df = data_df.set_index('key').reindex(keys.rename('key')).reset_index()
Or:
df = data_df.set_index('key').loc[keys].reset_index()
print (df)
key value1 value2
0 a 1.1 7.1
1 b 2.0 8.0
2 a 1.1 7.1
3 c 3.0 9.0
4 e 5.0 11.0
5 f 6.0 12.0
6 a 1.1 7.1
7 b 2.0 8.0
8 c 3.0 9.0

pandas filling nans by mean of before and after non-nan values

I would like to fill df's nan with an average of adjacent elements.
Consider a dataframe:
df = pd.DataFrame({'val': [1,np.nan, 4, 5, np.nan, 10, 1,2,5, np.nan, np.nan, 9]})
val
0 1.0
1 NaN
2 4.0
3 5.0
4 NaN
5 10.0
6 1.0
7 2.0
8 5.0
9 NaN
10 NaN
11 9.0
My desired output is:
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
6 1.0
7 2.0
8 5.0
9 7.0 <<< deadend
10 7.0 <<< deadend
11 9.0
I've looked into other solutions such as Fill cell containing NaN with average of value before and after, but this won't work in case of two or more consecutive np.nans.
Any help is greatly appreciated!
Use ffill + bfill and divide by 2:
df = (df.ffill()+df.bfill())/2
print(df)
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
6 1.0
7 2.0
8 5.0
9 7.0
10 7.0
11 9.0
EDIT : If 1st and last element contains NaN then use (Dark
suggestion):
df = pd.DataFrame({'val':[np.nan,1,np.nan, 4, 5, np.nan,
10, 1,2,5, np.nan, np.nan, 9,np.nan,]})
df = (df.ffill()+df.bfill())/2
df = df.bfill().ffill()
print(df)
val
0 1.0
1 1.0
2 2.5
3 4.0
4 5.0
5 7.5
6 10.0
7 1.0
8 2.0
9 5.0
10 7.0
11 7.0
12 9.0
13 9.0
Althogh in case of multiple nan's in a row it doesn't produce the exact output you specified, other users reaching this page may actually prefer the effect of the method interpolate():
df = df.interpolate()
print(df)
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
6 1.0
7 2.0
8 5.0
9 6.3
10 7.7
11 9.0

how to impute a column in pandas dataframe within each group [duplicate]

This question already has answers here:
How to replace NaN values by Zeroes in a column of a Pandas Dataframe?
(17 answers)
Closed 6 years ago.
All,
I have dataframe with four columns ('key1', 'key2', 'data1', 'data2'). I inserted some nan into data1. Now I want to fill the nan with values that is the most occuring value within each group after I do groupby(['key1', 'key2']).
dt = pd.DataFrame ({'key1': np.random.choice(['a', 'b'], size=100),
'key2': np.random.choice(['c', 'd'], size=100),
'data1': np.random.randint(5, size=100),
'data2': np.random.randn(100)},
columns = ['key1', 'key2','data1', 'data2'])
#insert nan
dt['data1'].ix[[2,6,10]]= None
# group by key1 and key2
group =dt.groupby(['key1', 'key2'])['data1']
group.value_counts(dropna=False)
key1 key2 data1
a c 1.0 8
4.0 6
0.0 4
2.0 2
3.0 1
d 0.0 7
1.0 6
4.0 6
2.0 5
NaN 3
3.0 1
b c 0.0 7
2.0 7
1.0 3
3.0 2
4.0 2
d 2.0 11
1.0 10
0.0 3
3.0 3
4.0 3
What I wan to do is, for this example, fill the nan in the data1 column with 0.0 (most frequent value within group (key1=a, key2=d).
thank you very much for help!
Use .transform(lambda y: y.fillna(y.value_counts().idxmax()))
Before
key1 key2 data1
a c 1.0 6
3.0 5
0.0 4
2.0 3
4.0 3
NaN 1
d 1.0 11
3.0 9
0.0 5
2.0 5
4.0 5
b c 4.0 7
0.0 4
3.0 4
2.0 3
NaN 2
1.0 1
d 4.0 6
1.0 5
2.0 5
3.0 4
0.0 2
Name: data1, dtype: int64
After applying .transform(lambda y: y.fillna(y.value_counts().idxmax()))
dt['nan_filled'] = dt.groupby(['key1', 'key2'])['data1'].transform(lambda y: y.fillna(y.value_counts().idxmax()))
group = dt.groupby(['key1', 'key2'])['nan_filled']
group.value_counts(dropna=False)
key1 key2 nan_filled
a c 1.0 7
3.0 5
0.0 4
2.0 3
4.0 3
d 1.0 11
3.0 9
0.0 5
2.0 5
4.0 5
b c 4.0 9
0.0 4
3.0 4
2.0 3
1.0 1
d 4.0 6
1.0 5
2.0 5
3.0 4
0.0 2
Name: nan_filled, dtype: int64

Categories

Resources