Python Tweepy rate limit reached - python

I am currently making a twitter scraper and I want get all tweets with multiple hashtags. The problem is I receive 429 errors every time I try to get passed the first hashtag. Ive tried sleeping the function but every time the second hashtag comes around it doesn't work.
import tweepy
import time
import json
from collections import defaultdict as dd
f = open("tokens.txt", 'r')
consumer_key = f.readline().strip()
consumer_secret = f.readline().strip()
app_key = f.readline().strip()
app_secret = f.readline().strip()
auth =tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(app_key,app_secret)
api = tweepy.API(auth,wait_on_rate_limit=True,wait_on_rate_limit_notify=True)
usercount = dd(int)
userfollowers = dd(int)
mostretweets = dd(int)
mostfav = dd(int)
hashtag = ['#csforall','#equality']
for i in hashtag :
for status in tweepy.Cursor(api.search, q=i,since="2017-02-25",until="2017-02-28",lang="en").items():
parsed = status._json
usercount[parsed['user']['name'].encode("utf-8")]+=1
userfollowers[parsed['user']['name'].encode("utf-8")]= parsed['user']['followers_count']
mostretweets[parsed['text'].encode('utf-8')] = parsed['retweet_count']
mostfav[parsed['text'].encode('utf-8')] = parsed['favorite_count']
time.sleep(2)
sortcount = sorted(usercount.items(), key=lambda x: x[1], reverse =True)
top = sortcount[:1]
frequser=[]
for i in sortcount:
if i[1] == top:
frequser.append(i)
else:
break
print ("Top most frequent user: \n " + str(i[0])) +"\n"
followcount = sorted(userfollowers.items(), key=lambda x: x[1], reverse =True)
fol = followcount[:1]
freqfollow = []
for j in followcount:
if j[1] == fol:
freqfollow.append(i)
else:
break
print ("User with most followers: \n " + str(j[1]))
retweetcount = sorted(mostretweets.items(), key=lambda x: x[1], reverse = True)
ret = retweetcount[:1]
freqretweet =[]
for i in retweetcount:
if i[1] == ret:
freqretweet == ret
else:
break
print str(i[0])+"\n"
favcount = sorted(mostfav.items(), key=lambda x: x[1], reverse = True)
ret = favcount[:1]
freqfav =[]
for i in favcount:
if i[1] == ret:
freqfav == ret
else:
break
print str(i[0])+"\n"

Does putting this:
for i in hashtag:
time.sleep(2)
for status in tweepy.Cursor(api.search, q=i,since="2017-02-25",until="2017-02-28",lang="en").items():
work?

Related

Python - Write a new row for each list data under same header into csv

I have a text file, 'student.txt'. Some keys have multiple values. I only want data that is tied to the name, and the sibling & hobby values below that name.
'student.txt'
ignore me
name-> Alice
name-> Sam
sibling-> Kate,
unwanted
sibling-> Luke,
hobby_1-> football
hobby_2-> games
name-> Ramsay
hobby_1-> dance
unwanted data
hobby_2-> swimming
hobby_3-> jogging
ignore data
Code I've done:
file = open("student.txt", "r")
with open("student.csv", "w") as writer:
main_dict = {}
student_dict = {"Siblings": "N/A", "Hobbies": "N/A"}
sibling_list = []
hobby_list = []
flag = True
writer.write ('name,siblings,hobbies\n')
header = 'Name,Siblings,Hobbies'.split(',')
sib_str = ''
hob_str =''
for eachline in file:
try:
key, value = eachline.split("-> ")
value = value.strip(",\n")
if flag:
if key == "name":
print (key,value)
if len(sibling_list) > 0:
main_dict[name]["Siblings"] = sib_str
#print (main_dict)
if len(hobby_list) > 0:
main_dict[name]["Hobbies"] = hob_str
sibling_list = []
hobby_list = []
name = value
main_dict[name] = student_dict.copy()
main_dict[name]["Name"] = name
elif key == "sibling":
sibling_list.append(value)
sib_str= ' '.join(sibling_list).replace(' ', '\n')
elif key.startswith("hobby"):
hobby_list.append(value)
hob_str = ' '.join(hobby_list)
if len(sibling_list) > 0:
main_dict[name]["Siblings"] = sib_str
if len(hobby_list) > 0:
main_dict[name]["Hobbies"] = hob_str
if 'name' in eachline:
if 'name' in eachline:
flag = True
else:
flag = False
except:
pass
for eachname in main_dict.keys():
for eachkey in header:
writer.write(str(main_dict[eachname][eachkey]))
writer.write (',')
if 'Hobbies' in eachkey:
writer.write ('\n')
CSV Output from Code above:
Expected CSV Output:
P.S: I can't seem to figure out how to not forgo the try/pass. As some lines (without '->') are unwanted, and I can't use the eachline.split("-> "). Would appreciate help on this too.
Thanks so much!
The code below gives the csv file which you can import in your Excel and it will be in exact format you are expecting.
You can use something like
if "->" not in line:
continue
To skip lines that don't contain "->" values, see in the code below:
import csv
file = open("student.txt", "r")
students = {}
name = ""
for line in file:
if "->" not in line:
continue
line = line.strip(",\n")
line = line.replace(" ", "")
key, value = line.split("->")
if key == "name":
name = value
students[name] = {}
students[name]["siblings"] = []
students[name]["hobbies"] = []
else:
if "sibling" in key:
students[name]["siblings"].append(value)
elif "hobby" in key:
students[name]["hobbies"].append(value)
#print(students)
csvlines = []
for student in students:
name = student
hobbies = students[name]["hobbies"]
siblings = students[name]["siblings"]
maxlength = 0
if len(hobbies) > len(siblings) :
maxlength = len(hobbies)
else:
maxlength = len(siblings)
if maxlength == 0:
csvlines.append([name, "N/A", "N/A"])
continue
for i in range(maxlength):
if i < len(siblings):
siblingvalue = siblings[i]
elif i == len(siblings):
siblingvalue = "N/A"
else:
siblingvalue = ""
if i < len(hobbies):
hobbyvalue = hobbies[i]
elif i == len(siblings):
hobbyvalue = "N/A"
else:
hobbyvalue = ""
if i == 0:
csvlines.append([name, siblingvalue, hobbyvalue])
else:
csvlines.append(["", siblingvalue, hobbyvalue])
print(csvlines)
fields = ["name", "siblings", "hobbies"]
with open("students.csv", 'w') as csvfile:
# creating a csv writer object
csvwriter = csv.writer(csvfile)
# writing the fields
csvwriter.writerow(fields)
# writing the data rows
csvwriter.writerows(csvlines)

Confidence score of answer extracted using ELMo BiDAF model and AllenNLP

I'm working on a Deep Learning project where I use a bidirectional attention flow model (allennlp pretrained model)to make a question answering system.It uses squad dataset.The bidaf model extracts the answer span from paragraph.Is there any way to determine the confidence score(accuracy)or any other metrics of the answer extracted by the model?
I have used the subcommand evaluate from the allennlp package but it determines only score of the model after testing.I was hoping there is a much easier way to solve the issue using other such command.
Attaching the code and the terminal output below.
from rake_nltk import Rake
from string import punctuation
from nltk.corpus import stopwords
from allennlp.predictors.predictor import Predictor
import spacy
import wikipedia
import re
import requests
from requests_html import HTMLSession
from bs4 import BeautifulSoup
import traceback
from nltk.stem import SnowballStemmer
from nltk.util import ngrams
from math import log10
from flask import Flask, request, jsonify, render_template
from gevent.pywsgi import WSGIServer
import time
import multiprocessing as mp
from gtts import gTTS
import os
NLP = spacy.load('en_core_web_md')
stop = stopwords.words('english')
symbol = r"""!#$%^&*();:\n\t\\\"!\{\}\[\]<>-\?"""
stemmer = SnowballStemmer('english')
wikipedia.set_rate_limiting(True)
session = HTMLSession()
results = 5
try:
predictor = Predictor.from_path("bidaf-model-2017.09.15-charpad.tar.gz")
except:
predictor = Predictor.from_path("https://storage.googleapis.com/allennlp-public-models/bidaf-elmo-model-2018.11.30-charpad.tar.gz")
try:
srl = Predictor.from_path('srl-model-2018.05.25.tar.gz')
except:
srl = Predictor.from_path('https://s3-us-west-2.amazonaws.com/allennlp/models/bert-base-srl-2019.06.17.tar.gz')
key = Rake(min_length=1, stopwords=stop, punctuations=punctuation, max_length=6)
wh_words = "who|what|how|where|when|why|which|whom|whose|explain".split('|')
stop.extend(wh_words)
session = HTMLSession()
output = mp.Queue()
def termFrequency(term, doc):
normalizeTermFreq = re.sub('[\[\]\{\}\(\)]', '', doc.lower()).split()
normalizeTermFreq = [stemmer.stem(i) for i in normalizeTermFreq]
dl = len(normalizeTermFreq)
normalizeTermFreq = ' '.join(normalizeTermFreq)
term_in_document = normalizeTermFreq.count(term)
#len_of_document = len(normalizeTermFreq )
#normalized_tf = term_in_document / len_of_document
normalized_tf = term_in_document
return normalized_tf, normalizeTermFreq, dl#, n_unique_term
def inverseDocumentFrequency(term, allDocs):
num_docs_with_given_term = 0
for doc in allDocs:
if term in doc:
num_docs_with_given_term += 1
if num_docs_with_given_term > 0:
total_num_docs = len(allDocs)
idf_val = log10(((total_num_docs+1) / num_docs_with_given_term))
term_split = term.split()
if len(term_split) == 3:
if len([term_split[i] for i in [0, 2] if term_split[i] not in stop]) == 2:
return idf_val*1.5
return idf_val
return idf_val
else:
return 0
def sent_formation(question, answer):
tags_doc = NLP(question)
tags_doc_cased = NLP(question.title())
tags_dict_cased = {i.lower_:i.pos_ for i in tags_doc_cased}
tags_dict = {i.lower_:i.pos_ for i in tags_doc}
question_cased = []
for i in question[:-1].split():
if tags_dict[i] == 'PROPN' or tags_dict[i] == 'NOUN':
question_cased.append(i.title())
else:
question_cased.append(i.lower())
question_cased.append('?')
question_cased = ' '.join(question_cased)
#del tags_dict,tags_doc, tags_doc_cased
pre = srl.predict(question_cased)
verbs = []
arg1 = []
for i in pre['verbs']:
verbs.append(i['verb'])
if 'B-ARG1' in i['tags']:
arg1.append((i['tags'].index('B-ARG1'), i['tags'].count('I-ARG1'))\
if not pre['words'][i['tags'].index('B-ARG1')].lower() in wh_words else \
(i['tags'].index('B-ARG2'), i['tags'].count('I-ARG2')))
arg1 = arg1[0] if arg1 else []
if not arg1:
verb_idx = pre['verbs'][0]['tags'].index('B-V')
verb = pre['words'][verb_idx] if pre['words'][verb_idx] != answer.split()[0].lower() else ''
subj_uncased = pre['words'][verb_idx+1:] if pre['words'][-1] not in symbol else \
pre['words'][verb_idx+1:-1]
else:
verb = ' '.join(verbs)
subj_uncased = pre['words'][arg1[0]:arg1[0]+arg1[1]+1]
conj = ''
if question.split()[0].lower() == 'when':
conj = ' on' if len(answer.split()) > 1 else ' in'
subj = []
for n, i in enumerate(subj_uncased):
if tags_dict_cased[i.lower()] == 'PROPN' and tags_dict[i.lower()] != 'VERB' or n == 0:
subj.append(i.title())
else:
subj.append(i.lower())
subj[0] = subj[0].title()
print(subj)
print(pre)
subj = ' '.join(subj)
sent = "{} {}{} {}.".format(subj, verb, conj, answer if answer[-1] != '.' else answer[:-1])
return sent
class extractAnswer:
def __init__(self):
self.wiki_error = (wikipedia.exceptions.DisambiguationError,
wikipedia.exceptions.HTTPTimeoutError,
wikipedia.exceptions.WikipediaException)
self.article_title = None
# symbol = """!#$%^&*();:\n\t\\\"!\{\}\[\]<>-\?"""
def extractAnswer_model(self, passage, question, s=0.4, e=0.3, wiki=False):
if type(passage) == list:
passage = " ".join(passage)
if not question[-1] == '?':
question = question+'?'
pre = predictor.predict(passage=passage, question=question)
if wiki:
if max(pre['span_end_probs']) > 0.5:
s = 0.12
elif max(pre['span_end_probs']) > 0.4:
s = 0.13
elif max(pre['span_end_probs']) > 0.35:
s = 0.14
if max(pre['span_start_probs']) > 0.5:
e = 0.12
elif max(pre['span_start_probs']) > 0.4:
e = 0.14
elif max(pre['span_start_probs']) > 0.3:
e = 0.15
if max(pre['span_start_probs']) > s and max(pre['span_end_probs']) > e:
key.extract_keywords_from_text(question)
ques_key = [stemmer.stem(i) for i in ' '.join(key.get_ranked_phrases())]
key.extract_keywords_from_text(passage)
pass_key = [stemmer.stem(i) for i in ' '.join(key.get_ranked_phrases())]
l = len(ques_key)
c = 0
for i in ques_key:
if i in pass_key:
c += 1
if c >= l/2:
print(max(pre['span_start_probs']),
max(pre['span_end_probs']))
if wiki:
return pre['best_span_str'], max(pre['span_start_probs']) + max(pre['span_end_probs'])
try:
ans = sent_formation(question, pre['best_span_str'])
except:
ans = pre['best_span_str']
print(traceback.format_exc())
return ans
print(ques_key, c, l)
print(max(pre['span_start_probs']), max(pre['span_end_probs']))
return 0, 0
else:
print(max(pre['span_start_probs']), max(pre['span_end_probs']), pre['best_span_str'])
return 0, 0
def wiki_search_api(self, query):
article_list = []
try:
article_list.extend(wikipedia.search(query, results=results))
print(article_list)
return article_list
except self.wiki_error:
params = {'search': query, 'profile': 'engine_autoselect',
'format': 'json', 'limit': results}
article_list.extend(requests.get('https://en.wikipedia.org/w/api.php?action=opensearch',
params=params).json()[1])
return article_list
except:
print('Wikipedia search error!')
print(traceback.format_exc())
return 0
def wiki_passage_api(self, article_title, article_list, output):
# Disambiguation_title = {}
try:
passage = wikipedia.summary(article_title)
output.put((article_title, self.passage_pre(passage)))
except wikipedia.exceptions.DisambiguationError as e:
print(e.options[0], e.options)
Disambiguation_pass = {}
for p in range(2 if len(e.options) > 1 else len(e.options)):
params = {'search':e.options[p], 'profile':'engine_autoselect', 'format':'json'}
article_url = requests.get('https://en.wikipedia.org/w/api.php?action=opensearch',
params=params).json()
if not article_url[3]:
continue
article_url = article_url[3][0]
r = session.get(article_url)
soup = BeautifulSoup(r.html.raw_html)
print(soup.title.string)
article_title_dis = soup.title.string.rsplit('-')[0].strip()
if article_title_dis in article_list:
print('continue')
continue
try:
url = "https://en.wikipedia.org/w/api.php?format=json&action=query&prop=extracts&exintro&explaintext&redirects=1&titles={}".format(article_title_dis)
passage = requests.get(url).json()['query']['pages']
for i in passage.keys():
if 'extract' in passage[i]:
Disambiguation_pass[article_title_dis] = self.passage_pre(passage[i]['extract'])
except wikipedia.exceptions.HTTPTimeoutError:
passage = wikipedia.summary(article_title_dis)
Disambiguation_pass[article_title_dis] = self.passage_pre(passage)
except:
Disambiguation_pass[article_title_dis] = ''
continue
output.put((article_title, Disambiguation_pass))
except:
output.put((article_title, ''))
print(traceback.format_exc())
def sorting(self, article, question, topic):
processes = [mp.Process(target=self.wiki_passage_api, args=(article[x], article, output))\
for x in range(len(article))]
for p in processes:
p.start()
for p in processes:
p.join(timeout=3)
results_p = [output.get() for p in processes]
article_list = []
passage_list = []
for i, j in results_p:
if type(j) != dict and j:
article_list.append(i)
passage_list.append(j)
elif type(j) == dict and j:
for k, l in j.items():
if l:
article_list.append(k)
passage_list.append(l)
normalize_passage_list = []
start = time.time()
keywords = " ".join(self.noun+self.ques_key+[topic.lower()])
keywords = re.sub('[{0}]'.format(symbol), ' ', keywords).split()
question = question+' '+topic
ques_tokens = [stemmer.stem(i.lower()) for i in question.split() \
if i.lower() not in wh_words]
print(ques_tokens)
keywords_bigram = [' '.join(i) for i in list(ngrams(ques_tokens, 2)) \
if i[0] not in stop and i[1] not in stop]
if len(ques_tokens) > 3:
keywords_trigram = [' '.join(i) for i in list(ngrams(ques_tokens, 3)) \
if (i[0] in stop) + (i[2] in stop) + (i[1] in stop) < 3]
else:
keywords_trigram = []
if len(ques_tokens) > 5:
keywords_4gram = [' '.join(i) for i in list(ngrams(ques_tokens, 4)) \
if (i[0] in stop) + (i[2] in stop) +(i[1] in stop)+(i[3] in stop) < 4]
else:
keywords_4gram = []
keywords_unigram = list(set([stemmer.stem(i.lower()) for i in keywords \
if i.lower() not in stop]))
keywords = keywords_unigram+list(set(keywords_bigram))+keywords_trigram+keywords_4gram
tf = []
if not passage_list:
return 0
pass_len = []
#n_u_t=[]
#key_dict = {i: keywords.count(i) for i in keywords}
print('Extraction complete')
#remove_pass={}
#for n,i in enumerate(passage_list):
#if len(i)<200 or not i:
#remove_pass[article_list[n]]=i
#print(n, article_list[n])
#passage_list=[i for i in passage_list if i not in remove_pass.values()]
#article_list=[i for i in article_list if i not in remove_pass.keys()]
passage_list_copy = passage_list.copy()
article_list_copy = article_list.copy()
for i in range(len(passage_list_copy)):
if passage_list.count(passage_list_copy[i]) > 1:
passage_list.remove(passage_list_copy[i])
article_list.remove(article_list_copy[i])
print('Copy:', article_list_copy[i])
del passage_list_copy
del article_list_copy
for n, i in enumerate(passage_list):
temp_tf = {}
c = 0
for j in keywords:
temp_tf[j], temp_pass, temp_len = termFrequency(j, i + ' ' + article_list[n])
if temp_tf[j]:
c += 1
normalize_passage_list.append(temp_pass)
pass_len.append(temp_len)
temp_tf['key_match'] = c
tf.append(temp_tf)
print(pass_len)
print(keywords)
idf = {}
for i in keywords:
idf[i] = inverseDocumentFrequency(i, normalize_passage_list)
#print(tf, idf)
tfidf = []
#b=0.333 #for PLN
b, k = 0.75, 1.2 #for BM25
avg_pass_len = sum(pass_len)/len(pass_len)
#pivot=sum(n_u_t)/len(n_u_t)
for n, i in enumerate(tf):
tf_idf = 0
#avg_tf=sum(i.values())/len(i)
key_match_ratio = i['key_match']/len(keywords)
for j in keywords:
#tf_idf+=idf[j]*((log(1+log(1+i[j])))/(1-b+(b*pass_len[n]/avg_pass_len))) #PLN
tf_idf += idf[j]*(((k+1)*i[j])/(i[j]+k*(1-b+(b*pass_len[n]/avg_pass_len)))) #BM25
tfidf.append(tf_idf*key_match_ratio)
tfidf = [i/sum(tfidf)*100 for i in tfidf if any(tfidf)]
if not tfidf:
return 0, 0, 0, 0, 0
print(tfidf)
print(article_list, len(passage_list))
if len(passage_list) > 1:
sorted_tfidf = sorted(tfidf, reverse=1)
idx1 = tfidf.index(sorted_tfidf[0])
passage1 = passage_list[idx1]
#article_title=
tfidf1 = sorted_tfidf[0]
idx2 = tfidf.index(sorted_tfidf[1])
passage2 = passage_list[idx2]
article_title = (article_list[idx1], article_list[idx2])
tfidf2 = sorted_tfidf[1]
else:
article_title = 0
tfidf2 = 0
if passage_list:
passage1 = passage_list[0]
tfidf1 = tfidf[0]
passage2 = 0
else:
passage1 = 0
passage2 = 0
tfidf1, tfidf2 = 0, 0
end = time.time()
print('TFIDF time:', end-start)
return passage1, passage2, article_title, tfidf1, tfidf2
def passage_pre(self, passage):
#passage=re.findall("[\da-zA-z\.\,\'\-\/\–\(\)]*", passage)
passage = re.sub('\n', ' ', passage)
passage = re.sub('\[[^\]]+\]', '', passage)
passage = re.sub('pronunciation', '', passage)
passage = re.sub('\\\\.+\\\\', '', passage)
passage = re.sub('{.+}', '', passage)
passage = re.sub(' +', ' ', passage)
return passage
def wiki(self, question, topic=''):
if not question:
return 0
question = re.sub(' +', ' ', question)
question = question.title()
key.extract_keywords_from_text(question)
self.ques_key = key.get_ranked_phrases()
doc = NLP(question)
self.noun = [str(i).lower() for i in doc.noun_chunks if str(i).lower() not in wh_words]
print(self.ques_key, self.noun)
question = re.sub('[{0}]'.format(symbol), ' ', question)
if not self.noun + self.ques_key:
return 0
article_list = None
question = question.lower()
if self.noun:
if len(self.noun) == 2 and len(" ".join(self.noun).split()) < 6:
#question1=question
self.noun = " ".join(self.noun).split()
if self.noun[0] in stop:
self.noun.pop(0)
self.noun = question[question.index(self.noun[0]):question.index(self.noun[-1]) \
+len(self.noun[-1])+1].split()
#del question1
print(self.noun)
article_list = self.wiki_search_api(' '.join(self.noun))
if self.ques_key and not article_list:
article_list = self.wiki_search_api(self.ques_key[0])
if not article_list:
article_list = self.wiki_search_api(' '.join(self.ques_key))
if not article_list:
print('Article not found on wikipedia.')
return 0, 0
article_list = list(set(article_list))
passage1, passage2, article_title, tfidf1, tfidf2 = self.sorting(article_list,
question, topic)
if passage1:
ans1, conf1 = self.extractAnswer_model(passage1, question, s=0.20, e=0.20, wiki=True)
else:
ans1, conf1 = 0, 0
if ans1:
conf2 = 0
if len(ans1) > 600:
print(ans1)
print('Repeat')
ans1, conf1 = self.extractAnswer_model(ans1, question, s=0.20, e=0.20, wiki=True)
threshhold = 0.3 if not ((tfidf1- tfidf2) <= 10) else 0.2
if round(tfidf1- tfidf2) < 5:
threshhold = 0
if (tfidf1- tfidf2) > 20:
threshhold = 0.35
if (tfidf1- tfidf2) > 50:
threshhold = 1
if (passage2 and conf1 < 1.5) or (tfidf1 - tfidf2) < 10:
ans2, conf2 = self.extractAnswer_model(passage2, question, s=0.20, e=0.20,
wiki=True) if passage2 else (0, 0)
title = 0
if round(conf1, 2) > round(conf2, 2) - threshhold:
print('ans1')
ans = ans1
title = article_title[0] if article_title else 0
else:
print('ans2')
title = article_title[1] if article_title else 0
ans = ans2
if not question[-1] == '?':
question = question+'?'
try:
ans = sent_formation(question, ans)
except:
print(traceback.format_exc())
print(ans, '\n', '\n', article_title)
return ans, title
extractor = extractAnswer()
app = Flask(__name__)
#app.route("/", methods=["POST", "get"])
#app.route("/ans")
def ans():
start = time.time()
question = request.args.get('question')
topic = request.args.get('topic')
passage = request.args.get('passage')
if not question:
return render_template('p.html')
if not topic:
topic = ''
if passage:
answer = extractor.extractAnswer_model(passage, question)
else:
answer, title = extractor.wiki(question, topic)
end = time.time()
if answer:
mytext = str(answer)
language = 'en'
myobj = gTTS(text=mytext, lang=language, slow=False)
myobj.save("welcome.mp3")
# prevName = 'welcome.mp3'
#newName = 'static/welcome.mp3'
#os.rename(prevName,newName)
return render_template('pro.html', answer=answer)
else:
return jsonify(Status='E', Answer=answer, Time=end-start)
#app.route("/audio_del/", methods=["POST", "get"])
def audio_del():
return render_template('p.html');
#app.route("/audio_play/", methods=["POST", "get"])
def audio_play():
os.system("mpg321 welcome.mp3")
return render_template('white.html')
if __name__ == "__main__":
PORT = 7091
HTTP_SERVER = WSGIServer(('0.0.0.0', PORT), app)
print('Running on',PORT, '...')
HTTP_SERVER.serve_forever()
![Output in the terminal for a question I've asked](https://i.stack.imgur.com/6pyv5.jpg)
I came across a possible solution to this after deeply looking into the output returned by the model. Although this, is probably not something you can accurately rely on, it seemed to have done the task in my case:
Note that the text answer which is "best_span_str" is always a subarray of the passage. It spans the range which is stored in "best_span".
i.e., "best_span" contains the start and end index of the answer.
Now, the output data contains a property named "span_end_probs".
"span_end_probs" contains a list of values that correspond to all the words present in the text input.
If you look closely for various inputs, the value is always maximum at one of the indexes within the starting and ending range that "best_span" contains. This value seemed to be very similar to the confidence levels that we need. Let's call this value score. All you need to do now is to try some inputs and find a suitable method to use this score as a metric.
e.g.: if you need a threshold value for some application, you can try a number of test inputs and find a value that is most accurate. In my case, this was around 0.35.
i.e. if score is lesser than 0.35, it prints answer not found and if greater than or equal 0.35, prints string in "best_span_str".
Here's my code snippet:
from allennlp.predictors.predictor import Predictor
passage = '--INPUT PASSAGE--'
question = '--INPUT QUESTION--'
predictor = Predictor.from_path("https://storage.googleapis.com/allennlp-public-models/bidaf-elmo.2021-02-11.tar.gz")
output = predictor.predict(
passage = passage,
question = question
)
score = max(output["span_end_probs"])
if score < 0.35:
print('Answer not found')
else:
print(output["best_span_str"])
You can readily see the example input and output here.

Q: What is the workaround for nested for loop error - find() takes no keyword arguments

I'm getting to error 'find() takes no keyword arguments' on the line of code place = racers.find('td', class_='horse_number').get_text()
I presume this is due to the nested for loop - is find onto find the problem??
My goal is to get detail of the race in first loop, second loop reiterate over each runner within the race, third for loop to get the times that meet each nested if statement.
for race in results:
race_number = race.find('td', class_='raceNumber').get_text()
race_name1 = race.find('td', class_='raceTitle').get_text()
race_title1 = race.find('td', class_='raceInformation').get_text()
race_title1 = ' '.join(race_title1.split())
race_distance1 = race.find('td', class_='distance').get_text()
tableofdata = race.find('table', class_='raceFieldTable')
for racers in tableofdata:
place = racers.find('td', class_='horse_number').get_text()
horsename = racers.find('a', class_='horse_name_link')
horsename = horsename.text.replace('HorseName: ', '') if horsename else ''
prizemoney = racers.find('td', class_='prizemoney')
prizemoney = prizemoney.text.replace('Prizemoney: ', '') if prizemoney else ''
barrier = racers.find('td', class_='barrier')
barrier = barrier.text.replace('Row: ', '') if barrier else ''
#tabnumber = race.find('td', class_='horse_number')
#tabnumber = tabnumber.text.replace('HorseNumber: ', '') if tabnumber else ''
#print(tabnumber, tr2)
trainer = racers.find_all('td', class_='trainer-short')
trainer = trainer.text.replace('Trainer: ', '') if trainer else ''
driver = racers.find_all('td', class_='driver-short')
driver = driver.text.replace('Driver: ', '') if driver else ''
margin = racers.find_all('td', class_='margin')
margin = margin.text.replace('Margin: ', '') if margin else ''
startingprice = racers.find_all('td', class_='starting_price')
startingprice = startingprice.text.replace('StartingOdds: ', '')
startingprice = startingprice.replace('Â', ' ')if startingprice else ''
stewardscomments = racers.find_all('span', class_='stewardsTooltip')
stewardscomments = stewardscomments.text.replace('StewardsComments: ', '') if horsename else ''
scratchingnumber = racers.find_all('td', class_='number')
scratchingnumber = scratchingnumber.text.replace('Scratching: ', '') if scratchingnumber else ''
tableoftimes = race.find('table', class_='raceTimes')
for row in tableoftimes.select('td>strong:contains(":")'):
for t in row:
if "Track Rating:" in t:
trackrating = t.next_element.strip()
else:
trackrating = ''
if "Gross Time:" in t:
grosstime = t.next_element.strip()
else:
grosstime = ''
if "Mile Rate:" in t:
milerate = t.next_element.strip()
else:
milerate = ''
if "Lead Time:" in t:
leadtime = t.next_element.strip()
else:
leadtime = ''
if "First Quarter:" in t:
firstquarter = t.next_element.strip()
else:
firstquarter = ''
if "Second Quarter:" in t:
secondquarter = t.next_element.strip()
else:
secondquarter = ''
if "Third Quarter:" in t:
thirdquarter = t.next_element.strip()
else:
thirdquarter = ''
if "Fourth Quarter:" in t:
fourthquarter = t.next_element.strip()
else:
fourthquarter = ''
Last query is this replace doesnt work - still prints $2.40Â onto csv file
file = open('harnessresults.csv', 'w', newline='', encoding='utf8')
writer = csv.writer(file)
....
startingprice = startingprice.replace('Â', ' ')if startingprice else ''
....
writer.writerow([tr2, race_number, race_name1, race_title1, race_distance1, place, horsename, prizemoney, barrier, trainer, driver, margin, startingprice, stewardscomments, scratchingnumber, trackrating, grosstime, milerate, leadtime, firstquarter, secondquarter, thirdquarter, fourthquarter])
UPDATED
Start of HTML with scraping looks like below
from datetime import datetime, date, timedelta
import requests
import re
import csv
import os
import numpy
import pandas as pd
from bs4 import BeautifulSoup as bs
from simplified_scrapy import SimplifiedDoc,req,utils
file = open('harnessresults.csv', 'w', newline='', encoding='utf8')
writer = csv.writer(file)
base_url = "http://www.harness.org.au/racing/results/?firstDate="
base1_url = "http://www.harness.org.au"
webpage_response = requests.get('http://www.harness.org.au/racing/results/?firstDate=')
soup = bs(webpage_response.content, "html.parser")
format = "%d-%m-%y"
delta = timedelta(days=1)
yesterday = datetime.today() - timedelta(days=1)
enddate = datetime(2020, 4, 20)
#prints header in csv
writer.writerow(['Venue', 'RaceNumber', 'RaceName', 'RaceTitle', 'RaceDistance', 'Place', 'HorseName', 'Prizemoney', 'Row', 'Trainer', 'Driver', 'Margin', 'StartingOdds', 'StewardsComments', 'Scratching', 'TrackRating', 'Gross_Time', 'Mile_Rate', 'Lead_Time', 'First_Quarter', 'Second_Quarter', 'Third_Quarter', 'Fourth_Quarter'])
while enddate <= yesterday:
enddate += timedelta(days=1)
enddate1 = enddate.strftime("%d-%m-%y")
new_url = base_url + str(enddate1)
soup12 = requests.get(new_url)
soup1 = bs(soup12.content, "html.parser")
table1 = soup1.find('table', class_='meetingListFull')
tr = table1.find_all('tr', {'class':['odd', 'even']})
for tr1 in tr:
tr2 = tr1.find('a').get_text()
tr3 = tr1.find('a')['href']
newurl = base1_url + tr3
with requests.Session() as s:
webpage_response = s.get(newurl)
soup = bs(webpage_response.content, "html.parser")
#soup1 = soup.select('.content')
results = soup.find_all('div', {'class':'forPrint'})
#resultsv2 = soup.find_all('table', {'class':'raceFieldTable'})
Expect the CSV to look like

Grouping Tweets by Half-Hour, Hour, and Day in Pandas Dataframe

I'm working on a Sentiment Analysis project using Twitter Data, and I've encountered a small problem regarding Dates. The code itself runs fine, but I don't know how to build custom time blocks for grouping my final data. Right now, it is defaulting to grouping them by the second, which is not very useful. I want to be able to group them in half-hour, hour, and day segments...
Feel free to skip to the bottom of the code to see where the issue lies!
Here is the code:
import tweepy
API_KEY = "XXXXX"
API_SECRET = XXXXXX"
auth = tweepy.AppAuthHandler(API_KEY, API_SECRET)
api = tweepy.API(auth, wait_on_rate_limit = True, wait_on_rate_limit_notify = True)
import sklearn as sk
import pandas as pd
import got3
#"Get Old Tweets" to find older data
tweetCriteria = got3.manager.TweetCriteria()
tweetCriteria.setQuerySearch("Kentucky Derby")
tweetCriteria.setSince("2016-05-07")
tweetCriteria.setUntil("2016-05-08")
tweetCriteria.setMaxTweets(1000)
TweetCriteria = got3.manager.TweetCriteria()
KYDerby_tweets = got3.manager.TweetManager.getTweets(tweetCriteria)
from afinn import Afinn
afinn = Afinn()
#getting afinn library to use for sentiment polarity analysis
for x in KYDerby_tweets:
Text = x.text
Retweets = x.retweets
Favorites = x.favorites
Date = x.date
Id = x.id
print(Text)
AllText = []
AllRetweets = []
AllFavorites = []
AllDates = []
AllIDs = []
for x in KYDerby_tweets:
Text = x.text
Retweets = x.retweets
Favorites = x.favorites
Date = x.date
AllText.append(Text)
AllRetweets.append(Retweets)
AllFavorites.append(Favorites)
AllDates.append(Date)
AllIDs.append(Id)
data_set = [[x.id, x.date, x.text, x.retweets, x.favorites]
for x in KYDerby_tweets]
df = pd.DataFrame(data=data_set, columns=["Id", "Date", "Text", "Favorites", "Retweets"])
#I now have a DataFrame with my basic info in it
pscore = []
for x in KYDerby_tweets:
afinn.score(x.text)
pscore.append(afinn.score(x.text))
df['P Score'] = pscore
#I now have the pscores for each Tweet in the DataFrame
nrc = pd.read_csv('C:\\users\\andrew.smith\\downloads\\NRC-emotion-lexicon-wordlevel-alphabetized-v0.92.txt', sep="\t", names=["word", "emotion", "association"], skiprows=45)
#import NRC emotion lexicon
nrc = nrc[nrc["association"]==1]
nrc = nrc[nrc["emotion"].isin(["positive", "negative"]) == False]
#cleaned it up a bit
from nltk import TweetTokenizer
tt = TweetTokenizer()
tokenized = [x.lower() for x in tokenized]
#built my Tweet-specific, NRC-ready tokenizer
emotions = list(set(nrc["emotion"]))
index2emotion = {}
emotion2index = {}
for i in range(len(emotions)):
index2emotion[i] = emotions[i]
emotion2index[emotions[i]] = i
cv = [0] * len(emotions)
#built indices showing locations of emotions
for token in tokenized:
sub = nrc[nrc['word'] == token]
token_emotions = sub['emotion']
for e in token_emotions:
position_index = emotion2index[e]
cv[position_index]+=1
emotions = list(set(nrc['emotion']))
index2emotion = {}
emotion2index = {}
for i in range(len(emotions)):
index2emotion[i] = emotions[i]
emotion2index[emotions[i]] = i
def makeEmoVector(tweettext):
cv = [0] * len(emotions)
tokenized = tt.tokenize(tweettext)
tokenized = [x.lower() for x in tokenized]
for token in tokenized:
sub = nrc[nrc['word'] == token]
token_emotions = sub['emotion']
for e in token_emotions:
position_index = emotion2index[e]
cv[position_index] += 1
return cv
tweettext = df.iloc[14,:]['Text']
emotion_vectors = []
for text in df['Text']:
emotion_vector = makeEmoVector(text)
emotion_vectors.append(emotion_vector)
ev = pd.DataFrame(emotion_vectors, index=df.index, columns=emotions)
#Now I have a DataFrame with all of the emotion counts for each tweet
Date_Group = df.groupby("Date")
Date_Group[emotions].agg("sum")
#Finally, we arrive at the problem! When I run this, I end up with tweets that are grouped *by the second. What I want is to be able to group them: a) by the half-hour, b) by the hour, and c) by the day
Since, the default date format for tweets with the Tweepy API is "2017-04-14 18:41:56". To get tweets grouped by hour, you can do something as simple as this:
# This will get the time parameter
time = [item.split(" ")[1] for item in df['date'].values]
# This will get the hour parameter
hour = [item.split(":")[0] for item in time]
df['time'] = hour
grouped_tweets = df[['time', 'number_tweets']].groupby('time')
tweet_growth_hour = grouped_tweets.sum()
tweet_growth_hour['time']= tweet_growth_hour.index
print tweet_growth_hour
To group by date, you can do something similiar like:
days = [item.split(" ")[0] for item in df['date'].values]
df['days'] = days
grouped_tweets = df[['days', 'number_tweets']].groupby('days')
tweet_growth_days = grouped_tweets.sum()
tweet_growth_days['days']= tweet_growth_days.index
print tweet_growth_days

Nested for loop using dict

I am doing a Coursera python exercise and having trouble writing my code.
The question is as following:
Write a program to read through the mbox-short.txt and figure out who has the sent the greatest number of mail messages. The program looks for 'From ' lines and takes the second word of those lines as the person who sent the mail.
The program creates a Python dictionary that maps the sender's mail address to a count of the number of times they appear in the file. After the dictionary is produced, the program reads through the dictionary using a maximum loop to find the most prolific committer.
The sample text file is in this line:
http://www.pythonlearn.com/code/mbox-short.txt
And the expected output should be:
cwen#iupui.edu 5
This is my code:
name = raw_input("Enter file:")
if len(name) < 1 : name = "mbox-short.txt"
handle = open(name)
count = dict()
for line in handle:
word = line.split()
if line.startswith('From '):
email = word[1]
for sender in email:
if sender not in count:
count[sender] = count.get(sender, 0) + 1
bigcount = None
bigname = None
for name,count in count.items():
if bigname is None or count > bigcount:
bigname = name
bigcount = count
print bigname, bigcount
The output I have is:
. 1
I think there is something wrong in "for sender in email" part, but couldn't figure out how it results in the undesired output.
The following loop is not appropriate in this situation because you are basically iterating over all the characters of the email address.
for sender in email:
...
That is why you are getting a character . when you print the email address with the largest count. You can easily see the effects once you print the count at the end of the loop.
Following checking is also redundant as you are implicitly checking it when you are getting the dictionary value with get method.
if sender not in count:
...
So, the final corrected code should be something like this.
name = raw_input("Enter file:")
if len(name) < 1:
name = "mbox-short.txt"
handle = open(name)
count = dict()
for line in handle:
word = line.split()
if line.startswith('From '):
count[word[1]] = count.get(word[1], 0) + 1
largest = 0
email = ''
for k in count:
if count[k] > largest:
largest = count[k]
email = k
print largest, email
fname = input("Enter The File Name")
fhandle = open(fname,'r')
sender = dict()
for line in fhandle:
if line.startswith("From "):
sender[line.split()[1]] = sender.get(line.split()[1],0) + 1
max_key = None
max_val = None
for key,value in sender.items():
if max_val is None or max_val < value :
max_val = value
max_key = key
print(max_key,max_val)
name = raw_input("Enter file:")
if len(name) < 1 : name = "mbox-short.txt"
handle = open(name)
words = list()
counts = dict()
for line in handle:
words = line.split()
if words == []: continue
if words[0] != 'From': continue
counts[words[1]] = counts.get(words[1],0) + 1
#print counts
maxval = None
maxkey = None
for kee, val in counts.items():
if maxval == None: maxval = val
if maxval < val:
maxval = val
maxkey = kee
print maxkey, maxval
name = raw_input("Enter file:")
if len(name) < 1 : name = "mbox-short.txt"
fl = open(name)
#fl=open('C:\Users\Algoritm\Documents\Python Coursera\mbox-short.txt')
lst=list()
count=dict()
#scan the file and create a list
for lines_in_the_file in fl:
xx=lines_in_the_file.rstrip().split()
if not lines_in_the_file.startswith('From '): continue #if in the line keep it
word=lines_in_the_file.split()
#print word[1]
xx=word[1]
#for index in xx: #find repeted words in the list Word
lst.append(xx)
#print lst
lis=lst
for x in lis:
count[x]=count.get(x,0)+1
#print count
bigcount=None
bigwords=None
for x, y in count.items():
if bigcount is None or y>bigcount:
bigwords=x
bigcount=y
print bigwords, bigcount
name = input("Enter the file name:")
handle = open(name)
new = dict()
#count = 0
for line in handle:
word = line.split()
if line.startswith("From "):
new[word[1]] = new.get(word[1],0) + 1
largest = 0
email = None
for k,v in new.items():
if email is None or v > largest:
largest = v
email = k
print (email,largest)
fname=input('enter the file name: ')
d=dict()
try:
fhand=open(fname,'r')
except:
print('file not found')
exit()
for line in fhand:
if line.startswith("From:"):
srt=line.find(' ')
sl=line[srt:-1]
if sl not in d:
d[sl]=1
else:
d[sl]+=1
print(d)
largest= 0
email=''
for key in d:
if d[key] > largest:
largest=d[key]
email=key
print(email,': ',largest)
I am taking the same Coursera Python course. Since I am new at it, I am sharing my code for the Assignment. To me the key part was first to use if not line, then split it.
counts=dict()
fname=input('Enter file: ')
if len(fname)<1:
fname='mbox-short.txt'
else:
print('Error')
quit()
fhand=open(fname)
for line in fhand:
if not line.startswith('From '):
continue
words=line.split()
counts[words[1]]=counts.get(words[1],0)+1
key=None
num=0
for k,v in counts.items():
if key is None or v > num:
num=v
key=k
print (num, key)
name = input("Enter file:")
if len(name) < 1 : name = "mbox-short.txt"
name = "mbox-short.txt"
handle = open(name)
text = handle.read()
#words = text.split()
words = list()
for line in handle:
if not line.startswith("From:") : continue
line = line.split()
words.append(line[1])
counts = dict()
for word in words:
counts[word] = counts.get(word, 0) + 1
maxval = None
maxkey = None
for key,val in counts.items() :
# if maxval == None : maxval = val
if val > maxval:
maxval = val
maxkey = key
print (maxkey, maxval)
counts = dict()
name = input("Enter file:")
if len(name) < 1 : name = "mbox-short.txt"
fhand = open(name)
for line in fhand:
line = line.rstrip()
if not line.startswith('From ') : continue
words = line.split()
counts[words[1]]=counts.get(words[1],0)+1
st = 0
for k in counts:
if counts[k] > st :
st = counts[k]
addy = k
print (addy, st)

Categories

Resources