How to stack pandas data frame rows into two halves? - python

I am dealing with a data frame with 6 columns, Below is the example df
a b c d e f
1 2 3 4 5 6
7 8 9 10 11 12
Following is the new data frame which I expect:
col1 col2 col3
1 2 3
4 5 6
7 8 9
10 11 12
Please note the order of the row elements, The first row from the original df, becomes the first two rows of the new df, the second row from the original df becomes the next two.
Please advice me to achieve the required new df.
Thanks in advance.

You can reshape the values (which is numpy array) to 3 columns, and construct a new data frame out of it:
pd.DataFrame(df.values.reshape(-1, 3), columns=["Col"+str(i) for i in range(1,4)])
#Col1 Col2 Col3
#0 1 2 3
#1 4 5 6
#2 7 8 9
#3 10 11 12

Related

How to melt multiple columns into one column?

I have this table:
a b c d e f 19-08-06 19-08-07 19-08-08 g h i
1 2 3 4 5 6 7 8 9 10 11 12
I have 34 columns of the date, so I want to melt the date columns to be into one column only.
How can I do this in pyhton?
Thanks in advance
You can use pd.Series.fullmatch to create a boolean mask for extracting date columns, then use df.melt
m = df.columns.str.fullmatch("\d{2}-\d{2}-\d{2}")
cols = df.columns[m]
df.melt(value_vars=cols, var_name='date', value_name='vals')
date vals
0 19-08-06 7
1 19-08-07 8
2 19-08-08 9
If you want to melt while keeping other columns then try this.
df.melt(
id_vars=df.columns.difference(cols), var_name="date", value_name="vals"
)
a b c d e f g h i date vals
0 1 2 3 4 5 6 10 11 12 19-08-06 7
1 1 2 3 4 5 6 10 11 12 19-08-07 8
2 1 2 3 4 5 6 10 11 12 19-08-08 9
Here I did not use value_vars=cols as it's done implicitly
value_vars: tuple, list, or ndarray, optional
Column(s) to unpivot. If not specified, uses all columns that are
not set as id_vars.

Calculate Quantiles on Groupby Dataframe and add value back to DF

What I'm looking to do is group my Dataframe on a Categorical column, compute quantiles using second column, and store the result in a 3rd column. For simplicity lets just do the P50. Example below:
Original DF:
Col1 Col2
A 2
B 4
C 2
A 6
B 12
C 10
Desired DF:
Col1 Col2 Col3_P50
A 2 4
B 4 8
C 2 6
A 6 4
B 12 8
C 10 6
One easy way would be to create a small dataframe of each Category (A,B,C) and compute quantile and merge back to existing DF, but my actual dataset has 100s of category so this isn't an option. Any suggestions would be much appreciated!
You can do transform with quantile
df['Col3_P50'] = df.groupby("Col1")['Col2'].transform('quantile',0.5)
print(df)
Col1 Col2 Col3_P50
0 A 2 4
1 B 4 8
2 C 2 6
3 A 6 4
4 B 12 8
5 C 10 6
If you have multiple values, one way is creating a dictionary and set the keys as column names and values inside the groupby:
d = {'P_50':0.5,'P_90':0.9}
for k,v in d.items():
df[k]=df.groupby("Col1")['Col2'].transform('quantile',v)
print(df)
Col1 Col2 P_50 P_90
0 A 2 4 5.6
1 B 4 8 11.2
2 C 2 6 9.2
3 A 6 4 5.6
4 B 12 8 11.2
5 C 10 6 9.2

Split the data frame based on consecutive row values differences

I have a data frame like this,
df
col1 col2 col3
1 2 3
2 5 6
7 8 9
10 11 12
11 12 13
13 14 15
14 15 16
Now I want to create multiple data frames from above when the col1 difference of two consecutive rows are more than 1.
So the result data frames will look like,
df1
col1 col2 col3
1 2 3
2 5 6
df2
col1 col2 col3
7 8 9
df3
col1 col2 col3
10 11 12
11 12 13
df4
col1 col2 col3
13 14 15
14 15 16
I can do this using for loop and storing the indices but this will increase execution time, looking for some pandas shortcuts or pythonic way to do this most efficiently.
You could define a custom grouper by taking the diff, checking when it is greater than 1, and take the cumsum of the boolean series. Then group by the result and build a dictionary from the groupby object:
d = dict(tuple(df.groupby(df.col1.diff().gt(1).cumsum())))
print(d[0])
col1 col2 col3
0 1 2 3
1 2 5 6
print(d[1])
col1 col2 col3
2 7 8 9
A more detailed break-down:
df.assign(difference=(diff:=df.col1.diff()),
condition=(gt1:=diff.gt(1)),
grouper=gt1.cumsum())
col1 col2 col3 difference condition grouper
0 1 2 3 NaN False 0
1 2 5 6 1.0 False 0
2 7 8 9 5.0 True 1
3 10 11 12 3.0 True 2
4 11 12 13 1.0 False 2
5 13 14 15 2.0 True 3
6 14 15 16 1.0 False 3
You can also peel off the target column and work with it as a series, rather than the above answer. That keeps everything smaller. It runs faster on the example, but I don't know how they'll scale up, depending how many times you're splitting.
row_bool = df['col1'].diff()>1
split_inds, = np.where(row_bool)
split_inds = np.insert(arr=split_inds, obj=[0,len(split_inds)], values=[0,len(df)])
df_tup = ()
for n in range(0,len(split_inds)-1):
tempdf = df.iloc[split_inds[n]:split_inds[n+1],:]
df_tup.append(tempdf)
(Just throwing it in a tuple of dataframes afterward, but the dictionary approach might be better?)

group rows in a pandas data frame when the difference of consecutive rows are less than a value

I have a data frame like this,
col1 col2 col3
1 2 3
2 3 4
4 2 3
7 2 8
8 3 4
9 3 3
15 1 12
Now I want to group those rows where there difference between two consecutive col1 rows is less than 3. and sum other column values, create another column(col4) with the last value of the group,
So the final data frame will look like,
col1 col2 col3 col4
1 7 10 4
7 8 15 9
using for loop to do this is tedious, looking for some pandas shortcuts to do it most efficiently.
You can do a named aggregation on groupby:
(df.groupby(df.col1.diff().ge(3).cumsum(), as_index=False)
.agg(col1=('col1','first'),
col2=('col2','sum'),
col3=('col3','sum'),
col4=('col1','last'))
)
Output:
col1 col2 col3 col4
0 1 7 10 4
1 7 8 15 9
2 15 1 12 15
update without named aggregation you can do some thing like this:
groups = df.groupby(df.col1.diff().ge(3).cumsum())
new_df = groups.agg({'col1':'first', 'col2':'sum','col3':'sum'})
new_df['col4'] = groups['col1'].last()

Is there a way to read all the rows until an empty row is encountered using Python Pandas

I have numerous rows in excel and the rows are filled with garbage values after an empty row.
Is there a way to read only the records before the first empty row in excel using Python pandas.
I am not aware of if read_excel can do this. If you import an empty line from excel, the column values for those rows will be filled with NaN, then you could select the values till a first row is filled with all NaN's.
I am assuming your data is something like this, where you have an empty row and data following it is garbage (I included multiple empty rows and garbage following it)
df = pd.read_excel(r'Book1.xlsx') # read the file
print df
'''
col1 col2 col3
0 1 2 3
1 1 2 3
2 1 2 3
3 1 2 3
....
10 1 2 3
11 NaN NaN NaN
12 x x x
....
18 NaN NaN NaN
19 NaN NaN NaN
20 y y y
21 y y y
....
'''
first_row_with_all_NaN = df[df.isnull().all(axis=1) == True].index.tolist()[0]
# gives me the first row number of the row that has all the values to be NaN.
'''
11
'''
print df.loc[0:first_row_with_all_NaN-1]
# then I use loc to select the rows from 0 to first row with all NaN's-1
'''
col1 col2 col3
0 1 2 3
1 1 2 3
2 1 2 3
3 1 2 3
4 1 2 3
5 1 2 3
6 1 2 3
7 1 2 3
8 1 2 3
9 1 2 3
10 1 2 3
'''

Categories

Resources