I have a DataFrame with data similar to the following
import pandas as pd; import numpy as np; import datetime; from datetime import timedelta;
df = pd.DataFrame(index=pd.date_range(start='20160102', end='20170301', freq='5min'))
df['value'] = np.random.randn(df.index.size)
df.index += pd.Series([timedelta(seconds=np.random.randint(-60, 60))
for _ in range(df.index.size)])
which looks like this
In[37]: df
Out[37]:
value
2016-01-02 00:00:33 0.546675
2016-01-02 00:04:52 1.080558
2016-01-02 00:10:46 -1.551206
2016-01-02 00:15:52 -1.278845
2016-01-02 00:19:04 -1.672387
2016-01-02 00:25:36 -0.786985
2016-01-02 00:29:35 1.067132
2016-01-02 00:34:36 -0.575365
2016-01-02 00:39:33 0.570341
2016-01-02 00:44:56 -0.636312
...
2017-02-28 23:14:57 -0.027981
2017-02-28 23:19:51 0.883150
2017-02-28 23:24:15 -0.706997
2017-02-28 23:30:09 -0.954630
2017-02-28 23:35:08 -1.184881
2017-02-28 23:40:20 0.104017
2017-02-28 23:44:10 -0.678742
2017-02-28 23:49:15 -0.959857
2017-02-28 23:54:36 -1.157165
2017-02-28 23:59:10 0.527642
Now, I'm aiming to get the mean per 5 minute period over the course of a 24 hour day - without considering what day those values actually come from.
How can I do this effectively? I would like to think I could somehow remove the actual dates from my index and then use something like pd.TimeGrouper, but I haven't figured out how to do so.
My not-so-great solution
My solution so far has been to use between_time in a loop like this, just using an arbitrary day.
aggregates = []
start_time = datetime.datetime(1990, 1, 1, 0, 0, 0)
while start_time < datetime.datetime(1990, 1, 1, 23, 59, 0):
aggregates.append(
(
start_time,
df.between_time(start_time.time(),
(start_time + timedelta(minutes=5)).time(),
include_end=False).value.mean()
)
)
start_time += timedelta(minutes=5)
result = pd.DataFrame(aggregates, columns=['time', 'value'])
which works as expected
In[68]: result
Out[68]:
time value
0 1990-01-01 00:00:00 0.032667
1 1990-01-01 00:05:00 0.117288
2 1990-01-01 00:10:00 -0.052447
3 1990-01-01 00:15:00 -0.070428
4 1990-01-01 00:20:00 0.034584
5 1990-01-01 00:25:00 0.042414
6 1990-01-01 00:30:00 0.043388
7 1990-01-01 00:35:00 0.050371
8 1990-01-01 00:40:00 0.022209
9 1990-01-01 00:45:00 -0.035161
.. ... ...
278 1990-01-01 23:10:00 0.073753
279 1990-01-01 23:15:00 -0.005661
280 1990-01-01 23:20:00 -0.074529
281 1990-01-01 23:25:00 -0.083190
282 1990-01-01 23:30:00 -0.036636
283 1990-01-01 23:35:00 0.006767
284 1990-01-01 23:40:00 0.043436
285 1990-01-01 23:45:00 0.011117
286 1990-01-01 23:50:00 0.020737
287 1990-01-01 23:55:00 0.021030
[288 rows x 2 columns]
But this doesn't feel like a very Pandas-friendly solution.
IIUC then the following should work:
In [62]:
df.groupby(df.index.floor('5min').time).mean()
Out[62]:
value
00:00:00 -0.038002
00:05:00 -0.011646
00:10:00 0.010701
00:15:00 0.034699
00:20:00 0.041164
00:25:00 0.151187
00:30:00 -0.006149
00:35:00 -0.008256
00:40:00 0.021389
00:45:00 0.016851
00:50:00 -0.074825
00:55:00 0.012861
01:00:00 0.054048
01:05:00 0.041907
01:10:00 -0.004457
01:15:00 0.052428
01:20:00 -0.021518
01:25:00 -0.019010
01:30:00 0.030887
01:35:00 -0.085415
01:40:00 0.002386
01:45:00 -0.002189
01:50:00 0.049720
01:55:00 0.032292
02:00:00 -0.043642
02:05:00 0.067132
02:10:00 -0.029628
02:15:00 0.064098
02:20:00 0.042731
02:25:00 -0.031113
... ...
21:30:00 -0.018391
21:35:00 0.032155
21:40:00 0.035014
21:45:00 -0.016979
21:50:00 -0.025248
21:55:00 0.027896
22:00:00 -0.117036
22:05:00 -0.017970
22:10:00 -0.008494
22:15:00 -0.065303
22:20:00 -0.014623
22:25:00 0.076994
22:30:00 -0.030935
22:35:00 0.030308
22:40:00 -0.124668
22:45:00 0.064853
22:50:00 0.057913
22:55:00 0.002309
23:00:00 0.083586
23:05:00 -0.031043
23:10:00 -0.049510
23:15:00 0.003520
23:20:00 0.037135
23:25:00 -0.002231
23:30:00 -0.029592
23:35:00 0.040335
23:40:00 -0.021513
23:45:00 0.104421
23:50:00 -0.022280
23:55:00 -0.021283
[288 rows x 1 columns]
Here I floor the index to '5 min' intervals and then group on the time attribute and aggregate the mean
Related
Say I have a Dataframe called Data with shape (71067, 4):
StartTime EndDateTime TradeDate Values
0 2018-12-31 23:00:00 2018-12-31 23:30:00 2019-01-01 -44.676
1 2018-12-31 23:30:00 2019-01-01 00:00:00 2019-01-01 -36.113
2 2019-01-01 00:00:00 2019-01-01 00:30:00 2019-01-01 -19.229
3 2019-01-01 00:30:00 2019-01-01 01:00:00 2019-01-01 -23.606
4 2019-01-01 01:00:00 2019-01-01 01:30:00 2019-01-01 -25.899
... ... ... ... ...
2023-01-30 20:30:00 2023-01-30 21:00:00 2023-01-30 -27.198
2023-01-30 21:00:00 2023-01-30 21:30:00 2023-01-30 -13.221
2023-01-30 21:30:00 2023-01-30 22:00:00 2023-01-30 -12.034
2023-01-30 22:00:00 2023-01-30 22:30:00 2023-01-30 -16.464
2023-01-30 22:30:00 2023-01-30 23:00:00 2023-01-30 -25.441
71067 rows × 4 columns
When running Data.isna().sum().sum() I realise I have some NaN values in the dataset:
Data.isna().sum().sum()
> 1391
Shown here:
Data[Data['Values'].isna()].reset_index(drop = True).sort_values(by = 'StartTime')
0 2019-01-01 03:30:00 2019-01-01 04:00:00 2019-01-01 NaN
1 2019-01-04 02:30:00 2019-01-04 03:00:00 2019-01-04 NaN
2 2019-01-04 03:00:00 2019-01-04 03:30:00 2019-01-04 NaN
3 2019-01-04 03:30:00 2019-01-04 04:00:00 2019-01-04 NaN
4 2019-01-04 04:00:00 2019-01-04 04:30:00 2019-01-04 NaN
... ... ... ... ...
1386 2022-12-06 13:00:00 2022-12-06 13:30:00 2022-12-06 NaN
1387 2022-12-06 13:30:00 2022-12-06 14:00:00 2022-12-06 NaN
1388 2022-12-22 11:00:00 2022-12-22 11:30:00 2022-12-22 NaN
1389 2023-01-25 11:00:00 2023-01-25 11:30:00 2023-01-25 NaN
1390 2023-01-25 11:30:00 2023-01-25 12:00:00 2023-01-25 NaN
Is there anyway of replacing each of the NaN values in the dataset with the mean value of the corresponding half hour across the 70,000 plus rows, see below:
Data['HH'] = pd.to_datetime(Data['StartTime']).dt.time
Data.groupby(['HH'], as_index=False)[['Data']].mean().head(10)
# Only showing first 10 means
HH Values
0 00:00:00 5.236811
1 00:30:00 2.056571
2 01:00:00 4.157455
3 01:30:00 2.339253
4 02:00:00 2.658238
5 02:30:00 0.230557
6 03:00:00 0.217599
7 03:30:00 -0.630243
8 04:00:00 -0.989919
9 04:30:00 -0.494372
For example, if a value is missing against 04:00, can it be replaced with the 04:00 mean value (0.989919) as per the above table of means?
Any help greatly appreciated.
Let's group the dataframe by HH then transform the Values with mean to broadcast the mean values back to the original column shape then use fillna to fill the null values
avg = Data.groupby('HH')['Values'].transform('mean')
Data['Values'] = Data['Values'].fillna(avg)
I have timeseries data recorded at 10min frequency. I want to average the values at one hour interval. But for that I want to take 3 values before the hour and 2 values after the hour, take the average and assign that value to the exact hour timestamp.
for example, I have the series
index = pd.date_range('2000-01-01T00:30:00', periods=63, freq='10min')
series = pd.Series(range(63), index=index)
series
2000-01-01 00:30:00 0
2000-01-01 00:40:00 1
2000-01-01 00:50:00 2
2000-01-01 01:00:00 3
2000-01-01 01:10:00 4
2000-01-01 01:20:00 5
2000-01-01 01:30:00 6
2000-01-01 01:40:00 7
2000-01-01 01:50:00 8
2000-01-01 02:00:00 9
2000-01-01 02:10:00 10
..
2000-01-01 08:50:00 50
2000-01-01 09:00:00 51
2000-01-01 09:10:00 52
2000-01-01 09:20:00 53
2000-01-01 09:30:00 54
2000-01-01 09:40:00 55
2000-01-01 09:50:00 56
2000-01-01 10:00:00 57
2000-01-01 10:10:00 58
2000-01-01 10:20:00 59
2000-01-01 10:30:00 60
2000-01-01 10:40:00 61
2000-01-01 10:50:00 62
Freq: 10T, Length: 63, dtype: int64
So, if I do
series.resample('1H').mean()
2000-01-01 00:00:00 1.0
2000-01-01 01:00:00 5.5
2000-01-01 02:00:00 11.5
2000-01-01 03:00:00 17.5
2000-01-01 04:00:00 23.5
2000-01-01 05:00:00 29.5
2000-01-01 06:00:00 35.5
2000-01-01 07:00:00 41.5
2000-01-01 08:00:00 47.5
2000-01-01 09:00:00 53.5
2000-01-01 10:00:00 59.5
Freq: H, dtype: float64
the first value is the average of 0, 1, 2, and assigned to hour 0, the second the average of the values for 1:00:00 to 1:50:00 assigned to 1:00:00 and so on.
What I would like to have is the first average centered at 1:00:00 calculated using values from 00:30:00 through 01:20:00, the second centered at 02:00:00 calculated from 01:30:00 to 02:20:00 and so on...
What will be the best way to do that?
Thanks!
You should be able to do that with:
series.index = series.index - pd.Timedelta(30, unit='m')
series_grouped_mean = series.groupby(pd.Grouper(freq='60min')).mean()
series_grouped_mean.index = series_grouped_mean.index + pd.Timedelta(60, unit='m')
series_grouped_mean
I got:
2000-01-01 01:00:00 2.5
2000-01-01 02:00:00 8.5
2000-01-01 03:00:00 14.5
2000-01-01 04:00:00 20.5
2000-01-01 05:00:00 26.5
2000-01-01 06:00:00 32.5
2000-01-01 07:00:00 38.5
2000-01-01 08:00:00 44.5
2000-01-01 09:00:00 50.5
2000-01-01 10:00:00 56.5
2000-01-01 11:00:00 61.0
Freq: H, dtype: float64
I have a multi-year timeseries with half-hourly resolution with some gaps and would like to impute them based on averages of the values of other years, but at the same time. E.g. if a value is missing at 2005-1-1 12:00, I'd like to take all the values at the same time, but from all other years and average them, then impute the missing value by the average. Here's what I got:
import pandas as pd
import numpy as np
idx = pd.date_range('2000-1-1', '2010-1-1', freq='30T')
df = pd.DataFrame({'somedata': np.random.rand(175345)}, index=idx)
df.loc[df['somedata'] > 0.7, 'somedata'] = None
grouped = df.groupby([df.index.month, df.index.day, df.index.hour, df.index.minute]).mean()
Which gives me the averages I need, but I don't know how to plug them back into the original timeseries.
You are almost there. Just use .tranform to fill NaNs.
import pandas as pd
import numpy as np
# your data
# ==================================================
np.random.seed(0)
idx = pd.date_range('2000-1-1', '2010-1-1', freq='30T')
df = pd.DataFrame({'somedata': np.random.rand(175345)}, index=idx)
df.loc[df['somedata'] > 0.7, 'somedata'] = np.nan
somedata
2000-01-01 00:00:00 0.5488
2000-01-01 00:30:00 NaN
2000-01-01 01:00:00 0.6028
2000-01-01 01:30:00 0.5449
2000-01-01 02:00:00 0.4237
2000-01-01 02:30:00 0.6459
2000-01-01 03:00:00 0.4376
2000-01-01 03:30:00 NaN
... ...
2009-12-31 20:30:00 0.4983
2009-12-31 21:00:00 0.4282
2009-12-31 21:30:00 NaN
2009-12-31 22:00:00 0.3306
2009-12-31 22:30:00 0.3021
2009-12-31 23:00:00 0.2077
2009-12-31 23:30:00 0.2965
2010-01-01 00:00:00 0.5183
[175345 rows x 1 columns]
# processing
# ==================================================
result = df.groupby([df.index.month, df.index.day, df.index.hour, df.index.minute], as_index=False).transform(lambda g: g.fillna(g.mean()))
somedata
2000-01-01 00:00:00 0.5488
2000-01-01 00:30:00 0.2671
2000-01-01 01:00:00 0.6028
2000-01-01 01:30:00 0.5449
2000-01-01 02:00:00 0.4237
2000-01-01 02:30:00 0.6459
2000-01-01 03:00:00 0.4376
2000-01-01 03:30:00 0.3957
... ...
2009-12-31 20:30:00 0.4983
2009-12-31 21:00:00 0.4282
2009-12-31 21:30:00 0.4784
2009-12-31 22:00:00 0.3306
2009-12-31 22:30:00 0.3021
2009-12-31 23:00:00 0.2077
2009-12-31 23:30:00 0.2965
2010-01-01 00:00:00 0.5183
[175345 rows x 1 columns]
# take a look at a particular sample
# ======================================
x = list(df.groupby([df.index.month, df.index.day, df.index.hour, df.index.minute]))[0][1]
somedata
2000-01-01 0.5488
2001-01-01 0.1637
2002-01-01 0.3245
2003-01-01 NaN
2004-01-01 0.5654
2005-01-01 0.5729
2006-01-01 0.4740
2007-01-01 0.1728
2008-01-01 0.2577
2009-01-01 NaN
2010-01-01 0.5183
x.mean() # output: 0.3998
list(result.groupby([df.index.month, df.index.day, df.index.hour, df.index.minute]))[0][1]
somedata
2000-01-01 0.5488
2001-01-01 0.1637
2002-01-01 0.3245
2003-01-01 0.3998
2004-01-01 0.5654
2005-01-01 0.5729
2006-01-01 0.4740
2007-01-01 0.1728
2008-01-01 0.2577
2009-01-01 0.3998
2010-01-01 0.5183
I've got a large dataframe with a datetime index and need to resample data to exactly 10 equally sized periods.
So far, I've tried finding the first and last dates to determine the total number of days in the data, divide that by 10 to determine the size of each period, then resample using that number of days. eg:
first = df.reset_index().timesubmit.min()
last = df.reset_index().timesubmit.max()
periodsize = str((last-first).days/10) + 'D'
df.resample(periodsize,how='sum')
This doesn't guarantee exactly 10 periods in the df after resampling since the periodsize is a rounded down int. Using a float doesn't work in the resampling. Seems that either there's something simple that I'm missing here, or I'm attacking the problem all wrong.
import numpy as np
import pandas as pd
n = 10
nrows = 33
index = pd.date_range('2000-1-1', periods=nrows, freq='D')
df = pd.DataFrame(np.ones(nrows), index=index)
print(df)
# 0
# 2000-01-01 1
# 2000-01-02 1
# ...
# 2000-02-01 1
# 2000-02-02 1
first = df.index.min()
last = df.index.max() + pd.Timedelta('1D')
secs = int((last-first).total_seconds()//n)
periodsize = '{:d}S'.format(secs)
result = df.resample(periodsize, how='sum')
print('\n{}'.format(result))
assert len(result) == n
yields
0
2000-01-01 00:00:00 4
2000-01-04 07:12:00 3
2000-01-07 14:24:00 3
2000-01-10 21:36:00 4
2000-01-14 04:48:00 3
2000-01-17 12:00:00 3
2000-01-20 19:12:00 4
2000-01-24 02:24:00 3
2000-01-27 09:36:00 3
2000-01-30 16:48:00 3
The values in the 0-column indicate the number of rows that were aggregated, since the original DataFrame was filled with values of 1. The pattern of 4's and 3's is about as even as you can get since 33 rows can not be evenly grouped into 10 groups.
Explanation: Consider this simpler DataFrame:
n = 2
nrows = 5
index = pd.date_range('2000-1-1', periods=nrows, freq='D')
df = pd.DataFrame(np.ones(nrows), index=index)
# 0
# 2000-01-01 1
# 2000-01-02 1
# 2000-01-03 1
# 2000-01-04 1
# 2000-01-05 1
Using df.resample('2D', how='sum') gives the wrong number of groups
In [366]: df.resample('2D', how='sum')
Out[366]:
0
2000-01-01 2
2000-01-03 2
2000-01-05 1
Using df.resample('3D', how='sum') gives the right number of groups, but the
second group starts at 2000-01-04 which does not evenly divide the DataFrame
into two equally-spaced groups:
In [367]: df.resample('3D', how='sum')
Out[367]:
0
2000-01-01 3
2000-01-04 2
To do better, we need to work at a finer time resolution than in days. Since Timedeltas have a total_seconds method, let's work in seconds. So for the example above, the desired frequency string would be
In [374]: df.resample('216000S', how='sum')
Out[374]:
0
2000-01-01 00:00:00 3
2000-01-03 12:00:00 2
since there are 216000*2 seconds in 5 days:
In [373]: (pd.Timedelta(days=5) / pd.Timedelta('1S'))/2
Out[373]: 216000.0
Okay, so now all we need is a way to generalize this. We'll want the minimum and maximum dates in the index:
first = df.index.min()
last = df.index.max() + pd.Timedelta('1D')
We add an extra day because it makes the difference in days come out right. In
the example above, There are only 4 days between the Timestamps for 2000-01-05
and 2000-01-01,
In [377]: (pd.Timestamp('2000-01-05')-pd.Timestamp('2000-01-01')).days
Out[378]: 4
But as we can see in the worked example, the DataFrame has 5 rows representing 5
days. So it makes sense that we need to add an extra day.
Now we can compute the correct number of seconds in each equally-spaced group with:
secs = int((last-first).total_seconds()//n)
Here is one way to ensure equal-size sub-periods by using np.linspace() on pd.Timedelta and then classifying each obs into different bins using pd.cut.
import pandas as pd
import numpy as np
# generate artificial data
np.random.seed(0)
df = pd.DataFrame(np.random.randn(100, 2), columns=['A', 'B'], index=pd.date_range('2015-01-01 00:00:00', periods=100, freq='8H'))
Out[87]:
A B
2015-01-01 00:00:00 1.7641 0.4002
2015-01-01 08:00:00 0.9787 2.2409
2015-01-01 16:00:00 1.8676 -0.9773
2015-01-02 00:00:00 0.9501 -0.1514
2015-01-02 08:00:00 -0.1032 0.4106
2015-01-02 16:00:00 0.1440 1.4543
2015-01-03 00:00:00 0.7610 0.1217
2015-01-03 08:00:00 0.4439 0.3337
2015-01-03 16:00:00 1.4941 -0.2052
2015-01-04 00:00:00 0.3131 -0.8541
2015-01-04 08:00:00 -2.5530 0.6536
2015-01-04 16:00:00 0.8644 -0.7422
2015-01-05 00:00:00 2.2698 -1.4544
2015-01-05 08:00:00 0.0458 -0.1872
2015-01-05 16:00:00 1.5328 1.4694
... ... ...
2015-01-29 08:00:00 0.9209 0.3187
2015-01-29 16:00:00 0.8568 -0.6510
2015-01-30 00:00:00 -1.0342 0.6816
2015-01-30 08:00:00 -0.8034 -0.6895
2015-01-30 16:00:00 -0.4555 0.0175
2015-01-31 00:00:00 -0.3540 -1.3750
2015-01-31 08:00:00 -0.6436 -2.2234
2015-01-31 16:00:00 0.6252 -1.6021
2015-02-01 00:00:00 -1.1044 0.0522
2015-02-01 08:00:00 -0.7396 1.5430
2015-02-01 16:00:00 -1.2929 0.2671
2015-02-02 00:00:00 -0.0393 -1.1681
2015-02-02 08:00:00 0.5233 -0.1715
2015-02-02 16:00:00 0.7718 0.8235
2015-02-03 00:00:00 2.1632 1.3365
[100 rows x 2 columns]
# cutoff points, 10 equal-size group requires 11 points
# measured by timedelta 1 hour
time_delta_in_hours = (df.index - df.index[0]) / pd.Timedelta('1h')
n = 10
ts_cutoff = np.linspace(0, time_delta_in_hours[-1], n+1)
# labels, time index
time_index = df.index[0] + np.array([pd.Timedelta(str(time_delta)+'h') for time_delta in ts_cutoff])
# create a categorical reference variables
df['start_time_index'] = pd.cut(time_delta_in_hours, bins=10, labels=time_index[:-1])
# for clarity, reassign labels using end-period index
df['end_time_index'] = pd.cut(time_delta_in_hours, bins=10, labels=time_index[1:])
Out[89]:
A B start_time_index end_time_index
2015-01-01 00:00:00 1.7641 0.4002 2015-01-01 00:00:00 2015-01-04 07:12:00
2015-01-01 08:00:00 0.9787 2.2409 2015-01-01 00:00:00 2015-01-04 07:12:00
2015-01-01 16:00:00 1.8676 -0.9773 2015-01-01 00:00:00 2015-01-04 07:12:00
2015-01-02 00:00:00 0.9501 -0.1514 2015-01-01 00:00:00 2015-01-04 07:12:00
2015-01-02 08:00:00 -0.1032 0.4106 2015-01-01 00:00:00 2015-01-04 07:12:00
2015-01-02 16:00:00 0.1440 1.4543 2015-01-01 00:00:00 2015-01-04 07:12:00
2015-01-03 00:00:00 0.7610 0.1217 2015-01-01 00:00:00 2015-01-04 07:12:00
2015-01-03 08:00:00 0.4439 0.3337 2015-01-01 00:00:00 2015-01-04 07:12:00
2015-01-03 16:00:00 1.4941 -0.2052 2015-01-01 00:00:00 2015-01-04 07:12:00
2015-01-04 00:00:00 0.3131 -0.8541 2015-01-01 00:00:00 2015-01-04 07:12:00
2015-01-04 08:00:00 -2.5530 0.6536 2015-01-04 07:12:00 2015-01-07 14:24:00
2015-01-04 16:00:00 0.8644 -0.7422 2015-01-04 07:12:00 2015-01-07 14:24:00
2015-01-05 00:00:00 2.2698 -1.4544 2015-01-04 07:12:00 2015-01-07 14:24:00
2015-01-05 08:00:00 0.0458 -0.1872 2015-01-04 07:12:00 2015-01-07 14:24:00
2015-01-05 16:00:00 1.5328 1.4694 2015-01-04 07:12:00 2015-01-07 14:24:00
... ... ... ... ...
2015-01-29 08:00:00 0.9209 0.3187 2015-01-27 09:36:00 2015-01-30 16:48:00
2015-01-29 16:00:00 0.8568 -0.6510 2015-01-27 09:36:00 2015-01-30 16:48:00
2015-01-30 00:00:00 -1.0342 0.6816 2015-01-27 09:36:00 2015-01-30 16:48:00
2015-01-30 08:00:00 -0.8034 -0.6895 2015-01-27 09:36:00 2015-01-30 16:48:00
2015-01-30 16:00:00 -0.4555 0.0175 2015-01-27 09:36:00 2015-01-30 16:48:00
2015-01-31 00:00:00 -0.3540 -1.3750 2015-01-30 16:48:00 2015-02-03 00:00:00
2015-01-31 08:00:00 -0.6436 -2.2234 2015-01-30 16:48:00 2015-02-03 00:00:00
2015-01-31 16:00:00 0.6252 -1.6021 2015-01-30 16:48:00 2015-02-03 00:00:00
2015-02-01 00:00:00 -1.1044 0.0522 2015-01-30 16:48:00 2015-02-03 00:00:00
2015-02-01 08:00:00 -0.7396 1.5430 2015-01-30 16:48:00 2015-02-03 00:00:00
2015-02-01 16:00:00 -1.2929 0.2671 2015-01-30 16:48:00 2015-02-03 00:00:00
2015-02-02 00:00:00 -0.0393 -1.1681 2015-01-30 16:48:00 2015-02-03 00:00:00
2015-02-02 08:00:00 0.5233 -0.1715 2015-01-30 16:48:00 2015-02-03 00:00:00
2015-02-02 16:00:00 0.7718 0.8235 2015-01-30 16:48:00 2015-02-03 00:00:00
2015-02-03 00:00:00 2.1632 1.3365 2015-01-30 16:48:00 2015-02-03 00:00:00
[100 rows x 4 columns]
df.groupby('start_time_index').agg('sum')
Out[90]:
A B
start_time_index
2015-01-01 00:00:00 8.6133 2.7734
2015-01-04 07:12:00 1.9220 -0.8069
2015-01-07 14:24:00 -8.1334 0.2318
2015-01-10 21:36:00 -2.7572 -4.2862
2015-01-14 04:48:00 1.1957 7.2285
2015-01-17 12:00:00 3.2485 6.6841
2015-01-20 19:12:00 -0.8903 2.2802
2015-01-24 02:24:00 -2.1025 1.3800
2015-01-27 09:36:00 -1.1017 1.3108
2015-01-30 16:48:00 -0.0902 -2.5178
Another potential shorter way to do this is to specify your sampling freq as the time delta. But the problem, as shown in below, is that it delivers 11 sub-samples instead of 10. I believe the reason is that the resample implements a left-inclusive/right-exclusive (or left-exclusive/right-inclusive) sub-sampling scheme so that the very last obs at '2015-02-03 00:00:00' is considered as a separate group. If we use pd.cut to do it ourself, we can specify include_lowest=True so that it gives us exactly 10 sub-samples rather than 11.
n = 10
time_delta_str = str((df.index[-1] - df.index[0]) / (pd.Timedelta('1s') * n)) + 's'
df.resample(pd.Timedelta(time_delta_str), how='sum')
Out[114]:
A B
2015-01-01 00:00:00 8.6133 2.7734
2015-01-04 07:12:00 1.9220 -0.8069
2015-01-07 14:24:00 -8.1334 0.2318
2015-01-10 21:36:00 -2.7572 -4.2862
2015-01-14 04:48:00 1.1957 7.2285
2015-01-17 12:00:00 3.2485 6.6841
2015-01-20 19:12:00 -0.8903 2.2802
2015-01-24 02:24:00 -2.1025 1.3800
2015-01-27 09:36:00 -1.1017 1.3108
2015-01-30 16:48:00 -2.2534 -3.8543
2015-02-03 00:00:00 2.1632 1.3365
I'd like to create multiple columns while resampling a pandas DataFrame like the built-in ohlc method.
def mhl(data):
return pandas.Series([np.mean(data),np.max(data),np.min(data)],index = ['mean','high','low'])
ts.resample('30Min',how=mhl)
Dies with
Exception: Must produce aggregated value
Any suggestions? Thanks!
You can pass a dictionary of functions to the resample method:
In [35]: ts
Out[35]:
2013-01-01 00:00:00 0
2013-01-01 00:15:00 1
2013-01-01 00:30:00 2
2013-01-01 00:45:00 3
2013-01-01 01:00:00 4
2013-01-01 01:15:00 5
...
2013-01-01 23:00:00 92
2013-01-01 23:15:00 93
2013-01-01 23:30:00 94
2013-01-01 23:45:00 95
2013-01-02 00:00:00 96
Freq: 15T, Length: 97
Create a dictionary of functions:
mhl = {'m':np.mean, 'h':np.max, 'l':np.min}
Pass the dictionary to the how parameter of resample:
In [36]: ts.resample("30Min", how=mhl)
Out[36]:
h m l
2013-01-01 00:00:00 1 0.5 0
2013-01-01 00:30:00 3 2.5 2
2013-01-01 01:00:00 5 4.5 4
2013-01-01 01:30:00 7 6.5 6
2013-01-01 02:00:00 9 8.5 8
2013-01-01 02:30:00 11 10.5 10
2013-01-01 03:00:00 13 12.5 12
2013-01-01 03:30:00 15 14.5 14