Large non-linear system of independent equations: Solve sequentially or stacked? - python

Say I have to solve for a large system of equations where
A_i = f(B_i)
B_i = g(A_i)
for many different i. Now, this is a system of equations which are only pair-wise dependent. The lm algorythm has proven most stable to solve this.
Now, I could solve these either independently (i.e. loop over i many scipy.optimize.root, or stack them all together and solve at the same time). I'm unsure which will be the fastest, and it's difficult to know generally. I'm having the following arguments for and against:
The algorythm initially numerically approximates the Jacobian at the provided guess, increasing dimensionality exponentially increases the time it takes to find the Jacobian (speaks against stacking)
Once the Jacobian is found, most of the updating is linear matrix algebra, and therefore should be faster if stacked.
Does that make sense? My conclusion would in that case be "if solving it takes a long time (bad guess or irregular function), stack them, if it's quick, do not stack".

I am not sure I understand correctly; when you say that they are pairwise dependent do you mean that the full system can be decomposed in a collection of small 2x2 systems? If so, you should definitely opt for solving the smaller systems. If not, can you provide some equations?

Related

SciPy rootfinding algorithm 'gives up' too fast

Is there any way to force 'hybr' method of scipy.optimize 'root' to keep working even after it finds that convergence its too slow? In my problem, the solver nearly reaches desired precision, but right before it, the algorithm terminates because of slow convergence... Is it possible to make 'hybr' more 'self-confident'?
I use the root-finding algorithm root from scipy.optimize module to solve a system of two algebraic, non-linear equations. Since the equations have to be solved many times for various parameter values it is important to find a numerical method that would be most stable for this problem.
I have compared the performance of all the methods provided by scipy.optimize module. To visualize their performance I have used the following procedure:
The algebraic equations were rearranged so that they have zero on the R.H.S.
Then, at each step made by the algorithm, the sum of the L.H.S. squared of all the equations was computed and printed.
In my case, the most efficient method is the default "hybr". Other build-in methods either do not converge at all or are significantly slower. Unfortunately, in some cases the desired method gives up too fast. Lowering the precision and/or providing additional options to the functions did not help.

Checkgradient without solving optimization problem in MATLAB

I have a relatively complicated function and I have calculated the analytical form of the Jacobian of this function. However, sometimes, I mess up this Jacobian.
MATLAB has a nice way to check for the accuracy of the Jacobian when using some optimization technique as described here.
The problem though is that it looks like MATLAB solves the optimization problem and then returns if the Jacobian was correct or not. This is extremely time consuming, especially considering that some of my optimization problems take hours or even days to compute.
Python has a somewhat similar function in scipy as described here which just compares the analytical gradient with a finite difference approximation of the gradient for some user provided input.
Is there anything I can do to check the accuracy of the Jacobian in MATLAB without having to solve the entire optimization problem?
A laborious but useful method I've used for this sort of thing is to check that the (numerical) integral of the purported derivative is the difference of the function at the end points. I have found this more convenient than comparing fractions like (f(x+h)-f(x))/h with f'(x) because of the difficulty of choosing h so that on the one hand h is not so small that the fraction is not dominated by rounding error and on the other h is small enough that the fraction should be close to f'(x)
In the case of a function F of a single variable, the assumption is that you have code f to evaluate F and fd say to evaluate F'. Then the test is, for various intervals [a,b] to look at the differences, which the fundamental theorem of calculus says should be 0,
Integral{ 0<=x<=b | fd(x)} - (f(b)-f(a))
with the integral being computed numerically. There is no need for the intervals to be small.
Part of the error will, of course, be due to the error in the numerical approximation to the integral. For this reason I tend to use, for example, and order 40 Gausss Legendre integrator.
For functions of several variables, you can test one variable at a time. For several functions, these can be tested one at a time.
I've found that these tests, which are of course by no means exhaustive, show up the kinds of mistakes that occur in computing derivatives quire readily.
Have you considered the usage of Complex step differentiation to check your gradient? See this description

Diagonalizing large sparse matrix with Python/Scipy

I am working with a large (complex) Hermitian matrix and I am trying to diagonalize it efficiently using Python/Scipy.
Using the eigh function from scipy.linalgit takes about 3s to generate and diagonalize a roughly 800x800 matrix and compute all the eigenvalues and eigenvectors.
The eigenvalues in my problem are symmetrically distributed around 0 and range from roughly -4 to 4. I only need the eigenvectors corresponding to the negative eigenvalues, though, which turns the range I am looking to calculate into [-4,0).
My matrix is sparse, so it's natural to use the scipy.sparsepackage and its functions to calculate the eigenvectors via eigsh, since it uses much less memory to store the matrix.
Also I can tell the program to only calculate the negative eigenvalues via which='SA'. The problem with this method is, that it takes now roughly 40s to compute half the eigenvalues/eigenvectors. I know, that the ARPACK algorithm is very inefficient when computing small eigenvalues, but I can't think of any other way to compute all the eigenvectors that I need.
Is there any way, to speed up the calculation? Maybe with using the shift-invert mode? I will have to do many, many diagonalizations and eventually increase the size of the matrix as well, so I am a bit lost at the moment.
I would really appreciate any help!
This question is probably better to ask on http://scicomp.stackexchange.com as it's more of a general math question, rather than specific to Scipy or related to programming.
If you need all eigenvectors, it does not make very much sense to use ARPACK. Since you need N/2 eigenvectors, your memory requirement is at least N*N/2 floats; and probably in practice more. Using eigh requires N*N+3*N floats. eigh is then within a factor of 2 from the minimum requirement, so the easiest solution is to stick with it.
If you can process the eigenvectors "on-line" so that you can throw the previous one away before processing the next, there are other approaches; look at the answers to similar questions on scicomp.

Parallel many dimensional optimization

I am building a script that generates input data [parameters] for another program to calculate. I would like to optimize the resulting data. Previously I have been using the numpy powell optimization. The psuedo code looks something like this.
def value(param):
run_program(param)
#Parse output
return value
scipy.optimize.fmin_powell(value,param)
This works great; however, it is incredibly slow as each iteration of the program can take days to run. What I would like to do is coarse grain parallelize this. So instead of running a single iteration at a time it would run (number of parameters)*2 at a time. For example:
Initial guess: param=[1,2,3,4,5]
#Modify guess by plus minus another matrix that is changeable at each iteration
jump=[1,1,1,1,1]
#Modify each variable plus/minus jump.
for num,a in enumerate(param):
new_param1=param[:]
new_param1[num]=new_param1[num]+jump[num]
run_program(new_param1)
new_param2=param[:]
new_param2[num]=new_param2[num]-jump[num]
run_program(new_param2)
#Wait until all programs are complete -> Parse Output
Output=[[value,param],...]
#Create new guess
#Repeat
Number of variable can range from 3-12 so something such as this could potentially speed up the code from taking a year down to a week. All variables are dependent on each other and I am only looking for local minima from the initial guess. I have started an implementation using hessian matrices; however, that is quite involved. Is there anything out there that either does this, is there a simpler way, or any suggestions to get started?
So the primary question is the following:
Is there an algorithm that takes a starting guess, generates multiple guesses, then uses those multiple guesses to create a new guess, and repeats until a threshold is found. Only analytic derivatives are available. What is a good way of going about this, is there something built already that does this, is there other options?
Thank you for your time.
As a small update I do have this working by calculating simple parabolas through the three points of each dimension and then using the minima as the next guess. This seems to work decently, but is not optimal. I am still looking for additional options.
Current best implementation is parallelizing the inner loop of powell's method.
Thank you everyone for your comments. Unfortunately it looks like there is simply not a concise answer to this particular problem. If I get around to implementing something that does this I will paste it here; however, as the project is not particularly important or the need of results pressing I will likely be content letting it take up a node for awhile.
I had the same problem while I was in the university, we had a fortran algorithm to calculate the efficiency of an engine based on a group of variables. At the time we use modeFRONTIER and if I recall correctly, none of the algorithms were able to generate multiple guesses.
The normal approach would be to have a DOE and there where some algorithms to generate the DOE to best fit your problem. After that we would run the single DOE entries parallely and an algorithm would "watch" the development of the optimizations showing the current best design.
Side note: If you don't have a cluster and needs more computing power HTCondor may help you.
Are derivatives of your goal function available? If yes, you can use gradient descent (old, slow but reliable) or conjugate gradient. If not, you can approximate the derivatives using finite differences and still use these methods. I think in general, if using finite difference approximations to the derivatives, you are much better off using conjugate gradients rather than Newton's method.
A more modern method is SPSA which is a stochastic method and doesn't require derivatives. SPSA requires much fewer evaluations of the goal function for the same rate of convergence than the finite difference approximation to conjugate gradients, for somewhat well-behaved problems.
There are two ways of estimating gradients, one easily parallelizable, one not:
around a single point, e.g. (f( x + h directioni ) - f(x)) / h;
this is easily parallelizable up to Ndim
"walking" gradient: walk from x0 in direction e0 to x1,
then from x1 in direction e1 to x2 ...;
this is sequential.
Minimizers that use gradients are highly developed, powerful, converge quadratically (on smooth enough functions).
The user-supplied gradient function
can of course be a parallel-gradient-estimator.
A few minimizers use "walking" gradients, among them Powell's method,
see Numerical Recipes p. 509.
So I'm confused: how do you parallelize its inner loop ?
I'd suggest scipy fmin_tnc
with a parallel-gradient-estimator, maybe using central, not one-sided, differences.
(Fwiw,
this
compares some of the scipy no-derivative optimizers on two 10-d functions; ymmv.)
I think what you want to do is use the threading capabilities built-in python.
Provided you your working function has more or less the same run-time whatever the params, it would be efficient.
Create 8 threads in a pool, run 8 instances of your function, get 8 result, run your optimisation algo to change the params with 8 results, repeat.... profit ?
If I haven't gotten wrong what you are asking, you are trying to minimize your function one parameter at the time.
you can obtain it by creating a set of function of a single argument, where for each function you freeze all the arguments except one.
Then you go on a loop optimizing each variable and updating the partial solution.
This method can speed up by a great deal function of many parameters where the energy landscape is not too complex (the dependency between the parameters is not too strong).
given a function
energy(*args) -> value
you create the guess and the function:
guess = [1,1,1,1]
funcs = [ lambda x,i=i: energy( guess[:i]+[x]+guess[i+1:] ) for i in range(len(guess)) ]
than you put them in a while cycle for the optimization
while convergence_condition:
for func in funcs:
optimize fot func
update the guess
check for convergence
This is a very simple yet effective method of simplify your minimization task. I can't really recall how this method is called, but A close look to the wikipedia entry on minimization should do the trick.
You could do parallel at two parts: 1) parallel the calculation of single iteration or 2) parallel start N initial guessing.
On 2) you need a job controller to control the N initial guess discovery threads.
Please add an extra output on your program: "lower bound" that indicates the output values of current input parameter's decents wont lower than this lower bound.
The initial N guessing thread can compete with each other; if any one thread's lower bound is higher than existing thread's current value, then this thread can be dropped by your job controller.
Parallelizing local optimizers is intrinsically limited: they start from a single initial point and try to work downhill, so later points depend on the values of previous evaluations. Nevertheless there are some avenues where a modest amount of parallelization can be added.
As another answer points out, if you need to evaluate your derivative using a finite-difference method, preferably with an adaptive step size, this may require many function evaluations, but the derivative with respect to each variable may be independent; you could maybe get a speedup by a factor of twice the number of dimensions of your problem. If you've got more processors than you know what to do with, you can use higher-order-accurate gradient formulae that require more (parallel) evaluations.
Some algorithms, at certain stages, use finite differences to estimate the Hessian matrix; this requires about half the square of the number of dimensions of your matrix, and all can be done in parallel.
Some algorithms may also be able to use more parallelism at a modest algorithmic cost. For example, quasi-Newton methods try to build an approximation of the Hessian matrix, often updating this by evaluating a gradient. They then take a step towards the minimum and evaluate a new gradient to update the Hessian. If you've got enough processors so that evaluating a Hessian is as fast as evaluating the function once, you could probably improve these by evaluating the Hessian at every step.
As far as implementations go, I'm afraid you're somewhat out of luck. There are a number of clever and/or well-tested implementations out there, but they're all, as far as I know, single-threaded. Your best bet is to use an algorithm that requires a gradient and compute your own in parallel. It's not that hard to write an adaptive one that runs in parallel and chooses sensible step sizes for its numerical derivatives.

0/1 Knapsack with few variables: which algorithm?

I have to implement the solution to a 0/1 Knapsack problem with constraints.
My problem will have in most cases few variables (~ 10-20, at most 50).
I recall from university that there are a number of algorithms that in many cases perform better than brute force (I'm thinking, for example, to a branch and bound algorithm).
Since my problem is relative small, I'm wondering if there is an appreciable advantange in terms of efficiency when using a sophisticate solution as opposed to brute force.
If it helps, I'm programming in Python.
You can either use pseudopolynomial algorithm, which uses dynamic programming, if the sum of weights is small enough. You just calculate, whether you can get weight X with first Y items for each X and Y.
This runs in time O(NS), where N is number of items and S is sum of weights.
Another possibility is to use meet-in-the middle approach.
Partition items into two halves and:
For the first half take every possible combination of items (there are 2^(N/2) possible combinations in each half) and store its weight in some set.
For the second half take every possible combination of items and check whether there is a combination in first half with suitable weight.
This should run in O(2^(N/2)) time.
Brute force stuff would work fine for 10 variables, but for, say, 40 you'd get some 1000'000'000'000 possible solutions, which would probably take too long to enumerate. I'd consider approximate algorithms, e.g. the polynomial time algorithm (see, e.g. http://math.mit.edu/~goemans/18434S06/knapsack-katherine.pdf) or use a search algorithm such as branch-and-bound, maybe with an additional heuristic.
Brute force algorithms will always return the best solutions. The problem with them is that in exponential order problems they quickly become not feasible.
If you are guaranteed to have up to 20 variables, you will test no more than 1 million solutions (2^20= 1M). Hence, brute force is feasible and no other algorithm will return a better solution.
Heuristics are great, but they should be used only when we have no exact solution to the problem. There is a great book that might help you: How to Solve it, by Michalewicz.

Categories

Resources