How to expand/flatten pandas dataframe efficiently - python

I have a dataset that on one of its columns, each element is a list.
I would like to flatten it, such that every list element would have a row of it's own.
I managed to solve it with iterrows, dict and append(see below) but it is too slow with my true DF that is large.
Is there a way to make things faster?
I can consider replacing the column with list per element in another format (maybe hierarchical df? ) if that would make more sense.
EDIT: I have many columns, and some might change in the future. The only thing i know for sure is that I have the fields column. That's why I used dict in my solution
A minimal example, creating a df to play with:
import StringIO
df = pd.read_csv(StringIO.StringIO("""
id|name|fields
1|abc|[qq,ww,rr]
2|efg|[zz,xx,rr]
"""), sep='|')
df.fields = df.fields.apply(lambda s: s[1:-1].split(','))
print df
resulting df:
id name fields
0 1 abc [qq, ww, rr]
1 2 efg [zz, xx, rr]
my (slow) solution:
new_df = pd.DataFrame(index=[], columns=df.columns)
for _, i in df.iterrows():
flattened_d = [dict(i.to_dict(), fields=c) for c in i.fields]
new_df = new_df.append(flattened_d )
Resulting with
id name fields
0 1.0 abc qq
1 1.0 abc ww
2 1.0 abc rr
0 2.0 efg zz
1 2.0 efg xx
2 2.0 efg rr

You can use numpy for better performance:
Both solutions use mainly numpy.repeat.
from itertools import chain
vals = df.fields.str.len()
df1 = pd.DataFrame({
"id": np.repeat(df.id.values,vals),
"name": np.repeat(df.name.values, vals),
"fields": list(chain.from_iterable(df.fields))})
df1 = df1.reindex_axis(df.columns, axis=1)
print (df1)
id name fields
0 1 abc qq
1 1 abc ww
2 1 abc rr
3 2 efg zz
4 2 efg xx
5 2 efg rr
Another solution:
df[['id','name']].values converts columns to numpy array and duplicate them by numpy.repeat, then stack values in lists by numpy.hstack and add it by numpy.column_stack.
df1 = pd.DataFrame(np.column_stack((df[['id','name']].values.
repeat(list(map(len,df.fields)),axis=0),np.hstack(df.fields))),
columns=df.columns)
print (df1)
id name fields
0 1 abc qq
1 1 abc ww
2 1 abc rr
3 2 efg zz
4 2 efg xx
5 2 efg rr
More general solution is filter out column fields and then add it to DataFrame constructor, because always last column:
cols = df.columns[df.columns != 'fields'].tolist()
print (cols)
['id', 'name']
df1 = pd.DataFrame(np.column_stack((df[cols].values.
repeat(list(map(len,df.fields)),axis=0),np.hstack(df.fields))),
columns=cols + ['fields'])
print (df1)
id name fields
0 1 abc qq
1 1 abc ww
2 1 abc rr
3 2 efg zz
4 2 efg xx
5 2 efg rr

If your CSV is many thousands of lines long, then using_string_methods (below)
may be faster than using_iterrows or using_repeat:
With
csv = 'id|name|fields'+("""
1|abc|[qq,ww,rr]
2|efg|[zz,xx,rr]"""*10000)
In [210]: %timeit using_string_methods(csv)
10 loops, best of 3: 100 ms per loop
In [211]: %timeit using_itertuples(csv)
10 loops, best of 3: 119 ms per loop
In [212]: %timeit using_repeat(csv)
10 loops, best of 3: 126 ms per loop
In [213]: %timeit using_iterrows(csv)
1 loop, best of 3: 1min 7s per loop
So for a 10000-line CSV, using_string_methods is over 600x faster than using_iterrows, and marginally faster than using_repeat.
import pandas as pd
try: from cStringIO import StringIO # for Python2
except ImportError: from io import StringIO # for Python3
def using_string_methods(csv):
df = pd.read_csv(StringIO(csv), sep='|', dtype=None)
other_columns = df.columns.difference(['fields']).tolist()
fields = (df['fields'].str.extract(r'\[(.*)\]', expand=False)
.str.split(r',', expand=True))
df = pd.concat([df.drop('fields', axis=1), fields], axis=1)
result = (pd.melt(df, id_vars=other_columns, value_name='field')
.drop('variable', axis=1))
result = result.dropna(subset=['field'])
return result
def using_iterrows(csv):
df = pd.read_csv(StringIO(csv), sep='|')
df.fields = df.fields.apply(lambda s: s[1:-1].split(','))
new_df = pd.DataFrame(index=[], columns=df.columns)
for _, i in df.iterrows():
flattened_d = [dict(i.to_dict(), fields=c) for c in i.fields]
new_df = new_df.append(flattened_d )
return new_df
def using_repeat(csv):
df = pd.read_csv(StringIO(csv), sep='|')
df.fields = df.fields.apply(lambda s: s[1:-1].split(','))
cols = df.columns[df.columns != 'fields'].tolist()
df1 = pd.DataFrame(np.column_stack(
(df[cols].values.repeat(list(map(len,df.fields)),axis=0),
np.hstack(df.fields))), columns=cols + ['fields'])
return df1
def using_itertuples(csv):
df = pd.read_csv(StringIO(csv), sep='|')
df.fields = df.fields.apply(lambda s: s[1:-1].split(','))
other_columns = df.columns.difference(['fields']).tolist()
data = []
for tup in df.itertuples():
data.extend([[getattr(tup, col) for col in other_columns]+[field]
for field in tup.fields])
return pd.DataFrame(data, columns=other_columns+['field'])
csv = 'id|name|fields'+("""
1|abc|[qq,ww,rr]
2|efg|[zz,xx,rr]"""*10000)
Generally, fast NumPy/Pandas operations are possible only when the data is in a
native NumPy dtype (such as int64 or float64, or strings.) Once you place
lists (a non-native NumPy dtype) in a DataFrame the jig is up -- you are forced
to use Python-speed loops to process the lists.
So to improve performance, you need to avoid placing lists in a DataFrame.
using_string_methods loads the fields data as strings:
df = pd.read_csv(StringIO(csv), sep='|', dtype=None)
and avoid using the apply method (which is generally as slow as a plain Python loop):
df.fields = df.fields.apply(lambda s: s[1:-1].split(','))
Instead, it uses faster vectorized string methods to break the strings up into
separate columns:
fields = (df['fields'].str.extract(r'\[(.*)\]', expand=False)
.str.split(r',', expand=True))
Once you have the fields in separate columns, you can use pd.melt to reshape
the DataFrame into the desired format.
pd.melt(df, id_vars=['id', 'name'], value_name='field')
By the way, you might be interested to see that with a slight modification using_iterrows can be just as fast as using_repeat. I show the changes in using_itertuples.
df.itertuples tends to be slightly faster than df.iterrows, but the difference is minor. The majority of the speed gain is achieved by avoiding calling df.append in a for-loop since that leads to quadratic copying.

You can break the lists in the fields column into multiple columns by applying pandas.Series to fields and then merging to id and name like so:
cols = df.columns[df.columns != 'fields'].tolist() # adapted from #jezrael
df = df[cols].join(df.fields.apply(pandas.Series))
Then you can melt the resulting new columns using set_index and stack, and then reseting the index:
df = df.set_index(cols).stack().reset_index()
Finally, drop the redundant column generated by reset_index and rename the generated column to "field":
df = df.drop(df.columns[-2], axis=1).rename(columns={0: 'field'})

Related

Merge columns of a specific row [duplicate]

How do I create an empty DataFrame, then add rows, one by one?
I created an empty DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
Then I can add a new row at the end and fill a single field with:
df = df._set_value(index=len(df), col='qty1', value=10.0)
It works for only one field at a time. What is a better way to add new row to df?
You can use df.loc[i], where the row with index i will be what you specify it to be in the dataframe.
>>> import pandas as pd
>>> from numpy.random import randint
>>> df = pd.DataFrame(columns=['lib', 'qty1', 'qty2'])
>>> for i in range(5):
>>> df.loc[i] = ['name' + str(i)] + list(randint(10, size=2))
>>> df
lib qty1 qty2
0 name0 3 3
1 name1 2 4
2 name2 2 8
3 name3 2 1
4 name4 9 6
In case you can get all data for the data frame upfront, there is a much faster approach than appending to a data frame:
Create a list of dictionaries in which each dictionary corresponds to an input data row.
Create a data frame from this list.
I had a similar task for which appending to a data frame row by row took 30 min, and creating a data frame from a list of dictionaries completed within seconds.
rows_list = []
for row in input_rows:
dict1 = {}
# get input row in dictionary format
# key = col_name
dict1.update(blah..)
rows_list.append(dict1)
df = pd.DataFrame(rows_list)
In the case of adding a lot of rows to dataframe, I am interested in performance. So I tried the four most popular methods and checked their speed.
Performance
Using .append (NPE's answer)
Using .loc (fred's answer)
Using .loc with preallocating (FooBar's answer)
Using dict and create DataFrame in the end (ShikharDua's answer)
Runtime results (in seconds):
Approach
1000 rows
5000 rows
10 000 rows
.append
0.69
3.39
6.78
.loc without prealloc
0.74
3.90
8.35
.loc with prealloc
0.24
2.58
8.70
dict
0.012
0.046
0.084
So I use addition through the dictionary for myself.
Code:
import pandas as pd
import numpy as np
import time
del df1, df2, df3, df4
numOfRows = 1000
# append
startTime = time.perf_counter()
df1 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows-4):
df1 = df1.append( dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']), ignore_index=True)
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df1.shape)
# .loc w/o prealloc
startTime = time.perf_counter()
df2 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows):
df2.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df2.shape)
# .loc with prealloc
df3 = pd.DataFrame(index=np.arange(0, numOfRows), columns=['A', 'B', 'C', 'D', 'E'] )
startTime = time.perf_counter()
for i in range( 1,numOfRows):
df3.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df3.shape)
# dict
startTime = time.perf_counter()
row_list = []
for i in range (0,5):
row_list.append(dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']))
for i in range( 1,numOfRows-4):
dict1 = dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E'])
row_list.append(dict1)
df4 = pd.DataFrame(row_list, columns=['A','B','C','D','E'])
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df4.shape)
P.S.: I believe my realization isn't perfect, and maybe there is some optimization that could be done.
You could use pandas.concat(). For details and examples, see Merge, join, and concatenate.
For example:
def append_row(df, row):
return pd.concat([
df,
pd.DataFrame([row], columns=row.index)]
).reset_index(drop=True)
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
new_row = pd.Series({'lib':'A', 'qty1':1, 'qty2': 2})
df = append_row(df, new_row)
NEVER grow a DataFrame!
Yes, people have already explained that you should NEVER grow a DataFrame, and that you should append your data to a list and convert it to a DataFrame once at the end. But do you understand why?
Here are the most important reasons, taken from my post here.
It is always cheaper/faster to append to a list and create a DataFrame in one go.
Lists take up less memory and are a much lighter data structure to work with, append, and remove.
dtypes are automatically inferred for your data. On the flip side, creating an empty frame of NaNs will automatically make them object, which is bad.
An index is automatically created for you, instead of you having to take care to assign the correct index to the row you are appending.
This is The Right Way™ to accumulate your data
data = []
for a, b, c in some_function_that_yields_data():
data.append([a, b, c])
df = pd.DataFrame(data, columns=['A', 'B', 'C'])
These options are horrible
append or concat inside a loop
append and concat aren't inherently bad in isolation. The
problem starts when you iteratively call them inside a loop - this
results in quadratic memory usage.
# Creates empty DataFrame and appends
df = pd.DataFrame(columns=['A', 'B', 'C'])
for a, b, c in some_function_that_yields_data():
df = df.append({'A': i, 'B': b, 'C': c}, ignore_index=True)
# This is equally bad:
# df = pd.concat(
# [df, pd.Series({'A': i, 'B': b, 'C': c})],
# ignore_index=True)
Empty DataFrame of NaNs
Never create a DataFrame of NaNs as the columns are initialized with
object (slow, un-vectorizable dtype).
# Creates DataFrame of NaNs and overwrites values.
df = pd.DataFrame(columns=['A', 'B', 'C'], index=range(5))
for a, b, c in some_function_that_yields_data():
df.loc[len(df)] = [a, b, c]
The Proof is in the Pudding
Timing these methods is the fastest way to see just how much they differ in terms of their memory and utility.
Benchmarking code for reference.
It's posts like this that remind me why I'm a part of this community. People understand the importance of teaching folks getting the right answer with the right code, not the right answer with wrong code. Now you might argue that it is not an issue to use loc or append if you're only adding a single row to your DataFrame. However, people often look to this question to add more than just one row - often the requirement is to iteratively add a row inside a loop using data that comes from a function (see related question). In that case it is important to understand that iteratively growing a DataFrame is not a good idea.
If you know the number of entries ex ante, you should preallocate the space by also providing the index (taking the data example from a different answer):
import pandas as pd
import numpy as np
# we know we're gonna have 5 rows of data
numberOfRows = 5
# create dataframe
df = pd.DataFrame(index=np.arange(0, numberOfRows), columns=('lib', 'qty1', 'qty2') )
# now fill it up row by row
for x in np.arange(0, numberOfRows):
#loc or iloc both work here since the index is natural numbers
df.loc[x] = [np.random.randint(-1,1) for n in range(3)]
In[23]: df
Out[23]:
lib qty1 qty2
0 -1 -1 -1
1 0 0 0
2 -1 0 -1
3 0 -1 0
4 -1 0 0
Speed comparison
In[30]: %timeit tryThis() # function wrapper for this answer
In[31]: %timeit tryOther() # function wrapper without index (see, for example, #fred)
1000 loops, best of 3: 1.23 ms per loop
100 loops, best of 3: 2.31 ms per loop
And - as from the comments - with a size of 6000, the speed difference becomes even larger:
Increasing the size of the array (12) and the number of rows (500) makes
the speed difference more striking: 313ms vs 2.29s
mycolumns = ['A', 'B']
df = pd.DataFrame(columns=mycolumns)
rows = [[1,2],[3,4],[5,6]]
for row in rows:
df.loc[len(df)] = row
You can append a single row as a dictionary using the ignore_index option.
>>> f = pandas.DataFrame(data = {'Animal':['cow','horse'], 'Color':['blue', 'red']})
>>> f
Animal Color
0 cow blue
1 horse red
>>> f.append({'Animal':'mouse', 'Color':'black'}, ignore_index=True)
Animal Color
0 cow blue
1 horse red
2 mouse black
For efficient appending, see How to add an extra row to a pandas dataframe and Setting With Enlargement.
Add rows through loc/ix on non existing key index data. For example:
In [1]: se = pd.Series([1,2,3])
In [2]: se
Out[2]:
0 1
1 2
2 3
dtype: int64
In [3]: se[5] = 5.
In [4]: se
Out[4]:
0 1.0
1 2.0
2 3.0
5 5.0
dtype: float64
Or:
In [1]: dfi = pd.DataFrame(np.arange(6).reshape(3,2),
.....: columns=['A','B'])
.....:
In [2]: dfi
Out[2]:
A B
0 0 1
1 2 3
2 4 5
In [3]: dfi.loc[:,'C'] = dfi.loc[:,'A']
In [4]: dfi
Out[4]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
In [5]: dfi.loc[3] = 5
In [6]: dfi
Out[6]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5
For the sake of a Pythonic way:
res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
res = res.append([{'qty1':10.0}], ignore_index=True)
print(res.head())
lib qty1 qty2
0 NaN 10.0 NaN
You can also build up a list of lists and convert it to a dataframe -
import pandas as pd
columns = ['i','double','square']
rows = []
for i in range(6):
row = [i, i*2, i*i]
rows.append(row)
df = pd.DataFrame(rows, columns=columns)
giving
i double square
0 0 0 0
1 1 2 1
2 2 4 4
3 3 6 9
4 4 8 16
5 5 10 25
If you always want to add a new row at the end, use this:
df.loc[len(df)] = ['name5', 9, 0]
I figured out a simple and nice way:
>>> df
A B C
one 1 2 3
>>> df.loc["two"] = [4,5,6]
>>> df
A B C
one 1 2 3
two 4 5 6
Note the caveat with performance as noted in the comments.
This is not an answer to the OP question, but a toy example to illustrate ShikharDua's answer which I found very useful.
While this fragment is trivial, in the actual data I had 1,000s of rows, and many columns, and I wished to be able to group by different columns and then perform the statistics below for more than one target column. So having a reliable method for building the data frame one row at a time was a great convenience. Thank you ShikharDua!
import pandas as pd
BaseData = pd.DataFrame({ 'Customer' : ['Acme','Mega','Acme','Acme','Mega','Acme'],
'Territory' : ['West','East','South','West','East','South'],
'Product' : ['Econ','Luxe','Econ','Std','Std','Econ']})
BaseData
columns = ['Customer','Num Unique Products', 'List Unique Products']
rows_list=[]
for name, group in BaseData.groupby('Customer'):
RecordtoAdd={} #initialise an empty dict
RecordtoAdd.update({'Customer' : name}) #
RecordtoAdd.update({'Num Unique Products' : len(pd.unique(group['Product']))})
RecordtoAdd.update({'List Unique Products' : pd.unique(group['Product'])})
rows_list.append(RecordtoAdd)
AnalysedData = pd.DataFrame(rows_list)
print('Base Data : \n',BaseData,'\n\n Analysed Data : \n',AnalysedData)
You can use a generator object to create a Dataframe, which will be more memory efficient over the list.
num = 10
# Generator function to generate generator object
def numgen_func(num):
for i in range(num):
yield ('name_{}'.format(i), (i*i), (i*i*i))
# Generator expression to generate generator object (Only once data get populated, can not be re used)
numgen_expression = (('name_{}'.format(i), (i*i), (i*i*i)) for i in range(num) )
df = pd.DataFrame(data=numgen_func(num), columns=('lib', 'qty1', 'qty2'))
To add raw to existing DataFrame you can use append method.
df = df.append([{ 'lib': "name_20", 'qty1': 20, 'qty2': 400 }])
Instead of a list of dictionaries as in ShikharDua's answer (row-based), we can also represent our table as a dictionary of lists (column-based), where each list stores one column in row-order, given we know our columns beforehand. At the end we construct our DataFrame once.
In both cases, the dictionary keys are always the column names. Row order is stored implicitly as order in a list. For c columns and n rows, this uses one dictionary of c lists, versus one list of n dictionaries. The list-of-dictionaries method has each dictionary storing all keys redundantly and requires creating a new dictionary for every row. Here we only append to lists, which overall is the same time complexity (adding entries to list and dictionary are both amortized constant time) but may have less overhead due to being a simple operation.
# Current data
data = {"Animal":["cow", "horse"], "Color":["blue", "red"]}
# Adding a new row (be careful to ensure every column gets another value)
data["Animal"].append("mouse")
data["Color"].append("black")
# At the end, construct our DataFrame
df = pd.DataFrame(data)
# Animal Color
# 0 cow blue
# 1 horse red
# 2 mouse black
Create a new record (data frame) and add to old_data_frame.
Pass a list of values and the corresponding column names to create a new_record (data_frame):
new_record = pd.DataFrame([[0, 'abcd', 0, 1, 123]], columns=['a', 'b', 'c', 'd', 'e'])
old_data_frame = pd.concat([old_data_frame, new_record])
Here is the way to add/append a row in a Pandas DataFrame:
def add_row(df, row):
df.loc[-1] = row
df.index = df.index + 1
return df.sort_index()
add_row(df, [1,2,3])
It can be used to insert/append a row in an empty or populated Pandas DataFrame.
If you want to add a row at the end, append it as a list:
valuestoappend = [va1, val2, val3]
res = res.append(pd.Series(valuestoappend, index = ['lib', 'qty1', 'qty2']), ignore_index = True)
Another way to do it (probably not very performant):
# add a row
def add_row(df, row):
colnames = list(df.columns)
ncol = len(colnames)
assert ncol == len(row), "Length of row must be the same as width of DataFrame: %s" % row
return df.append(pd.DataFrame([row], columns=colnames))
You can also enhance the DataFrame class like this:
import pandas as pd
def add_row(self, row):
self.loc[len(self.index)] = row
pd.DataFrame.add_row = add_row
All you need is loc[df.shape[0]] or loc[len(df)]
# Assuming your df has 4 columns (str, int, str, bool)
df.loc[df.shape[0]] = ['col1Value', 100, 'col3Value', False]
or
df.loc[len(df)] = ['col1Value', 100, 'col3Value', False]
You can concatenate two DataFrames for this. I basically came across this problem to add a new row to an existing DataFrame with a character index (not numeric).
So, I input the data for a new row in a duct() and index in a list.
new_dict = {put input for new row here}
new_list = [put your index here]
new_df = pd.DataFrame(data=new_dict, index=new_list)
df = pd.concat([existing_df, new_df])
initial_data = {'lib': np.array([1,2,3,4]), 'qty1': [1,2,3,4], 'qty2': [1,2,3,4]}
df = pd.DataFrame(initial_data)
df
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
val_1 = [10]
val_2 = [14]
val_3 = [20]
df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
0 10 14 20
You can use a for loop to iterate through values or can add arrays of values.
val_1 = [10, 11, 12, 13]
val_2 = [14, 15, 16, 17]
val_3 = [20, 21, 22, 43]
df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
0 10 14 20
1 11 15 21
2 12 16 22
3 13 17 43
Make it simple. By taking a list as input which will be appended as a row in the data-frame:
import pandas as pd
res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
for i in range(5):
res_list = list(map(int, input().split()))
res = res.append(pd.Series(res_list, index=['lib', 'qty1', 'qty2']), ignore_index=True)
pandas.DataFrame.append
DataFrame.append(self, other, ignore_index=False, verify_integrity=False, sort=False) → 'DataFrame'
Code
df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
df.append(df2)
With ignore_index set to True:
df.append(df2, ignore_index=True)
If you have a data frame df and want to add a list new_list as a new row to df, you can simply do:
df.loc[len(df)] = new_list
If you want to add a new data frame new_df under data frame df, then you can use:
df.append(new_df)
We often see the construct df.loc[subscript] = … to assign to one DataFrame row. Mikhail_Sam posted benchmarks containing, among others, this construct as well as the method using dict and create DataFrame in the end. He found the latter to be the fastest by far.
But if we replace the df3.loc[i] = … (with preallocated DataFrame) in his code with df3.values[i] = …, the outcome changes significantly, in that that method performs similar to the one using dict. So we should more often take the use of df.values[subscript] = … into consideration. However note that .values takes a zero-based subscript, which may be different from the DataFrame.index.
Before going to add a row, we have to convert the dataframe to a dictionary. There you can see the keys as columns in the dataframe and the values of the columns are again stored in the dictionary, but there the key for every column is the index number in the dataframe.
That idea makes me to write the below code.
df2 = df.to_dict()
values = ["s_101", "hyderabad", 10, 20, 16, 13, 15, 12, 12, 13, 25, 26, 25, 27, "good", "bad"] # This is the total row that we are going to add
i = 0
for x in df.columns: # Here df.columns gives us the main dictionary key
df2[x][101] = values[i] # Here the 101 is our index number. It is also the key of the sub dictionary
i += 1
If all data in your Dataframe has the same dtype you might use a NumPy array. You can write rows directly into the predefined array and convert it to a dataframe at the end.
It seems to be even faster than converting a list of dicts.
import pandas as pd
import numpy as np
from string import ascii_uppercase
startTime = time.perf_counter()
numcols, numrows = 5, 10000
npdf = np.ones((numrows, numcols))
for row in range(numrows):
npdf[row, 0:] = np.random.randint(0, 100, (1, numcols))
df5 = pd.DataFrame(npdf, columns=list(ascii_uppercase[:numcols]))
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df5.shape)
This code snippet uses a list of dictionaries to update the data frame. It adds on to ShikharDua's and Mikhail_Sam's answers.
import pandas as pd
colour = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]
dict1={}
feat_list=[]
for x in colour:
for y in fruits:
# print(x, y)
dict1 = dict([('x',x),('y',y)])
# print(f'dict 1 {dict1}')
feat_list.append(dict1)
# print(f'feat_list {feat_list}')
feat_df=pd.DataFrame(feat_list)
feat_df.to_csv('feat1.csv')

How I can merge the columns into a single column in Python?

I want to merge 3 columns into a single column. I have tried changing the column types. However, I could not do it.
For example, I have 3 columns such as A: {1,2,4}, B:{3,4,4}, C:{1,1,1}
Output expected: ABC Column {131, 241, 441}
My inputs are like this:
df['ABC'] = df['A'].map(str) + df['B'].map(str) + df['C'].map(str)
df.head()
ABC {13.01.0 , 24.01.0, 44.01.0}
The type of ABC seems object and I could not change via str, int.
df['ABC'].apply(str)
Also, I realized that there are NaN values in A, B, C column. Is it possible to merge these even with NaN values?
# Example
import pandas as pd
import numpy as np
df = pd.DataFrame()
# Considering NaN's in the data-frame
df['colA'] = [1,2,4, np.NaN,5]
df['colB'] = [3,4,4,3,np.NaN]
df['colC'] = [1,1,1,4,1]
# Using pd.isna() to check for NaN values in the columns
df['colA'] = df['colA'].apply(lambda x: x if pd.isna(x) else str(int(x)))
df['colB'] = df['colB'].apply(lambda x: x if pd.isna(x) else str(int(x)))
df['colC'] = df['colC'].apply(lambda x: x if pd.isna(x) else str(int(x)))
# Filling the NaN values with a blank space
df = df.fillna('')
# Transform columns into string
df = df.astype(str)
# Concatenating all together
df['ABC'] = df.sum(axis=1)
A workaround your NaN problem could look like this but now NaN will be 0
import numpy as np
df = pd.DataFrame({'A': [1,2,4, np.nan], 'B':[3,4,4,4], 'C':[1,np.nan,1, 3]})
df = df.replace(np.nan, 0, regex=True).astype(int).applymap(str)
df['ABC'] = df['A'] + df['B'] + df['C']
output
A B C ABC
0 1 3 1 131
1 2 4 0 240
2 4 4 1 441
3 0 4 3 043

How to append comments as a row in pandas dataframe [duplicate]

How do I create an empty DataFrame, then add rows, one by one?
I created an empty DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
Then I can add a new row at the end and fill a single field with:
df = df._set_value(index=len(df), col='qty1', value=10.0)
It works for only one field at a time. What is a better way to add new row to df?
You can use df.loc[i], where the row with index i will be what you specify it to be in the dataframe.
>>> import pandas as pd
>>> from numpy.random import randint
>>> df = pd.DataFrame(columns=['lib', 'qty1', 'qty2'])
>>> for i in range(5):
>>> df.loc[i] = ['name' + str(i)] + list(randint(10, size=2))
>>> df
lib qty1 qty2
0 name0 3 3
1 name1 2 4
2 name2 2 8
3 name3 2 1
4 name4 9 6
In case you can get all data for the data frame upfront, there is a much faster approach than appending to a data frame:
Create a list of dictionaries in which each dictionary corresponds to an input data row.
Create a data frame from this list.
I had a similar task for which appending to a data frame row by row took 30 min, and creating a data frame from a list of dictionaries completed within seconds.
rows_list = []
for row in input_rows:
dict1 = {}
# get input row in dictionary format
# key = col_name
dict1.update(blah..)
rows_list.append(dict1)
df = pd.DataFrame(rows_list)
In the case of adding a lot of rows to dataframe, I am interested in performance. So I tried the four most popular methods and checked their speed.
Performance
Using .append (NPE's answer)
Using .loc (fred's answer)
Using .loc with preallocating (FooBar's answer)
Using dict and create DataFrame in the end (ShikharDua's answer)
Runtime results (in seconds):
Approach
1000 rows
5000 rows
10 000 rows
.append
0.69
3.39
6.78
.loc without prealloc
0.74
3.90
8.35
.loc with prealloc
0.24
2.58
8.70
dict
0.012
0.046
0.084
So I use addition through the dictionary for myself.
Code:
import pandas as pd
import numpy as np
import time
del df1, df2, df3, df4
numOfRows = 1000
# append
startTime = time.perf_counter()
df1 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows-4):
df1 = df1.append( dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']), ignore_index=True)
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df1.shape)
# .loc w/o prealloc
startTime = time.perf_counter()
df2 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows):
df2.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df2.shape)
# .loc with prealloc
df3 = pd.DataFrame(index=np.arange(0, numOfRows), columns=['A', 'B', 'C', 'D', 'E'] )
startTime = time.perf_counter()
for i in range( 1,numOfRows):
df3.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df3.shape)
# dict
startTime = time.perf_counter()
row_list = []
for i in range (0,5):
row_list.append(dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']))
for i in range( 1,numOfRows-4):
dict1 = dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E'])
row_list.append(dict1)
df4 = pd.DataFrame(row_list, columns=['A','B','C','D','E'])
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df4.shape)
P.S.: I believe my realization isn't perfect, and maybe there is some optimization that could be done.
You could use pandas.concat(). For details and examples, see Merge, join, and concatenate.
For example:
def append_row(df, row):
return pd.concat([
df,
pd.DataFrame([row], columns=row.index)]
).reset_index(drop=True)
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
new_row = pd.Series({'lib':'A', 'qty1':1, 'qty2': 2})
df = append_row(df, new_row)
NEVER grow a DataFrame!
Yes, people have already explained that you should NEVER grow a DataFrame, and that you should append your data to a list and convert it to a DataFrame once at the end. But do you understand why?
Here are the most important reasons, taken from my post here.
It is always cheaper/faster to append to a list and create a DataFrame in one go.
Lists take up less memory and are a much lighter data structure to work with, append, and remove.
dtypes are automatically inferred for your data. On the flip side, creating an empty frame of NaNs will automatically make them object, which is bad.
An index is automatically created for you, instead of you having to take care to assign the correct index to the row you are appending.
This is The Right Way™ to accumulate your data
data = []
for a, b, c in some_function_that_yields_data():
data.append([a, b, c])
df = pd.DataFrame(data, columns=['A', 'B', 'C'])
These options are horrible
append or concat inside a loop
append and concat aren't inherently bad in isolation. The
problem starts when you iteratively call them inside a loop - this
results in quadratic memory usage.
# Creates empty DataFrame and appends
df = pd.DataFrame(columns=['A', 'B', 'C'])
for a, b, c in some_function_that_yields_data():
df = df.append({'A': i, 'B': b, 'C': c}, ignore_index=True)
# This is equally bad:
# df = pd.concat(
# [df, pd.Series({'A': i, 'B': b, 'C': c})],
# ignore_index=True)
Empty DataFrame of NaNs
Never create a DataFrame of NaNs as the columns are initialized with
object (slow, un-vectorizable dtype).
# Creates DataFrame of NaNs and overwrites values.
df = pd.DataFrame(columns=['A', 'B', 'C'], index=range(5))
for a, b, c in some_function_that_yields_data():
df.loc[len(df)] = [a, b, c]
The Proof is in the Pudding
Timing these methods is the fastest way to see just how much they differ in terms of their memory and utility.
Benchmarking code for reference.
It's posts like this that remind me why I'm a part of this community. People understand the importance of teaching folks getting the right answer with the right code, not the right answer with wrong code. Now you might argue that it is not an issue to use loc or append if you're only adding a single row to your DataFrame. However, people often look to this question to add more than just one row - often the requirement is to iteratively add a row inside a loop using data that comes from a function (see related question). In that case it is important to understand that iteratively growing a DataFrame is not a good idea.
If you know the number of entries ex ante, you should preallocate the space by also providing the index (taking the data example from a different answer):
import pandas as pd
import numpy as np
# we know we're gonna have 5 rows of data
numberOfRows = 5
# create dataframe
df = pd.DataFrame(index=np.arange(0, numberOfRows), columns=('lib', 'qty1', 'qty2') )
# now fill it up row by row
for x in np.arange(0, numberOfRows):
#loc or iloc both work here since the index is natural numbers
df.loc[x] = [np.random.randint(-1,1) for n in range(3)]
In[23]: df
Out[23]:
lib qty1 qty2
0 -1 -1 -1
1 0 0 0
2 -1 0 -1
3 0 -1 0
4 -1 0 0
Speed comparison
In[30]: %timeit tryThis() # function wrapper for this answer
In[31]: %timeit tryOther() # function wrapper without index (see, for example, #fred)
1000 loops, best of 3: 1.23 ms per loop
100 loops, best of 3: 2.31 ms per loop
And - as from the comments - with a size of 6000, the speed difference becomes even larger:
Increasing the size of the array (12) and the number of rows (500) makes
the speed difference more striking: 313ms vs 2.29s
mycolumns = ['A', 'B']
df = pd.DataFrame(columns=mycolumns)
rows = [[1,2],[3,4],[5,6]]
for row in rows:
df.loc[len(df)] = row
You can append a single row as a dictionary using the ignore_index option.
>>> f = pandas.DataFrame(data = {'Animal':['cow','horse'], 'Color':['blue', 'red']})
>>> f
Animal Color
0 cow blue
1 horse red
>>> f.append({'Animal':'mouse', 'Color':'black'}, ignore_index=True)
Animal Color
0 cow blue
1 horse red
2 mouse black
For efficient appending, see How to add an extra row to a pandas dataframe and Setting With Enlargement.
Add rows through loc/ix on non existing key index data. For example:
In [1]: se = pd.Series([1,2,3])
In [2]: se
Out[2]:
0 1
1 2
2 3
dtype: int64
In [3]: se[5] = 5.
In [4]: se
Out[4]:
0 1.0
1 2.0
2 3.0
5 5.0
dtype: float64
Or:
In [1]: dfi = pd.DataFrame(np.arange(6).reshape(3,2),
.....: columns=['A','B'])
.....:
In [2]: dfi
Out[2]:
A B
0 0 1
1 2 3
2 4 5
In [3]: dfi.loc[:,'C'] = dfi.loc[:,'A']
In [4]: dfi
Out[4]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
In [5]: dfi.loc[3] = 5
In [6]: dfi
Out[6]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5
For the sake of a Pythonic way:
res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
res = res.append([{'qty1':10.0}], ignore_index=True)
print(res.head())
lib qty1 qty2
0 NaN 10.0 NaN
You can also build up a list of lists and convert it to a dataframe -
import pandas as pd
columns = ['i','double','square']
rows = []
for i in range(6):
row = [i, i*2, i*i]
rows.append(row)
df = pd.DataFrame(rows, columns=columns)
giving
i double square
0 0 0 0
1 1 2 1
2 2 4 4
3 3 6 9
4 4 8 16
5 5 10 25
If you always want to add a new row at the end, use this:
df.loc[len(df)] = ['name5', 9, 0]
I figured out a simple and nice way:
>>> df
A B C
one 1 2 3
>>> df.loc["two"] = [4,5,6]
>>> df
A B C
one 1 2 3
two 4 5 6
Note the caveat with performance as noted in the comments.
This is not an answer to the OP question, but a toy example to illustrate ShikharDua's answer which I found very useful.
While this fragment is trivial, in the actual data I had 1,000s of rows, and many columns, and I wished to be able to group by different columns and then perform the statistics below for more than one target column. So having a reliable method for building the data frame one row at a time was a great convenience. Thank you ShikharDua!
import pandas as pd
BaseData = pd.DataFrame({ 'Customer' : ['Acme','Mega','Acme','Acme','Mega','Acme'],
'Territory' : ['West','East','South','West','East','South'],
'Product' : ['Econ','Luxe','Econ','Std','Std','Econ']})
BaseData
columns = ['Customer','Num Unique Products', 'List Unique Products']
rows_list=[]
for name, group in BaseData.groupby('Customer'):
RecordtoAdd={} #initialise an empty dict
RecordtoAdd.update({'Customer' : name}) #
RecordtoAdd.update({'Num Unique Products' : len(pd.unique(group['Product']))})
RecordtoAdd.update({'List Unique Products' : pd.unique(group['Product'])})
rows_list.append(RecordtoAdd)
AnalysedData = pd.DataFrame(rows_list)
print('Base Data : \n',BaseData,'\n\n Analysed Data : \n',AnalysedData)
You can use a generator object to create a Dataframe, which will be more memory efficient over the list.
num = 10
# Generator function to generate generator object
def numgen_func(num):
for i in range(num):
yield ('name_{}'.format(i), (i*i), (i*i*i))
# Generator expression to generate generator object (Only once data get populated, can not be re used)
numgen_expression = (('name_{}'.format(i), (i*i), (i*i*i)) for i in range(num) )
df = pd.DataFrame(data=numgen_func(num), columns=('lib', 'qty1', 'qty2'))
To add raw to existing DataFrame you can use append method.
df = df.append([{ 'lib': "name_20", 'qty1': 20, 'qty2': 400 }])
Instead of a list of dictionaries as in ShikharDua's answer (row-based), we can also represent our table as a dictionary of lists (column-based), where each list stores one column in row-order, given we know our columns beforehand. At the end we construct our DataFrame once.
In both cases, the dictionary keys are always the column names. Row order is stored implicitly as order in a list. For c columns and n rows, this uses one dictionary of c lists, versus one list of n dictionaries. The list-of-dictionaries method has each dictionary storing all keys redundantly and requires creating a new dictionary for every row. Here we only append to lists, which overall is the same time complexity (adding entries to list and dictionary are both amortized constant time) but may have less overhead due to being a simple operation.
# Current data
data = {"Animal":["cow", "horse"], "Color":["blue", "red"]}
# Adding a new row (be careful to ensure every column gets another value)
data["Animal"].append("mouse")
data["Color"].append("black")
# At the end, construct our DataFrame
df = pd.DataFrame(data)
# Animal Color
# 0 cow blue
# 1 horse red
# 2 mouse black
Create a new record (data frame) and add to old_data_frame.
Pass a list of values and the corresponding column names to create a new_record (data_frame):
new_record = pd.DataFrame([[0, 'abcd', 0, 1, 123]], columns=['a', 'b', 'c', 'd', 'e'])
old_data_frame = pd.concat([old_data_frame, new_record])
Here is the way to add/append a row in a Pandas DataFrame:
def add_row(df, row):
df.loc[-1] = row
df.index = df.index + 1
return df.sort_index()
add_row(df, [1,2,3])
It can be used to insert/append a row in an empty or populated Pandas DataFrame.
If you want to add a row at the end, append it as a list:
valuestoappend = [va1, val2, val3]
res = res.append(pd.Series(valuestoappend, index = ['lib', 'qty1', 'qty2']), ignore_index = True)
Another way to do it (probably not very performant):
# add a row
def add_row(df, row):
colnames = list(df.columns)
ncol = len(colnames)
assert ncol == len(row), "Length of row must be the same as width of DataFrame: %s" % row
return df.append(pd.DataFrame([row], columns=colnames))
You can also enhance the DataFrame class like this:
import pandas as pd
def add_row(self, row):
self.loc[len(self.index)] = row
pd.DataFrame.add_row = add_row
All you need is loc[df.shape[0]] or loc[len(df)]
# Assuming your df has 4 columns (str, int, str, bool)
df.loc[df.shape[0]] = ['col1Value', 100, 'col3Value', False]
or
df.loc[len(df)] = ['col1Value', 100, 'col3Value', False]
You can concatenate two DataFrames for this. I basically came across this problem to add a new row to an existing DataFrame with a character index (not numeric).
So, I input the data for a new row in a duct() and index in a list.
new_dict = {put input for new row here}
new_list = [put your index here]
new_df = pd.DataFrame(data=new_dict, index=new_list)
df = pd.concat([existing_df, new_df])
initial_data = {'lib': np.array([1,2,3,4]), 'qty1': [1,2,3,4], 'qty2': [1,2,3,4]}
df = pd.DataFrame(initial_data)
df
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
val_1 = [10]
val_2 = [14]
val_3 = [20]
df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
0 10 14 20
You can use a for loop to iterate through values or can add arrays of values.
val_1 = [10, 11, 12, 13]
val_2 = [14, 15, 16, 17]
val_3 = [20, 21, 22, 43]
df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
0 10 14 20
1 11 15 21
2 12 16 22
3 13 17 43
Make it simple. By taking a list as input which will be appended as a row in the data-frame:
import pandas as pd
res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
for i in range(5):
res_list = list(map(int, input().split()))
res = res.append(pd.Series(res_list, index=['lib', 'qty1', 'qty2']), ignore_index=True)
pandas.DataFrame.append
DataFrame.append(self, other, ignore_index=False, verify_integrity=False, sort=False) → 'DataFrame'
Code
df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
df.append(df2)
With ignore_index set to True:
df.append(df2, ignore_index=True)
If you have a data frame df and want to add a list new_list as a new row to df, you can simply do:
df.loc[len(df)] = new_list
If you want to add a new data frame new_df under data frame df, then you can use:
df.append(new_df)
We often see the construct df.loc[subscript] = … to assign to one DataFrame row. Mikhail_Sam posted benchmarks containing, among others, this construct as well as the method using dict and create DataFrame in the end. He found the latter to be the fastest by far.
But if we replace the df3.loc[i] = … (with preallocated DataFrame) in his code with df3.values[i] = …, the outcome changes significantly, in that that method performs similar to the one using dict. So we should more often take the use of df.values[subscript] = … into consideration. However note that .values takes a zero-based subscript, which may be different from the DataFrame.index.
Before going to add a row, we have to convert the dataframe to a dictionary. There you can see the keys as columns in the dataframe and the values of the columns are again stored in the dictionary, but there the key for every column is the index number in the dataframe.
That idea makes me to write the below code.
df2 = df.to_dict()
values = ["s_101", "hyderabad", 10, 20, 16, 13, 15, 12, 12, 13, 25, 26, 25, 27, "good", "bad"] # This is the total row that we are going to add
i = 0
for x in df.columns: # Here df.columns gives us the main dictionary key
df2[x][101] = values[i] # Here the 101 is our index number. It is also the key of the sub dictionary
i += 1
If all data in your Dataframe has the same dtype you might use a NumPy array. You can write rows directly into the predefined array and convert it to a dataframe at the end.
It seems to be even faster than converting a list of dicts.
import pandas as pd
import numpy as np
from string import ascii_uppercase
startTime = time.perf_counter()
numcols, numrows = 5, 10000
npdf = np.ones((numrows, numcols))
for row in range(numrows):
npdf[row, 0:] = np.random.randint(0, 100, (1, numcols))
df5 = pd.DataFrame(npdf, columns=list(ascii_uppercase[:numcols]))
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df5.shape)
This code snippet uses a list of dictionaries to update the data frame. It adds on to ShikharDua's and Mikhail_Sam's answers.
import pandas as pd
colour = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]
dict1={}
feat_list=[]
for x in colour:
for y in fruits:
# print(x, y)
dict1 = dict([('x',x),('y',y)])
# print(f'dict 1 {dict1}')
feat_list.append(dict1)
# print(f'feat_list {feat_list}')
feat_df=pd.DataFrame(feat_list)
feat_df.to_csv('feat1.csv')

Inserting Rows into an Empty Pandas DF [duplicate]

How do I create an empty DataFrame, then add rows, one by one?
I created an empty DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
Then I can add a new row at the end and fill a single field with:
df = df._set_value(index=len(df), col='qty1', value=10.0)
It works for only one field at a time. What is a better way to add new row to df?
You can use df.loc[i], where the row with index i will be what you specify it to be in the dataframe.
>>> import pandas as pd
>>> from numpy.random import randint
>>> df = pd.DataFrame(columns=['lib', 'qty1', 'qty2'])
>>> for i in range(5):
>>> df.loc[i] = ['name' + str(i)] + list(randint(10, size=2))
>>> df
lib qty1 qty2
0 name0 3 3
1 name1 2 4
2 name2 2 8
3 name3 2 1
4 name4 9 6
In case you can get all data for the data frame upfront, there is a much faster approach than appending to a data frame:
Create a list of dictionaries in which each dictionary corresponds to an input data row.
Create a data frame from this list.
I had a similar task for which appending to a data frame row by row took 30 min, and creating a data frame from a list of dictionaries completed within seconds.
rows_list = []
for row in input_rows:
dict1 = {}
# get input row in dictionary format
# key = col_name
dict1.update(blah..)
rows_list.append(dict1)
df = pd.DataFrame(rows_list)
In the case of adding a lot of rows to dataframe, I am interested in performance. So I tried the four most popular methods and checked their speed.
Performance
Using .append (NPE's answer)
Using .loc (fred's answer)
Using .loc with preallocating (FooBar's answer)
Using dict and create DataFrame in the end (ShikharDua's answer)
Runtime results (in seconds):
Approach
1000 rows
5000 rows
10 000 rows
.append
0.69
3.39
6.78
.loc without prealloc
0.74
3.90
8.35
.loc with prealloc
0.24
2.58
8.70
dict
0.012
0.046
0.084
So I use addition through the dictionary for myself.
Code:
import pandas as pd
import numpy as np
import time
del df1, df2, df3, df4
numOfRows = 1000
# append
startTime = time.perf_counter()
df1 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows-4):
df1 = df1.append( dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']), ignore_index=True)
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df1.shape)
# .loc w/o prealloc
startTime = time.perf_counter()
df2 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows):
df2.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df2.shape)
# .loc with prealloc
df3 = pd.DataFrame(index=np.arange(0, numOfRows), columns=['A', 'B', 'C', 'D', 'E'] )
startTime = time.perf_counter()
for i in range( 1,numOfRows):
df3.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df3.shape)
# dict
startTime = time.perf_counter()
row_list = []
for i in range (0,5):
row_list.append(dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']))
for i in range( 1,numOfRows-4):
dict1 = dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E'])
row_list.append(dict1)
df4 = pd.DataFrame(row_list, columns=['A','B','C','D','E'])
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df4.shape)
P.S.: I believe my realization isn't perfect, and maybe there is some optimization that could be done.
You could use pandas.concat(). For details and examples, see Merge, join, and concatenate.
For example:
def append_row(df, row):
return pd.concat([
df,
pd.DataFrame([row], columns=row.index)]
).reset_index(drop=True)
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
new_row = pd.Series({'lib':'A', 'qty1':1, 'qty2': 2})
df = append_row(df, new_row)
NEVER grow a DataFrame!
Yes, people have already explained that you should NEVER grow a DataFrame, and that you should append your data to a list and convert it to a DataFrame once at the end. But do you understand why?
Here are the most important reasons, taken from my post here.
It is always cheaper/faster to append to a list and create a DataFrame in one go.
Lists take up less memory and are a much lighter data structure to work with, append, and remove.
dtypes are automatically inferred for your data. On the flip side, creating an empty frame of NaNs will automatically make them object, which is bad.
An index is automatically created for you, instead of you having to take care to assign the correct index to the row you are appending.
This is The Right Way™ to accumulate your data
data = []
for a, b, c in some_function_that_yields_data():
data.append([a, b, c])
df = pd.DataFrame(data, columns=['A', 'B', 'C'])
These options are horrible
append or concat inside a loop
append and concat aren't inherently bad in isolation. The
problem starts when you iteratively call them inside a loop - this
results in quadratic memory usage.
# Creates empty DataFrame and appends
df = pd.DataFrame(columns=['A', 'B', 'C'])
for a, b, c in some_function_that_yields_data():
df = df.append({'A': i, 'B': b, 'C': c}, ignore_index=True)
# This is equally bad:
# df = pd.concat(
# [df, pd.Series({'A': i, 'B': b, 'C': c})],
# ignore_index=True)
Empty DataFrame of NaNs
Never create a DataFrame of NaNs as the columns are initialized with
object (slow, un-vectorizable dtype).
# Creates DataFrame of NaNs and overwrites values.
df = pd.DataFrame(columns=['A', 'B', 'C'], index=range(5))
for a, b, c in some_function_that_yields_data():
df.loc[len(df)] = [a, b, c]
The Proof is in the Pudding
Timing these methods is the fastest way to see just how much they differ in terms of their memory and utility.
Benchmarking code for reference.
It's posts like this that remind me why I'm a part of this community. People understand the importance of teaching folks getting the right answer with the right code, not the right answer with wrong code. Now you might argue that it is not an issue to use loc or append if you're only adding a single row to your DataFrame. However, people often look to this question to add more than just one row - often the requirement is to iteratively add a row inside a loop using data that comes from a function (see related question). In that case it is important to understand that iteratively growing a DataFrame is not a good idea.
If you know the number of entries ex ante, you should preallocate the space by also providing the index (taking the data example from a different answer):
import pandas as pd
import numpy as np
# we know we're gonna have 5 rows of data
numberOfRows = 5
# create dataframe
df = pd.DataFrame(index=np.arange(0, numberOfRows), columns=('lib', 'qty1', 'qty2') )
# now fill it up row by row
for x in np.arange(0, numberOfRows):
#loc or iloc both work here since the index is natural numbers
df.loc[x] = [np.random.randint(-1,1) for n in range(3)]
In[23]: df
Out[23]:
lib qty1 qty2
0 -1 -1 -1
1 0 0 0
2 -1 0 -1
3 0 -1 0
4 -1 0 0
Speed comparison
In[30]: %timeit tryThis() # function wrapper for this answer
In[31]: %timeit tryOther() # function wrapper without index (see, for example, #fred)
1000 loops, best of 3: 1.23 ms per loop
100 loops, best of 3: 2.31 ms per loop
And - as from the comments - with a size of 6000, the speed difference becomes even larger:
Increasing the size of the array (12) and the number of rows (500) makes
the speed difference more striking: 313ms vs 2.29s
mycolumns = ['A', 'B']
df = pd.DataFrame(columns=mycolumns)
rows = [[1,2],[3,4],[5,6]]
for row in rows:
df.loc[len(df)] = row
You can append a single row as a dictionary using the ignore_index option.
>>> f = pandas.DataFrame(data = {'Animal':['cow','horse'], 'Color':['blue', 'red']})
>>> f
Animal Color
0 cow blue
1 horse red
>>> f.append({'Animal':'mouse', 'Color':'black'}, ignore_index=True)
Animal Color
0 cow blue
1 horse red
2 mouse black
For efficient appending, see How to add an extra row to a pandas dataframe and Setting With Enlargement.
Add rows through loc/ix on non existing key index data. For example:
In [1]: se = pd.Series([1,2,3])
In [2]: se
Out[2]:
0 1
1 2
2 3
dtype: int64
In [3]: se[5] = 5.
In [4]: se
Out[4]:
0 1.0
1 2.0
2 3.0
5 5.0
dtype: float64
Or:
In [1]: dfi = pd.DataFrame(np.arange(6).reshape(3,2),
.....: columns=['A','B'])
.....:
In [2]: dfi
Out[2]:
A B
0 0 1
1 2 3
2 4 5
In [3]: dfi.loc[:,'C'] = dfi.loc[:,'A']
In [4]: dfi
Out[4]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
In [5]: dfi.loc[3] = 5
In [6]: dfi
Out[6]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5
For the sake of a Pythonic way:
res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
res = res.append([{'qty1':10.0}], ignore_index=True)
print(res.head())
lib qty1 qty2
0 NaN 10.0 NaN
You can also build up a list of lists and convert it to a dataframe -
import pandas as pd
columns = ['i','double','square']
rows = []
for i in range(6):
row = [i, i*2, i*i]
rows.append(row)
df = pd.DataFrame(rows, columns=columns)
giving
i double square
0 0 0 0
1 1 2 1
2 2 4 4
3 3 6 9
4 4 8 16
5 5 10 25
If you always want to add a new row at the end, use this:
df.loc[len(df)] = ['name5', 9, 0]
I figured out a simple and nice way:
>>> df
A B C
one 1 2 3
>>> df.loc["two"] = [4,5,6]
>>> df
A B C
one 1 2 3
two 4 5 6
Note the caveat with performance as noted in the comments.
This is not an answer to the OP question, but a toy example to illustrate ShikharDua's answer which I found very useful.
While this fragment is trivial, in the actual data I had 1,000s of rows, and many columns, and I wished to be able to group by different columns and then perform the statistics below for more than one target column. So having a reliable method for building the data frame one row at a time was a great convenience. Thank you ShikharDua!
import pandas as pd
BaseData = pd.DataFrame({ 'Customer' : ['Acme','Mega','Acme','Acme','Mega','Acme'],
'Territory' : ['West','East','South','West','East','South'],
'Product' : ['Econ','Luxe','Econ','Std','Std','Econ']})
BaseData
columns = ['Customer','Num Unique Products', 'List Unique Products']
rows_list=[]
for name, group in BaseData.groupby('Customer'):
RecordtoAdd={} #initialise an empty dict
RecordtoAdd.update({'Customer' : name}) #
RecordtoAdd.update({'Num Unique Products' : len(pd.unique(group['Product']))})
RecordtoAdd.update({'List Unique Products' : pd.unique(group['Product'])})
rows_list.append(RecordtoAdd)
AnalysedData = pd.DataFrame(rows_list)
print('Base Data : \n',BaseData,'\n\n Analysed Data : \n',AnalysedData)
You can use a generator object to create a Dataframe, which will be more memory efficient over the list.
num = 10
# Generator function to generate generator object
def numgen_func(num):
for i in range(num):
yield ('name_{}'.format(i), (i*i), (i*i*i))
# Generator expression to generate generator object (Only once data get populated, can not be re used)
numgen_expression = (('name_{}'.format(i), (i*i), (i*i*i)) for i in range(num) )
df = pd.DataFrame(data=numgen_func(num), columns=('lib', 'qty1', 'qty2'))
To add raw to existing DataFrame you can use append method.
df = df.append([{ 'lib': "name_20", 'qty1': 20, 'qty2': 400 }])
Instead of a list of dictionaries as in ShikharDua's answer (row-based), we can also represent our table as a dictionary of lists (column-based), where each list stores one column in row-order, given we know our columns beforehand. At the end we construct our DataFrame once.
In both cases, the dictionary keys are always the column names. Row order is stored implicitly as order in a list. For c columns and n rows, this uses one dictionary of c lists, versus one list of n dictionaries. The list-of-dictionaries method has each dictionary storing all keys redundantly and requires creating a new dictionary for every row. Here we only append to lists, which overall is the same time complexity (adding entries to list and dictionary are both amortized constant time) but may have less overhead due to being a simple operation.
# Current data
data = {"Animal":["cow", "horse"], "Color":["blue", "red"]}
# Adding a new row (be careful to ensure every column gets another value)
data["Animal"].append("mouse")
data["Color"].append("black")
# At the end, construct our DataFrame
df = pd.DataFrame(data)
# Animal Color
# 0 cow blue
# 1 horse red
# 2 mouse black
Create a new record (data frame) and add to old_data_frame.
Pass a list of values and the corresponding column names to create a new_record (data_frame):
new_record = pd.DataFrame([[0, 'abcd', 0, 1, 123]], columns=['a', 'b', 'c', 'd', 'e'])
old_data_frame = pd.concat([old_data_frame, new_record])
Here is the way to add/append a row in a Pandas DataFrame:
def add_row(df, row):
df.loc[-1] = row
df.index = df.index + 1
return df.sort_index()
add_row(df, [1,2,3])
It can be used to insert/append a row in an empty or populated Pandas DataFrame.
If you want to add a row at the end, append it as a list:
valuestoappend = [va1, val2, val3]
res = res.append(pd.Series(valuestoappend, index = ['lib', 'qty1', 'qty2']), ignore_index = True)
Another way to do it (probably not very performant):
# add a row
def add_row(df, row):
colnames = list(df.columns)
ncol = len(colnames)
assert ncol == len(row), "Length of row must be the same as width of DataFrame: %s" % row
return df.append(pd.DataFrame([row], columns=colnames))
You can also enhance the DataFrame class like this:
import pandas as pd
def add_row(self, row):
self.loc[len(self.index)] = row
pd.DataFrame.add_row = add_row
All you need is loc[df.shape[0]] or loc[len(df)]
# Assuming your df has 4 columns (str, int, str, bool)
df.loc[df.shape[0]] = ['col1Value', 100, 'col3Value', False]
or
df.loc[len(df)] = ['col1Value', 100, 'col3Value', False]
You can concatenate two DataFrames for this. I basically came across this problem to add a new row to an existing DataFrame with a character index (not numeric).
So, I input the data for a new row in a duct() and index in a list.
new_dict = {put input for new row here}
new_list = [put your index here]
new_df = pd.DataFrame(data=new_dict, index=new_list)
df = pd.concat([existing_df, new_df])
initial_data = {'lib': np.array([1,2,3,4]), 'qty1': [1,2,3,4], 'qty2': [1,2,3,4]}
df = pd.DataFrame(initial_data)
df
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
val_1 = [10]
val_2 = [14]
val_3 = [20]
df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
0 10 14 20
You can use a for loop to iterate through values or can add arrays of values.
val_1 = [10, 11, 12, 13]
val_2 = [14, 15, 16, 17]
val_3 = [20, 21, 22, 43]
df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
0 10 14 20
1 11 15 21
2 12 16 22
3 13 17 43
Make it simple. By taking a list as input which will be appended as a row in the data-frame:
import pandas as pd
res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
for i in range(5):
res_list = list(map(int, input().split()))
res = res.append(pd.Series(res_list, index=['lib', 'qty1', 'qty2']), ignore_index=True)
pandas.DataFrame.append
DataFrame.append(self, other, ignore_index=False, verify_integrity=False, sort=False) → 'DataFrame'
Code
df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
df.append(df2)
With ignore_index set to True:
df.append(df2, ignore_index=True)
If you have a data frame df and want to add a list new_list as a new row to df, you can simply do:
df.loc[len(df)] = new_list
If you want to add a new data frame new_df under data frame df, then you can use:
df.append(new_df)
We often see the construct df.loc[subscript] = … to assign to one DataFrame row. Mikhail_Sam posted benchmarks containing, among others, this construct as well as the method using dict and create DataFrame in the end. He found the latter to be the fastest by far.
But if we replace the df3.loc[i] = … (with preallocated DataFrame) in his code with df3.values[i] = …, the outcome changes significantly, in that that method performs similar to the one using dict. So we should more often take the use of df.values[subscript] = … into consideration. However note that .values takes a zero-based subscript, which may be different from the DataFrame.index.
Before going to add a row, we have to convert the dataframe to a dictionary. There you can see the keys as columns in the dataframe and the values of the columns are again stored in the dictionary, but there the key for every column is the index number in the dataframe.
That idea makes me to write the below code.
df2 = df.to_dict()
values = ["s_101", "hyderabad", 10, 20, 16, 13, 15, 12, 12, 13, 25, 26, 25, 27, "good", "bad"] # This is the total row that we are going to add
i = 0
for x in df.columns: # Here df.columns gives us the main dictionary key
df2[x][101] = values[i] # Here the 101 is our index number. It is also the key of the sub dictionary
i += 1
If all data in your Dataframe has the same dtype you might use a NumPy array. You can write rows directly into the predefined array and convert it to a dataframe at the end.
It seems to be even faster than converting a list of dicts.
import pandas as pd
import numpy as np
from string import ascii_uppercase
startTime = time.perf_counter()
numcols, numrows = 5, 10000
npdf = np.ones((numrows, numcols))
for row in range(numrows):
npdf[row, 0:] = np.random.randint(0, 100, (1, numcols))
df5 = pd.DataFrame(npdf, columns=list(ascii_uppercase[:numcols]))
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df5.shape)
This code snippet uses a list of dictionaries to update the data frame. It adds on to ShikharDua's and Mikhail_Sam's answers.
import pandas as pd
colour = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]
dict1={}
feat_list=[]
for x in colour:
for y in fruits:
# print(x, y)
dict1 = dict([('x',x),('y',y)])
# print(f'dict 1 {dict1}')
feat_list.append(dict1)
# print(f'feat_list {feat_list}')
feat_df=pd.DataFrame(feat_list)
feat_df.to_csv('feat1.csv')

How to apply a function to two columns of Pandas dataframe

Suppose I have a df which has columns of 'ID', 'col_1', 'col_2'. And I define a function :
f = lambda x, y : my_function_expression.
Now I want to apply the f to df's two columns 'col_1', 'col_2' to element-wise calculate a new column 'col_3' , somewhat like :
df['col_3'] = df[['col_1','col_2']].apply(f)
# Pandas gives : TypeError: ('<lambda>() takes exactly 2 arguments (1 given)'
How to do ?
** Add detail sample as below ***
import pandas as pd
df = pd.DataFrame({'ID':['1','2','3'], 'col_1': [0,2,3], 'col_2':[1,4,5]})
mylist = ['a','b','c','d','e','f']
def get_sublist(sta,end):
return mylist[sta:end+1]
#df['col_3'] = df[['col_1','col_2']].apply(get_sublist,axis=1)
# expect above to output df as below
ID col_1 col_2 col_3
0 1 0 1 ['a', 'b']
1 2 2 4 ['c', 'd', 'e']
2 3 3 5 ['d', 'e', 'f']
There is a clean, one-line way of doing this in Pandas:
df['col_3'] = df.apply(lambda x: f(x.col_1, x.col_2), axis=1)
This allows f to be a user-defined function with multiple input values, and uses (safe) column names rather than (unsafe) numeric indices to access the columns.
Example with data (based on original question):
import pandas as pd
df = pd.DataFrame({'ID':['1', '2', '3'], 'col_1': [0, 2, 3], 'col_2':[1, 4, 5]})
mylist = ['a', 'b', 'c', 'd', 'e', 'f']
def get_sublist(sta,end):
return mylist[sta:end+1]
df['col_3'] = df.apply(lambda x: get_sublist(x.col_1, x.col_2), axis=1)
Output of print(df):
ID col_1 col_2 col_3
0 1 0 1 [a, b]
1 2 2 4 [c, d, e]
2 3 3 5 [d, e, f]
If your column names contain spaces or share a name with an existing dataframe attribute, you can index with square brackets:
df['col_3'] = df.apply(lambda x: f(x['col 1'], x['col 2']), axis=1)
Here's an example using apply on the dataframe, which I am calling with axis = 1.
Note the difference is that instead of trying to pass two values to the function f, rewrite the function to accept a pandas Series object, and then index the Series to get the values needed.
In [49]: df
Out[49]:
0 1
0 1.000000 0.000000
1 -0.494375 0.570994
2 1.000000 0.000000
3 1.876360 -0.229738
4 1.000000 0.000000
In [50]: def f(x):
....: return x[0] + x[1]
....:
In [51]: df.apply(f, axis=1) #passes a Series object, row-wise
Out[51]:
0 1.000000
1 0.076619
2 1.000000
3 1.646622
4 1.000000
Depending on your use case, it is sometimes helpful to create a pandas group object, and then use apply on the group.
A simple solution is:
df['col_3'] = df[['col_1','col_2']].apply(lambda x: f(*x), axis=1)
A interesting question! my answer as below:
import pandas as pd
def sublst(row):
return lst[row['J1']:row['J2']]
df = pd.DataFrame({'ID':['1','2','3'], 'J1': [0,2,3], 'J2':[1,4,5]})
print df
lst = ['a','b','c','d','e','f']
df['J3'] = df.apply(sublst,axis=1)
print df
Output:
ID J1 J2
0 1 0 1
1 2 2 4
2 3 3 5
ID J1 J2 J3
0 1 0 1 [a]
1 2 2 4 [c, d]
2 3 3 5 [d, e]
I changed the column name to ID,J1,J2,J3 to ensure ID < J1 < J2 < J3, so the column display in right sequence.
One more brief version:
import pandas as pd
df = pd.DataFrame({'ID':['1','2','3'], 'J1': [0,2,3], 'J2':[1,4,5]})
print df
lst = ['a','b','c','d','e','f']
df['J3'] = df.apply(lambda row:lst[row['J1']:row['J2']],axis=1)
print df
The method you are looking for is Series.combine.
However, it seems some care has to be taken around datatypes.
In your example, you would (as I did when testing the answer) naively call
df['col_3'] = df.col_1.combine(df.col_2, func=get_sublist)
However, this throws the error:
ValueError: setting an array element with a sequence.
My best guess is that it seems to expect the result to be of the same type as the series calling the method (df.col_1 here). However, the following works:
df['col_3'] = df.col_1.astype(object).combine(df.col_2, func=get_sublist)
df
ID col_1 col_2 col_3
0 1 0 1 [a, b]
1 2 2 4 [c, d, e]
2 3 3 5 [d, e, f]
Returning a list from apply is a dangerous operation as the resulting object is not guaranteed to be either a Series or a DataFrame. And exceptions might be raised in certain cases. Let's walk through a simple example:
df = pd.DataFrame(data=np.random.randint(0, 5, (5,3)),
columns=['a', 'b', 'c'])
df
a b c
0 4 0 0
1 2 0 1
2 2 2 2
3 1 2 2
4 3 0 0
There are three possible outcomes with returning a list from apply
1) If the length of the returned list is not equal to the number of columns, then a Series of lists is returned.
df.apply(lambda x: list(range(2)), axis=1) # returns a Series
0 [0, 1]
1 [0, 1]
2 [0, 1]
3 [0, 1]
4 [0, 1]
dtype: object
2) When the length of the returned list is equal to the number of
columns then a DataFrame is returned and each column gets the
corresponding value in the list.
df.apply(lambda x: list(range(3)), axis=1) # returns a DataFrame
a b c
0 0 1 2
1 0 1 2
2 0 1 2
3 0 1 2
4 0 1 2
3) If the length of the returned list equals the number of columns for the first row but has at least one row where the list has a different number of elements than number of columns a ValueError is raised.
i = 0
def f(x):
global i
if i == 0:
i += 1
return list(range(3))
return list(range(4))
df.apply(f, axis=1)
ValueError: Shape of passed values is (5, 4), indices imply (5, 3)
Answering the problem without apply
Using apply with axis=1 is very slow. It is possible to get much better performance (especially on larger datasets) with basic iterative methods.
Create larger dataframe
df1 = df.sample(100000, replace=True).reset_index(drop=True)
Timings
# apply is slow with axis=1
%timeit df1.apply(lambda x: mylist[x['col_1']: x['col_2']+1], axis=1)
2.59 s ± 76.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# zip - similar to #Thomas
%timeit [mylist[v1:v2+1] for v1, v2 in zip(df1.col_1, df1.col_2)]
29.5 ms ± 534 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
#Thomas answer
%timeit list(map(get_sublist, df1['col_1'],df1['col_2']))
34 ms ± 459 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
I'm sure this isn't as fast as the solutions using Pandas or Numpy operations, but if you don't want to rewrite your function you can use map. Using the original example data -
import pandas as pd
df = pd.DataFrame({'ID':['1','2','3'], 'col_1': [0,2,3], 'col_2':[1,4,5]})
mylist = ['a','b','c','d','e','f']
def get_sublist(sta,end):
return mylist[sta:end+1]
df['col_3'] = list(map(get_sublist,df['col_1'],df['col_2']))
#In Python 2 don't convert above to list
We could pass as many arguments as we wanted into the function this way. The output is what we wanted
ID col_1 col_2 col_3
0 1 0 1 [a, b]
1 2 2 4 [c, d, e]
2 3 3 5 [d, e, f]
I'm going to put in a vote for np.vectorize. It allows you to just shoot over x number of columns and not deal with the dataframe in the function, so it's great for functions you don't control or doing something like sending 2 columns and a constant into a function (i.e. col_1, col_2, 'foo').
import numpy as np
import pandas as pd
df = pd.DataFrame({'ID':['1','2','3'], 'col_1': [0,2,3], 'col_2':[1,4,5]})
mylist = ['a','b','c','d','e','f']
def get_sublist(sta,end):
return mylist[sta:end+1]
#df['col_3'] = df[['col_1','col_2']].apply(get_sublist,axis=1)
# expect above to output df as below
df.loc[:,'col_3'] = np.vectorize(get_sublist, otypes=["O"]) (df['col_1'], df['col_2'])
df
ID col_1 col_2 col_3
0 1 0 1 [a, b]
1 2 2 4 [c, d, e]
2 3 3 5 [d, e, f]
Here is a faster solution:
def func_1(a,b):
return a + b
df["C"] = func_1(df["A"].to_numpy(),df["B"].to_numpy())
This is 380 times faster than df.apply(f, axis=1) from #Aman and 310 times faster than df['col_3'] = df.apply(lambda x: f(x.col_1, x.col_2), axis=1) from #ajrwhite.
I add some benchmarks too:
Results:
FUNCTIONS TIMINGS GAIN
apply lambda 0.7 x 1
apply 0.56 x 1.25
map 0.3 x 2.3
np.vectorize 0.01 x 70
f3 on Series 0.0026 x 270
f3 on np arrays 0.0018 x 380
f3 numba 0.0018 x 380
In short:
Using apply is slow. We can speed up things very simply, just by using a function that will operate directly on Pandas Series (or better on numpy arrays). And because we will operate on Pandas Series or numpy arrays, we will be able to vectorize the operations. The function will return a Pandas Series or numpy array that we will assign as a new column.
And here is the benchmark code:
import timeit
timeit_setup = """
import pandas as pd
import numpy as np
import numba
np.random.seed(0)
# Create a DataFrame of 10000 rows with 2 columns "A" and "B"
# containing integers between 0 and 100
df = pd.DataFrame(np.random.randint(0,10,size=(10000, 2)), columns=["A", "B"])
def f1(a,b):
# Here a and b are the values of column A and B for a specific row: integers
return a + b
def f2(x):
# Here, x is pandas Series, and corresponds to a specific row of the DataFrame
# 0 and 1 are the indexes of columns A and B
return x[0] + x[1]
def f3(a,b):
# Same as f1 but we will pass parameters that will allow vectorization
# Here, A and B will be Pandas Series or numpy arrays
# with df["C"] = f3(df["A"],df["B"]): Pandas Series
# with df["C"] = f3(df["A"].to_numpy(),df["B"].to_numpy()): numpy arrays
return a + b
#numba.njit('int64[:](int64[:], int64[:])')
def f3_numba_vectorize(a,b):
# Here a and b are 2 numpy arrays with dtype int64
# This function must return a numpy array whith dtype int64
return a + b
"""
test_functions = [
'df["C"] = df.apply(lambda row: f1(row["A"], row["B"]), axis=1)',
'df["C"] = df.apply(f2, axis=1)',
'df["C"] = list(map(f3,df["A"],df["B"]))',
'df["C"] = np.vectorize(f3) (df["A"].to_numpy(),df["B"].to_numpy())',
'df["C"] = f3(df["A"],df["B"])',
'df["C"] = f3(df["A"].to_numpy(),df["B"].to_numpy())',
'df["C"] = f3_numba_vectorize(df["A"].to_numpy(),df["B"].to_numpy())'
]
for test_function in test_functions:
print(min(timeit.repeat(setup=timeit_setup, stmt=test_function, repeat=7, number=10)))
Output:
0.7
0.56
0.3
0.01
0.0026
0.0018
0.0018
Final note: things could be optimzed with Cython and other numba tricks too.
The way you have written f it needs two inputs. If you look at the error message it says you are not providing two inputs to f, just one. The error message is correct.
The mismatch is because df[['col1','col2']] returns a single dataframe with two columns, not two separate columns.
You need to change your f so that it takes a single input, keep the above data frame as input, then break it up into x,y inside the function body. Then do whatever you need and return a single value.
You need this function signature because the syntax is .apply(f)
So f needs to take the single thing = dataframe and not two things which is what your current f expects.
Since you haven't provided the body of f I can't help in anymore detail - but this should provide the way out without fundamentally changing your code or using some other methods rather than apply
Another option is df.itertuples() (generally faster and recommended over df.iterrows() by docs and user testing):
import pandas as pd
df = pd.DataFrame([range(4) for _ in range(4)], columns=list("abcd"))
df
a b c d
0 0 1 2 3
1 0 1 2 3
2 0 1 2 3
3 0 1 2 3
df["e"] = [sum(row) for row in df[["b", "d"]].itertuples(index=False)]
df
a b c d e
0 0 1 2 3 4
1 0 1 2 3 4
2 0 1 2 3 4
3 0 1 2 3 4
Since itertuples returns an Iterable of namedtuples, you can access tuple elements both as attributes by column name (aka dot notation) and by index:
b, d = row
b = row.b
d = row[1]
My example to your questions:
def get_sublist(row, col1, col2):
return mylist[row[col1]:row[col2]+1]
df.apply(get_sublist, axis=1, col1='col_1', col2='col_2')
It can be done in two simple ways:
Let's say, we want sum of col1 and col2 in output column named col_sum
Method 1
f = lambda x : x.col1 + x.col2
df['col_sum'] = df.apply(f, axis=1)
Method 2
def f(x):
x['col_sum'] = x.col_1 + col_2
return x
df = df.apply(f, axis=1)
Method 2 should be used when some complex function has to applied to the dataframe. Method 2 can also be used when output in multiple columns is required.
I suppose you don't want to change get_sublist function, and just want to use DataFrame's apply method to do the job. To get the result you want, I've wrote two help functions: get_sublist_list and unlist. As the function name suggest, first get the list of sublist, second extract that sublist from that list. Finally, We need to call apply function to apply those two functions to the df[['col_1','col_2']] DataFrame subsequently.
import pandas as pd
df = pd.DataFrame({'ID':['1','2','3'], 'col_1': [0,2,3], 'col_2':[1,4,5]})
mylist = ['a','b','c','d','e','f']
def get_sublist(sta,end):
return mylist[sta:end+1]
def get_sublist_list(cols):
return [get_sublist(cols[0],cols[1])]
def unlist(list_of_lists):
return list_of_lists[0]
df['col_3'] = df[['col_1','col_2']].apply(get_sublist_list,axis=1).apply(unlist)
df
If you don't use [] to enclose the get_sublist function, then the get_sublist_list function will return a plain list, it'll raise ValueError: could not broadcast input array from shape (3) into shape (2), as #Ted Petrou had mentioned.
If you have a huge data-set, then you can use an easy but faster(execution time) way of doing this using swifter:
import pandas as pd
import swifter
def fnc(m,x,c):
return m*x+c
df = pd.DataFrame({"m": [1,2,3,4,5,6], "c": [1,1,1,1,1,1], "x":[5,3,6,2,6,1]})
df["y"] = df.swifter.apply(lambda x: fnc(x.m, x.x, x.c), axis=1)

Categories

Resources