Related
a = [1, 2, 3, 1, 2, 3]
b = [3, 2, 1, 3, 2, 1]
a & b should be considered equal, because they have exactly the same elements, only in different order.
The thing is, my actual lists will consist of objects (my class instances), not integers.
O(n): The Counter() method is best (if your objects are hashable):
def compare(s, t):
return Counter(s) == Counter(t)
O(n log n): The sorted() method is next best (if your objects are orderable):
def compare(s, t):
return sorted(s) == sorted(t)
O(n * n): If the objects are neither hashable, nor orderable, you can use equality:
def compare(s, t):
t = list(t) # make a mutable copy
try:
for elem in s:
t.remove(elem)
except ValueError:
return False
return not t
You can sort both:
sorted(a) == sorted(b)
A counting sort could also be more efficient (but it requires the object to be hashable).
>>> from collections import Counter
>>> a = [1, 2, 3, 1, 2, 3]
>>> b = [3, 2, 1, 3, 2, 1]
>>> print (Counter(a) == Counter(b))
True
If you know the items are always hashable, you can use a Counter() which is O(n)
If you know the items are always sortable, you can use sorted() which is O(n log n)
In the general case you can't rely on being able to sort, or has the elements, so you need a fallback like this, which is unfortunately O(n^2)
len(a)==len(b) and all(a.count(i)==b.count(i) for i in a)
If you have to do this in tests:
https://docs.python.org/3.5/library/unittest.html#unittest.TestCase.assertCountEqual
assertCountEqual(first, second, msg=None)
Test that sequence first contains the same elements as second, regardless of their order. When they don’t, an error message listing the differences between the sequences will be generated.
Duplicate elements are not ignored when comparing first and second. It verifies whether each element has the same count in both sequences. Equivalent to: assertEqual(Counter(list(first)), Counter(list(second))) but works with sequences of unhashable objects as well.
New in version 3.2.
or in 2.7:
https://docs.python.org/2.7/library/unittest.html#unittest.TestCase.assertItemsEqual
Outside of tests I would recommend the Counter method.
The best way to do this is by sorting the lists and comparing them. (Using Counter won't work with objects that aren't hashable.) This is straightforward for integers:
sorted(a) == sorted(b)
It gets a little trickier with arbitrary objects. If you care about object identity, i.e., whether the same objects are in both lists, you can use the id() function as the sort key.
sorted(a, key=id) == sorted(b, key==id)
(In Python 2.x you don't actually need the key= parameter, because you can compare any object to any object. The ordering is arbitrary but stable, so it works fine for this purpose; it doesn't matter what order the objects are in, only that the ordering is the same for both lists. In Python 3, though, comparing objects of different types is disallowed in many circumstances -- for example, you can't compare strings to integers -- so if you will have objects of various types, best to explicitly use the object's ID.)
If you want to compare the objects in the list by value, on the other hand, first you need to define what "value" means for the objects. Then you will need some way to provide that as a key (and for Python 3, as a consistent type). One potential way that would work for a lot of arbitrary objects is to sort by their repr(). Of course, this could waste a lot of extra time and memory building repr() strings for large lists and so on.
sorted(a, key=repr) == sorted(b, key==repr)
If the objects are all your own types, you can define __lt__() on them so that the object knows how to compare itself to others. Then you can just sort them and not worry about the key= parameter. Of course you could also define __hash__() and use Counter, which will be faster.
If the comparison is to be performed in a testing context, use assertCountEqual(a, b) (py>=3.2) and assertItemsEqual(a, b) (2.7<=py<3.2).
Works on sequences of unhashable objects too.
If the list contains items that are not hashable (such as a list of objects) you might be able to use the Counter Class and the id() function such as:
from collections import Counter
...
if Counter(map(id,a)) == Counter(map(id,b)):
print("Lists a and b contain the same objects")
Let a,b lists
def ass_equal(a,b):
try:
map(lambda x: a.pop(a.index(x)), b) # try to remove all the elements of b from a, on fail, throw exception
if len(a) == 0: # if a is empty, means that b has removed them all
return True
except:
return False # b failed to remove some items from a
No need to make them hashable or sort them.
I hope the below piece of code might work in your case :-
if ((len(a) == len(b)) and
(all(i in a for i in b))):
print 'True'
else:
print 'False'
This will ensure that all the elements in both the lists a & b are same, regardless of whether they are in same order or not.
For better understanding, refer to my answer in this question
You can write your own function to compare the lists.
Let's get two lists.
list_1=['John', 'Doe']
list_2=['Doe','Joe']
Firstly, we define an empty dictionary, count the list items and write in the dictionary.
def count_list(list_items):
empty_dict={}
for list_item in list_items:
list_item=list_item.strip()
if list_item not in empty_dict:
empty_dict[list_item]=1
else:
empty_dict[list_item]+=1
return empty_dict
After that, we'll compare both lists by using the following function.
def compare_list(list_1, list_2):
if count_list(list_1)==count_list(list_2):
return True
return False
compare_list(list_1,list_2)
from collections import defaultdict
def _list_eq(a: list, b: list) -> bool:
if len(a) != len(b):
return False
b_set = set(b)
a_map = defaultdict(lambda: 0)
b_map = defaultdict(lambda: 0)
for item1, item2 in zip(a, b):
if item1 not in b_set:
return False
a_map[item1] += 1
b_map[item2] += 1
return a_map == b_map
Sorting can be quite slow if the data is highly unordered (timsort is extra good when the items have some degree of ordering). Sorting both also requires fully iterating through both lists.
Rather than mutating a list, just allocate a set and do a left-->right membership check, keeping a count of how many of each item exist along the way:
If the two lists are not the same length you can short circuit and return False immediately.
If you hit any item in list a that isn't in list b you can return False
If you get through all items then you can compare the values of a_map and b_map to find out if they match.
This allows you to short-circuit in many cases long before you've iterated both lists.
plug in this:
def lists_equal(l1: list, l2: list) -> bool:
"""
import collections
compare = lambda x, y: collections.Counter(x) == collections.Counter(y)
ref:
- https://stackoverflow.com/questions/9623114/check-if-two-unordered-lists-are-equal
- https://stackoverflow.com/questions/7828867/how-to-efficiently-compare-two-unordered-lists-not-sets
"""
compare = lambda x, y: collections.Counter(x) == collections.Counter(y)
set_comp = set(l1) == set(l2) # removes duplicates, so returns true when not sometimes :(
multiset_comp = compare(l1, l2) # approximates multiset
return set_comp and multiset_comp #set_comp is gere in case the compare function doesn't work
The list.index(x) function returns the index in the list of the first item whose value is x.
Is there a function, list_func_index(), similar to the index() function that has a function, f(), as a parameter. The function, f() is run on every element, e, of the list until f(e) returns True. Then list_func_index() returns the index of e.
Codewise:
>>> def list_func_index(lst, func):
for i in range(len(lst)):
if func(lst[i]):
return i
raise ValueError('no element making func True')
>>> l = [8,10,4,5,7]
>>> def is_odd(x): return x % 2 != 0
>>> list_func_index(l,is_odd)
3
Is there a more elegant solution? (and a better name for the function)
You could do that in a one-liner using generators:
next(i for i,v in enumerate(l) if is_odd(v))
The nice thing about generators is that they only compute up to the requested amount. So requesting the first two indices is (almost) just as easy:
y = (i for i,v in enumerate(l) if is_odd(v))
x1 = next(y)
x2 = next(y)
Though, expect a StopIteration exception after the last index (that is how generators work). This is also convenient in your "take-first" approach, to know that no such value was found --- the list.index() function would throw ValueError here.
One possibility is the built-in enumerate function:
def index_of_first(lst, pred):
for i,v in enumerate(lst):
if pred(v):
return i
return None
It's typical to refer a function like the one you describe as a "predicate"; it returns true or false for some question. That's why I call it pred in my example.
I also think it would be better form to return None, since that's the real answer to the question. The caller can choose to explode on None, if required.
#Paul's accepted answer is best, but here's a little lateral-thinking variant, mostly for amusement and instruction purposes...:
>>> class X(object):
... def __init__(self, pred): self.pred = pred
... def __eq__(self, other): return self.pred(other)
...
>>> l = [8,10,4,5,7]
>>> def is_odd(x): return x % 2 != 0
...
>>> l.index(X(is_odd))
3
essentially, X's purpose is to change the meaning of "equality" from the normal one to "satisfies this predicate", thereby allowing the use of predicates in all kinds of situations that are defined as checking for equality -- for example, it would also let you code, instead of if any(is_odd(x) for x in l):, the shorter if X(is_odd) in l:, and so forth.
Worth using? Not when a more explicit approach like that taken by #Paul is just as handy (especially when changed to use the new, shiny built-in next function rather than the older, less appropriate .next method, as I suggest in a comment to that answer), but there are other situations where it (or other variants of the idea "tweak the meaning of equality", and maybe other comparators and/or hashing) may be appropriate. Mostly, worth knowing about the idea, to avoid having to invent it from scratch one day;-).
Not one single function, but you can do it pretty easily:
>>> test = lambda c: c == 'x'
>>> data = ['a', 'b', 'c', 'x', 'y', 'z', 'x']
>>> map(test, data).index(True)
3
>>>
If you don't want to evaluate the entire list at once you can use itertools, but it's not as pretty:
>>> from itertools import imap, ifilter
>>> from operator import itemgetter
>>> test = lambda c: c == 'x'
>>> data = ['a', 'b', 'c', 'x', 'y', 'z']
>>> ifilter(itemgetter(1), enumerate(imap(test, data))).next()[0]
3
>>>
Just using a generator expression is probably more readable than itertools though.
Note in Python3, map and filter return lazy iterators and you can just use:
from operator import itemgetter
test = lambda c: c == 'x'
data = ['a', 'b', 'c', 'x', 'y', 'z']
next(filter(itemgetter(1), enumerate(map(test, data))))[0] # 3
A variation on Alex's answer. This avoids having to type X every time you want to use is_odd or whichever predicate
>>> class X(object):
... def __init__(self, pred): self.pred = pred
... def __eq__(self, other): return self.pred(other)
...
>>> L = [8,10,4,5,7]
>>> is_odd = X(lambda x: x%2 != 0)
>>> L.index(is_odd)
3
>>> less_than_six = X(lambda x: x<6)
>>> L.index(less_than_six)
2
you could do this with a list-comprehension:
l = [8,10,4,5,7]
filterl = [a for a in l if a % 2 != 0]
Then filterl will return all members of the list fulfilling the expression a % 2 != 0. I would say a more elegant method...
Intuitive one-liner solution:
i = list(map(lambda value: value > 0, data)).index(True)
Explanation:
we use map function to create a list containing True or False based on if each element in our list pass the condition in the lambda or not.
then we convert the map output to list
then using the index function, we get the index of the first true which is the same index of the first value passing the condition.
A common issue on SO is removing duplicates from a list of lists. Since lists are unhashable, set([[1, 2], [3, 4], [1, 2]]) throws TypeError: unhashable type: 'list'. Answers to this kind of question usually involve using tuples, which are immutable and therefore hashable.
This answer to What makes lists unhashable? include the following:
If the hash value changes after it gets stored at a particular slot in the dictionary, it will lead to an inconsistent dictionary. For example, initially the list would have gotten stored at location A, which was determined based on the hash value. If the hash value changes, and if we look for the list we might not find it at location A, or as per the new hash value, we might find some other object.
but I don't quite understand because other types that can be used for dictionary keys can be changed without issue:
>>> d = {}
>>> a = 1234
>>> d[a] = 'foo'
>>> a += 1
>>> d[a] = 'bar'
>>> d
{1234: 'foo', 1235: 'bar'}
It is obvious that if the value of a changes, it will hash to a different location in the dictionary. Why is the same assumption dangerous for a list? Why is the following an unsafe method for hashing a list, since it is what we all use when we need to anyway?
>>> class my_list(list):
... def __hash__(self):
... return tuple(self).__hash__()
...
>>> a = my_list([1, 2])
>>> b = my_list([3, 4])
>>> c = my_list([1, 2])
>>> foo = [a, b, c]
>>> foo
[[1, 2], [3, 4], [1, 2]]
>>> set(foo)
set([[1, 2], [3, 4]])
It seems that this solves the set() problem, why is this an issue? Lists may be mutable, but they are ordered which seems like it would be all that's needed for hashing.
You seem to confuse mutability with rebinding. a += 1 assigns a new object, the int object with the numeric value 1235, to a. Under the hood, for immutable objects like int, a += 1 is just the same as a = a + 1.
The original 1234 object is not mutated. The dictionary is still using an int object with numeric value 1234 as the key. The dictionary still holds a reference to that object, even though a now references a different object. The two references are independent.
Try this instead:
>>> class BadKey:
... def __init__(self, value):
... self.value = value
... def __eq__(self, other):
... return other == self.value
... def __hash__(self):
... return hash(self.value)
... def __repr__(self):
... return 'BadKey({!r})'.format(self.value)
...
>>> badkey = BadKey('foo')
>>> d = {badkey: 42}
>>> badkey.value = 'bar'
>>> print(d)
{BadKey('bar'): 42}
Note that I altered the attribute value on the badkey instance. I didn't even touch the dictionary. The dictionary reflects the change; the actual key value itself was mutated, the object that both the name badkey and the dictionary reference.
However, you now can't access that key anymore:
>>> badkey in d
False
>>> BadKey('bar') in d
False
>>> for key in d:
... print(key, key in d)
...
BadKey('bar') False
I have thoroughly broken my dictionary, because I can no longer reliably locate the key.
That's because BadKey violates the principles of hashability; that the hash value must remain stable. You can only do that if you don't change anything about the object that the hash is based on. And the hash must be based on whatever makes two instances equal.
For lists, the contents make two list objects equal. And you can change those, so you can't produce a stable hash either.
I have two lists say
List1 = ['a','c','c']
List2 = ['x','b','a','x','c','y','c']
Now I want to find out if all elements of List1 are there in List2. In this case all there are. I can't use the subset function because I can have repeated elements in lists. I can use a for loop to count the number of occurrences of each item in List1 and see if it is less than or equal to the number of occurrences in List2. Is there a better way to do this?
Thanks.
When number of occurrences doesn't matter, you can still use the subset functionality, by creating a set on the fly:
>>> list1 = ['a', 'c', 'c']
>>> list2 = ['x', 'b', 'a', 'x', 'c', 'y', 'c']
>>> set(list1).issubset(list2)
True
If you need to check if each element shows up at least as many times in the second list as in the first list, you can make use of the Counter type and define your own subset relation:
>>> from collections import Counter
>>> def counterSubset(list1, list2):
c1, c2 = Counter(list1), Counter(list2)
for k, n in c1.items():
if n > c2[k]:
return False
return True
>>> counterSubset(list1, list2)
True
>>> counterSubset(list1 + ['a'], list2)
False
>>> counterSubset(list1 + ['z'], list2)
False
If you already have counters (which might be a useful alternative to store your data anyway), you can also just write this as a single line:
>>> all(n <= c2[k] for k, n in c1.items())
True
Be aware of the following:
>>>listA = ['a', 'a', 'b','b','b','c']
>>>listB = ['b', 'a','a','b','c','d']
>>>all(item in listB for item in listA)
True
If you read the "all" line as you would in English, This is not wrong but can be misleading, as listA has a third 'b' but listB does not.
This also has the same issue:
def list1InList2(list1, list2):
for item in list1:
if item not in list2:
return False
return True
Just a note. The following does not work:
>>>tupA = (1,2,3,4,5,6,7,8,9)
>>>tupB = (1,2,3,4,5,6,6,7,8,9)
>>>set(tupA) < set(TupB)
False
If you convert the tuples to lists it still does not work. I don't know why strings work but ints do not.
Works but has same issue of not keeping count of element occurances:
>>>set(tupA).issubset(set(tupB))
True
Using sets is not a comprehensive solution for multi-occurrance element matching.
But here is a one-liner solution/adaption to shantanoo's answer without try/except:
all(True if sequenceA.count(item) <= sequenceB.count(item) else False for item in sequenceA)
A builtin function wrapping a list comprehension using a ternary conditional operator. Python is awesome! Note that the "<=" should not be "==".
With this solution sequence A and B can be type tuple and list and other "sequences" with "count" methods. The elements in both sequences can be most types. I would not use this with dicts as it is now, hence the use "sequence" instead of "iterable".
A solution using Counter and the builtin intersection method (note that - is proper multiset difference, not an element-wise subtraction):
from collections import Counter
def is_subset(l1, l2):
c1, c2 = Counter(l1), Counter(l2)
return not c1 - c2
Test:
>>> List1 = ['a','c','c']
>>> List2 = ['x','b','a','x','c','y','c']
>>> is_subset(List1, List2)
True
I can't use the subset function because I can have repeated elements in lists.
What this means is that you want to treat your lists as multisets rather than sets. The usual way to handle multisets in Python is with collections.Counter:
A Counter is a dict subclass for counting hashable objects. It is an unordered collection where elements are stored as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any integer value including zero or negative counts. The Counter class is similar to bags or multisets in other languages.
And, while you can implement subset for multisets (implemented with Counter) by looping and comparing counts, as in poke's answer, this is unnecessary—just as you can implement subset for sets (implemented with set or frozenset) by looping and testing in, but it's unnecessary.
The Counter type already implements all the set operators extended in the obvious way for multisets.<1 So you can just write subset in terms of those operators, and it will work for both set and Counter out of the box.
With (multi)set difference:2
def is_subset(c1, c2):
return not c1 - c2
Or with (multi)set intersection:
def is_subset(c1, c2):
def c1 & c2 == c1
1. You may be wondering why, if Counter implements the set operators, it doesn't just implement < and <= for proper subset and subset. Although I can't find the email thread, I'm pretty sure this was discussed, and the answer was that "the set operators" are defined as the specific set of operators defined in the initial version of collections.abc.Set (which has since been expanded, IIRC…), not all operators that set happens to include for convenience, in the exact same way that Counter doesn't have named methods like intersection that's friendly to other types than & just because set does.
2. This depends on the fact that collections in Python are expected to be falsey when empty and truthy otherwise. This is documented here for the builtin types, and the fact that bool tests fall back to len is explained here—but it's ultimately just a convention, so that "quasi-collections" like numpy arrays can violate it if they have a good reason. It holds for "real collections" like Counter, OrderedDict, etc. If you're really worried about that, you can write len(c1 - c2) == 0, but note that this is against the spirit of PEP 8.
This will return true is all the items in List1 are in List2
def list1InList2(list1, list2):
for item in list1:
if item not in list2:
return False
return True
def check_subset(list1, list2):
try:
[list2.remove(x) for x in list1]
return 'all elements in list1 are in list2'
except:
return 'some elements in list1 are not in list2'
a = [1, 2, 3, 1, 2, 3]
b = [3, 2, 1, 3, 2, 1]
a & b should be considered equal, because they have exactly the same elements, only in different order.
The thing is, my actual lists will consist of objects (my class instances), not integers.
O(n): The Counter() method is best (if your objects are hashable):
def compare(s, t):
return Counter(s) == Counter(t)
O(n log n): The sorted() method is next best (if your objects are orderable):
def compare(s, t):
return sorted(s) == sorted(t)
O(n * n): If the objects are neither hashable, nor orderable, you can use equality:
def compare(s, t):
t = list(t) # make a mutable copy
try:
for elem in s:
t.remove(elem)
except ValueError:
return False
return not t
You can sort both:
sorted(a) == sorted(b)
A counting sort could also be more efficient (but it requires the object to be hashable).
>>> from collections import Counter
>>> a = [1, 2, 3, 1, 2, 3]
>>> b = [3, 2, 1, 3, 2, 1]
>>> print (Counter(a) == Counter(b))
True
If you know the items are always hashable, you can use a Counter() which is O(n)
If you know the items are always sortable, you can use sorted() which is O(n log n)
In the general case you can't rely on being able to sort, or has the elements, so you need a fallback like this, which is unfortunately O(n^2)
len(a)==len(b) and all(a.count(i)==b.count(i) for i in a)
If you have to do this in tests:
https://docs.python.org/3.5/library/unittest.html#unittest.TestCase.assertCountEqual
assertCountEqual(first, second, msg=None)
Test that sequence first contains the same elements as second, regardless of their order. When they don’t, an error message listing the differences between the sequences will be generated.
Duplicate elements are not ignored when comparing first and second. It verifies whether each element has the same count in both sequences. Equivalent to: assertEqual(Counter(list(first)), Counter(list(second))) but works with sequences of unhashable objects as well.
New in version 3.2.
or in 2.7:
https://docs.python.org/2.7/library/unittest.html#unittest.TestCase.assertItemsEqual
Outside of tests I would recommend the Counter method.
The best way to do this is by sorting the lists and comparing them. (Using Counter won't work with objects that aren't hashable.) This is straightforward for integers:
sorted(a) == sorted(b)
It gets a little trickier with arbitrary objects. If you care about object identity, i.e., whether the same objects are in both lists, you can use the id() function as the sort key.
sorted(a, key=id) == sorted(b, key==id)
(In Python 2.x you don't actually need the key= parameter, because you can compare any object to any object. The ordering is arbitrary but stable, so it works fine for this purpose; it doesn't matter what order the objects are in, only that the ordering is the same for both lists. In Python 3, though, comparing objects of different types is disallowed in many circumstances -- for example, you can't compare strings to integers -- so if you will have objects of various types, best to explicitly use the object's ID.)
If you want to compare the objects in the list by value, on the other hand, first you need to define what "value" means for the objects. Then you will need some way to provide that as a key (and for Python 3, as a consistent type). One potential way that would work for a lot of arbitrary objects is to sort by their repr(). Of course, this could waste a lot of extra time and memory building repr() strings for large lists and so on.
sorted(a, key=repr) == sorted(b, key==repr)
If the objects are all your own types, you can define __lt__() on them so that the object knows how to compare itself to others. Then you can just sort them and not worry about the key= parameter. Of course you could also define __hash__() and use Counter, which will be faster.
If the comparison is to be performed in a testing context, use assertCountEqual(a, b) (py>=3.2) and assertItemsEqual(a, b) (2.7<=py<3.2).
Works on sequences of unhashable objects too.
If the list contains items that are not hashable (such as a list of objects) you might be able to use the Counter Class and the id() function such as:
from collections import Counter
...
if Counter(map(id,a)) == Counter(map(id,b)):
print("Lists a and b contain the same objects")
Let a,b lists
def ass_equal(a,b):
try:
map(lambda x: a.pop(a.index(x)), b) # try to remove all the elements of b from a, on fail, throw exception
if len(a) == 0: # if a is empty, means that b has removed them all
return True
except:
return False # b failed to remove some items from a
No need to make them hashable or sort them.
I hope the below piece of code might work in your case :-
if ((len(a) == len(b)) and
(all(i in a for i in b))):
print 'True'
else:
print 'False'
This will ensure that all the elements in both the lists a & b are same, regardless of whether they are in same order or not.
For better understanding, refer to my answer in this question
You can write your own function to compare the lists.
Let's get two lists.
list_1=['John', 'Doe']
list_2=['Doe','Joe']
Firstly, we define an empty dictionary, count the list items and write in the dictionary.
def count_list(list_items):
empty_dict={}
for list_item in list_items:
list_item=list_item.strip()
if list_item not in empty_dict:
empty_dict[list_item]=1
else:
empty_dict[list_item]+=1
return empty_dict
After that, we'll compare both lists by using the following function.
def compare_list(list_1, list_2):
if count_list(list_1)==count_list(list_2):
return True
return False
compare_list(list_1,list_2)
from collections import defaultdict
def _list_eq(a: list, b: list) -> bool:
if len(a) != len(b):
return False
b_set = set(b)
a_map = defaultdict(lambda: 0)
b_map = defaultdict(lambda: 0)
for item1, item2 in zip(a, b):
if item1 not in b_set:
return False
a_map[item1] += 1
b_map[item2] += 1
return a_map == b_map
Sorting can be quite slow if the data is highly unordered (timsort is extra good when the items have some degree of ordering). Sorting both also requires fully iterating through both lists.
Rather than mutating a list, just allocate a set and do a left-->right membership check, keeping a count of how many of each item exist along the way:
If the two lists are not the same length you can short circuit and return False immediately.
If you hit any item in list a that isn't in list b you can return False
If you get through all items then you can compare the values of a_map and b_map to find out if they match.
This allows you to short-circuit in many cases long before you've iterated both lists.
plug in this:
def lists_equal(l1: list, l2: list) -> bool:
"""
import collections
compare = lambda x, y: collections.Counter(x) == collections.Counter(y)
ref:
- https://stackoverflow.com/questions/9623114/check-if-two-unordered-lists-are-equal
- https://stackoverflow.com/questions/7828867/how-to-efficiently-compare-two-unordered-lists-not-sets
"""
compare = lambda x, y: collections.Counter(x) == collections.Counter(y)
set_comp = set(l1) == set(l2) # removes duplicates, so returns true when not sometimes :(
multiset_comp = compare(l1, l2) # approximates multiset
return set_comp and multiset_comp #set_comp is gere in case the compare function doesn't work