Single line with multiple radii with Mayavi - python

I am trying to plot a single line (or tube) in Mayavi that has a non-constant width or radius. This seems like a simple task though I may not be understanding what is happening behind the scenes well enough to make this happen.
The following code creates the line I want, and I am able to scale by color; however, I would also like to scale by width.
import mayavi.mlab as mlab
import numpy as np
x = range(100)
y = range(100)
z = range(100)
s = np.random.uniform(0, 1, 100)
mlab.plot3d(x, y, z, s, tube_radius=10)
I don't have an image of the desired output as I am unable to create it, though it would essentially be the preceding image scaled by radius instead of color, so that some areas of the line would be wider than other areas. One possible solution would be to use the tube_radius parameter and plot each section individually, though this really seems like poor practice as the lines can get quite long and have many different sections.

In the GUI, you can go to the Tube pipeline and use Vary_radius = 'vary_radius_by_scalar'
In the script you can do
import mayavi.mlab as mlab
import numpy as np
x = range(100)
y = range(100)
z = range(100)
s = np.random.uniform(0, 1, 100)
t = mlab.plot3d(x, y, z, s, tube_radius=10)
t.parent.parent.filter.vary_radius = 'vary_radius_by_scalar'
Since the parent of the surface is the Module manager (colors, etc) and its parent is the Tube pipeline

Related

Using streamplot function in Python for stretched grid

I am trying to plot (magnetic) field lines. I came to know stream function is the tool used to plot field lines. However, an error comes up telling ValueError: 'x' values must be equally spaced.
Please note that the code uses Fourier basis along x so it is equally spaced along x and uses Chebyshev basis along y and hence it is non-uniform grid along y. I do not understand why the code says "x must be uniformly spaced" when it's uniform along x.
The other thing I want to know is, how to plot field lines for a non-uniform grid?
Also is there any other method to plot field lines apart from streamplot?
Code that I am running is attached below for reference:
import numpy as np
import h5py
import matplotlib.pyplot as plt
f = h5py.File('./B_mm/Re_10k/Bx_v24/Bx_v24_s1.h5', 'r')
y = f['/scales/y/1.0'][:]
x = f['/scales/x/1.0'][:]
Bxtotal = f['/tasks/Bxtotal'][:]
Bytotal = f['/tasks/Bytotal'][:]
t = f['scales']['sim_time'][:]
print(np.shape(y))
print('y = ', y)
print(np.shape(x))
print('x= ', x)
X, Y = np.meshgrid(y,x)
print(np.shape(X))
print(np.shape(Y))
Bx = Bxtotal[len(Bxtotal)-1, :, :]
By = Bytotal[len(Bytotal)-1, :, :]
print(np.shape(Bx))
print(np.shape(By))
plt.figure(figsize=(4,4),facecolor="w")
plt.streamplot(X, Y, Bx, By, color='k', density=1.3, minlength=0.9, arrowstyle='-')
plt.show()
And this is my error message;

How to visually represent time evolution in 2-d Brownian motion simulation

I have modeled Brownian motion in both the x and y directions as random walks. I have plotted the data on a 2-d plot but, while it is not so difficult to trace the simulated particle's path from the origin, I want to be able to see the time-evolution of the particle's path visually represented on the plot, whether it be by changing the color of the line over time, or by adding a third dimension to the plot to represent time, or by using some sort of dynamic graph type.
I haven't tried implementing anything, but I have tried to look at what options are available to me. I want to avoid using a 3d plot if possible. That said, I am open to using something other than matplotlib if it makes sense for this situation (like pyqtgraph).
Here is my code:
import random
import numpy as np
import matplotlib.pyplot as plt
#n is how many trajectory evaluations
n = 1000
t= np.linspace(0,10000,num=n)
def brownianMotion(time):
B = [0]
for t in range(len(time)-1):
nrand = random.gauss(0,(time[t+1] - time[t])**.5)
B.append(B[t]+nrand)
return B
xpath = brownianMotion(t)
ypath = brownianMotion(t)
def plot(x,y):
plt.figure()
xplot = np.insert(x,0,0)
yplot = np.insert(y,0,0)
plt.plot(xplot,yplot,'go-',lw=1,ms=.1)
#np.arange(0,n+1),'go-', lw=1, ms = .1)
plt.xlim([-150,150])
plt.ylim([-150,150])
plt.title('Brownian Motion')
plt.xlabel('xDisplacement')
plt.ylabel('yDisplacement')
plt.show()
plot(xpath,ypath)
All in all, this is just for fun and something I did while bored at work. All suggestions are welcome! Thank you for your time!
Please let me know if I should post a picture of my code's output.
Edit: Additionally, if I wanted to represent multiple particles in the same graph, how could I do that so that the multiple pathes are distinguishable? I have modified my code for this purpose shown below but currently this code outputs a messy green mixture of particles.
import random
import numpy as np
import matplotlib.pyplot as plt
nparticles = 20
#n is how many trajectory evaluations
n = 100
t= np.linspace(0,1000,num=n)
def brownianMotion(time):
B = [0]
for t in range(len(time)-1):
nrand = random.gauss(0,(time[t+1] - time[t])**.5)
B.append(B[t]+nrand)
return B
xs = []
ys = []
for i in range(nparticles):
xs.append(brownianMotion(t))
ys.append(brownianMotion(t))
#xpath = brownianMotion(t)
#ypath = brownianMotion(t)
def plot(x,y):
plt.figure()
for xpath, ypath in zip(x,y):
xplot = np.insert(xpath,0,0)
yplot = np.insert(ypath,0,0)
plt.plot(xplot,yplot,'go-',lw=1,ms=.1)
#np.arange(0,n+1),'go-', lw=1, ms = .1)
plt.xlim([np.amin(x),np.amax(x)])
plt.ylim([np.amin(y),np.amax(y)])
plt.title('Brownian Motion')
plt.xlabel('xDisplacement')
plt.ylabel('yDisplacement')
plt.show()
plot(xs,ys)

Python: Get values of array which correspond to contour lines

Is there a way to extract the data from an array, which corresponds to a line of a contourplot in python? I.e. I have the following code:
n = 100
x, y = np.mgrid[0:1:n*1j, 0:1:n*1j]
plt.contour(x,y,values)
where values is a 2d array with data (I stored the data in a file but it seems not to be possible to upload it here). The picture below shows the corresponding contourplot. My question is, if it is possible to get exactly the data from values, which corresponds e.g. to the left contourline in the plot?
Worth noting here, since this post was the top hit when I had the same question, that this can be done with scikit-image much more simply than with matplotlib. I'd encourage you to check out skimage.measure.find_contours. A snippet of their example:
from skimage import measure
x, y = np.ogrid[-np.pi:np.pi:100j, -np.pi:np.pi:100j]
r = np.sin(np.exp((np.sin(x)**3 + np.cos(y)**2)))
contours = measure.find_contours(r, 0.8)
which can then be plotted/manipulated as you need. I like this more because you don't have to get into the deep weeds of matplotlib.
plt.contour returns a QuadContourSet. From that, we can access the individual lines using:
cs.collections[0].get_paths()
This returns all the individual paths. To access the actual x, y locations, we need to look at the vertices attribute of each path. The first contour drawn should be accessible using:
X, Y = cs.collections[0].get_paths()[0].vertices.T
See the example below to see how to access any of the given lines. In the example I only access the first one:
import matplotlib.pyplot as plt
import numpy as np
n = 100
x, y = np.mgrid[0:1:n*1j, 0:1:n*1j]
values = x**0.5 * y**0.5
fig1, ax1 = plt.subplots(1)
cs = plt.contour(x, y, values)
lines = []
for line in cs.collections[0].get_paths():
lines.append(line.vertices)
fig1.savefig('contours1.png')
fig2, ax2 = plt.subplots(1)
ax2.plot(lines[0][:, 0], lines[0][:, 1])
fig2.savefig('contours2.png')
contours1.png:
contours2.png:
plt.contour returns a QuadContourSet which holds the data you're after.
See Get coordinates from the contour in matplotlib? (which this question is probably a duplicate of...)

ZeroDivisionError: float division by zero in a code for Surface plot

I have got this code to generate a surface plot. But it gives a zero division error. I am not able to figure out what is wrong. Thank you.
import pylab, csv
import numpy
from mayavi.mlab import *
def getData(fileName):
try:
data = csv.reader(open(fileName,'rb'))
except:
print 'File not found'
else:
data = [[float(row[0]), float(row[1]),float(row[2])] for row in data]
x = [row[0] for row in data]
y = [row[1] for row in data]
z = [row[2] for row in data]
return (x, y, z)
def plotData(fileName):
xVals, yVals, zVals = getData(fileName)
xVals = pylab.array(xVals)
yVals = pylab.array(yVals)
zVals = (pylab.array(zVals)*10**3)
x, y = numpy.mgrid[-0.5:0.5:0.001, -0.5:0.5:0.001]
s = surf(x, y, zVals)
return s
plotData('data')
If I have understood the code correctly, there is a problem with zVals in mayavi.mlab.surf.
According to the documentation of the function, s is the elevation matrix, a 2D array, where indices along the first array axis represent x locations, and indices along the second array axis represent y locations. Your file reader seems to return a 1D vector instead of an array.
However, this may not be the most difficult problem. Your file seems to contain triplets of x, y, and z coordinates. You can use mayavi.mlab.surf only if your x and y coordinates in the file form a regular square grid. If this is the case, then you just have to recover that grid and form nice 2D arrays of all three parts. If the points are in the file in a known order, it is easy, otherwise it is rather tricky.
Maybe you would want to start with mayavi.mlab.points3d(xVals, yVals, zVals). That will give you an overall impression of your data. (Or if already know more about your data, you might give us a hint by editing your question and adding more information!)
Just to give you an idea of probably slightly pythonic style of writing this, your code is rewritten (and surf replaced) in the following:
import mayavi.mlab as ml
import numpy
def plot_data(filename):
data = numpy.loadtxt(filename)
xvals = data[:,0]
yvals = data[:,1]
zvals = data[:,2] * 1000.
return ml.points3d(x, y, z)
plot_data('data')
(Essential changes: the use of numpy.loadtxt, get rid of pylab namespace here, no import *, no CamelCase variable or function names. For more information, see PEP 8.)
If you only need to see the shape of the surface, and the data in the file is ordered row-by-row and with the same number of data points in each row (i.e. fixed number of columns), then you may use:
import mayavi.mlab as ml
import numpy
importt matplotlib.pyplot as plt
# whatever you have as the number of points per row
columns = 13
data = numpy.loadtxt(filename)
# draw the data points into a XY plane to check that they really for a rectangular grid:
plt.plot(data[:,0], data[:,1])
# draw the surface
zvals = data[:,2].reshape(-1,columns)
ml.surf(zvals, warp_scale='auto')
As you can see, this code allows you to check that your values really are in the right kind of grid. It does not check that they are in the correct order, but at least you can see they form a nice grid. Also, you have to input the number of columns manually. The keyword warp_scale takes care of the surface scaling so that it should look reasonable.

Issues with 2D-Interpolation in Scipy

In my application, the data data is sampled on a distorted grid, and I would like to resample it to a nondistorted grid. In order to test this, I wrote this program with examplary distortions and a simple function as data:
from __future__ import division
import numpy as np
import scipy.interpolate as intp
import pylab as plt
# Defining some variables:
quadratic = -3/128
linear = 1/16
pn = np.poly1d([quadratic, linear,0])
pixels_x = 50
pixels_y = 30
frame = np.zeros((pixels_x,pixels_y))
x_width= np.concatenate((np.linspace(8,7.8,57) , np.linspace(7.8,8,pixels_y-57)))
def data(x,y):
z = y*(np.exp(-(x-5)**2/3) + np.exp(-(x)**2/5) + np.exp(-(x+5)**2))
return(z)
# Generating grid coordinates
yt = np.arange(380,380+pixels_y*4,4)
xt = np.linspace(-7.8,7.8,pixels_x)
X, Y = np.meshgrid(xt,yt)
Y=Y.T
X=X.T
Y_m = np.zeros((pixels_x,pixels_y))
X_m = np.zeros((pixels_x,pixels_y))
# generating distorted grid coordinates:
for i in range(pixels_y):
Y_m[:,i] = Y[:,i] - pn(xt)
X_m[:,i] = np.linspace(-x_width[i],x_width[i],pixels_x)
# Sample data:
for i in range(pixels_y):
for j in range(pixels_x):
frame[j,i] = data(X_m[j,i],Y_m[j,i])
Y_m = Y_m.flatten()
X_m = X_m.flatten()
frame = frame.flatten()
##
Y = Y.flatten()
X = X.flatten()
ipf = intp.interp2d(X_m,Y_m,frame)
interpolated_frame = ipf(xt,yt)
At this point, I have to questions:
The code works, but I get the the following warning:
Warning: No more knots can be added because the number of B-spline coefficients
already exceeds the number of data points m. Probably causes: either
s or m too small. (fp>s)
kx,ky=1,1 nx,ny=54,31 m=1500 fp=0.000006 s=0.000000
Also, some interpolation artifacts appear, and I assume that they are related to the warning - Do you guys know what I am doing wrong?
For my actual applications, the frames need to be around 500*100, but when doing this, I get a MemoryError - Is there something I can do to help that, apart from splitting the frame into several parts?
Thanks!
This problem is most likely related to the usage of bisplrep and bisplev within interp2d. The docs mention that they use a smooting factor of s=0.0 and that bisplrep and bisplev should be used directly if more control over s is needed. The related docs mention that s should be found between (m-sqrt(2*m),m+sqrt(2*m)) where m is the number of points used to construct the splines. I had a similar problem and found it solved when using bisplrep and bisplev directly, where s is only optional.
For 2d interpolation,
griddata
is solid, local, fast.
Take a look at problem-with-2d-interpolation-in-scipy-non-rectangular-grid on SO.
You might want to look at the following interp method in basemap:
mpl_toolkits.basemap.interp
http://matplotlib.sourceforge.net/basemap/doc/html/api/basemap_api.html
unless you really need spline-based interpolation.

Categories

Resources