I am trying to create a 3D surface energy diagram where an x,y position on a grid contains an associated z level. The issue is that the grid is not uniform (ie, there is not a z component for every x,y position). Is there a way to refrain from plotting those values by calling them NaN in the corresponding position in the array?
Here is what I have tried so far:
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import pylab
from matplotlib import cm
#Z levels
energ = np.array([0,3.5,1,-0.3,-1.5,-2,-3.4,-4.8])
#function for getting x,y associated z values?
def fun(x,y,array):
return array[x]
#arrays for grid
x = np.arange(0,7,0.5)
y = np.arange(0,7,0.5)
#create grid
X, Y = np.meshgrid(x,y)
zs = np.array([fun(x,y,energ) for x in zip(np.ravel(X))])
Z = zs.reshape(X.shape)
plt3d = plt.figure().gca(projection='3d')
#gradients now with respect to x and y, but ideally with respect to z only
Gx, Gz = np.gradient(X * Y)
G = (Gx ** 2 + Gz ** 2) ** .5 # gradient magnitude
N = G / G.max() # normalize 0..1
plt3d.plot_surface(X, Y, Z, rstride=1, cstride=1,
facecolors=cm.jet(N), edgecolor='k', linewidth=0, antialiased=False, shade=False)
plt.show()
I cannot post image here of this plot but if you run the code you will see it
But I would like to not plot certain x,y pairs, so the figure should triangle downward to the minimum. Can this be accomplished by using nan values? Also would like spacing between each level, to be connected by lines.
n = np.NAN
#energ represents the z levels, so the overall figure should look like a triangle.
energ = np.array([[0,0,0,0,0,0,0,0,0,0,0,0,0],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,2.6,n,2.97,n,2.6,n,2.97,n,2.6,n,3.58,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,1.09,n,1.23,n,1.09,n,1.23,n,1.7,n,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,-0.65,n,-0.28,n,-0.65,n,0.33,n,n,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,n,-2.16,n,-2.02,n,-1.55,n,n,n,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,n,n,-3.9,n,-2.92,n,n,n,n,n,],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,n,n,n,-4.8,n,n,n,n,n,n,]])
plt3d = plt.figure().gca(projection='3d')
Gx, Gz = np.gradient(X * energ) # gradients with respect to x and z
G = (Gx ** 2 + Gz ** 2) ** .5 # gradient magnitude
N = G / G.max() # normalize 0..1
x = np.arange(0,13,1)
y = np.arange(0,13,1)
X, Y = np.meshgrid(x,y)
#but the shapes don't seem to match up
plt3d.plot_surface(X, Y, energ, rstride=1, cstride=1,
facecolors=cm.jet(N), edgecolor='k',
linewidth=0, antialiased=False, shade=False
)
Using masked arrays generates the following error: local Python[7155] : void CGPathCloseSubpath(CGMutablePathRef): no current point.
n = np.NAN
energ = np.array([[0,0,0,0,0,0,0,0,0,0,0,0,0],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,2.6,n,2.97,n,2.6,n,2.97,n,2.6,n,3.58,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,1.09,n,1.23,n,1.09,n,1.23,n,1.7,n,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,-0.65,n,-0.28,n,-0.65,n,0.33,n,n,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,n,-2.16,n,-2.02,n,-1.55,n,n,n,n],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,n,n,-3.9,n,-2.92,n,n,n,n,n,],[n,n,n,n,n,n,n,n,n,n,n,n,n],[n,n,n,n,n,n,-4.8,n,n,n,n,n,n,]])
x = np.arange(0,13,1)
y = np.arange(0,13,1)
X, Y = np.meshgrid(x,y)
#create masked arrays
mX = ma.masked_array(X, mask=[[0,0,0,0,0,0,0,0,0,0,0,0,0],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,0,1,0,1,0,1,0,1,0,1,0,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1,0,1,0,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,0,1,0,1,0,1,0,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,0,1,0,1,0,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,0,1,0,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,0,1,1,1,1,1,1]])
mY = ma.masked_array(Y, mask=[[0,0,0,0,0,0,0,0,0,0,0,0,0],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,0,1,0,1,0,1,0,1,0,1,0,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1,0,1,0,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,0,1,0,1,0,1,0,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,0,1,0,1,0,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,0,1,0,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,0,1,1,1,1,1,1]])
m_energ = ma.masked_array(energ, mask=[[0,0,0,0,0,0,0,0,0,0,0,0,0],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,0,1,0,1,0,1,0,1,0,1,0,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1,0,1,0,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,0,1,0,1,0,1,0,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,0,1,0,1,0,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,0,1,0,1,1,1,1,1],[1,1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,0,1,1,1,1,1,1]])
plt3d = plt.figure().gca(projection='3d')
plt3d.plot_surface(mX, mY, m_energ, rstride=1, cstride=1, edgecolor='k', linewidth=0, antialiased=False, shade=False)
plt.show()
I was playing around with the code from this forum post, and I was able to make the graph have missing values. You can try the code yourself! I got it to work using float("nan") for the missing values.
import plotly.graph_objects as go
import numpy as np
x = np.arange(0.1,1.1,0.1)
y = np.linspace(-np.pi,np.pi,10)
#print(x)
#print(y)
X,Y = np.meshgrid(x,y)
#print(X)
#print(Y)
result = []
for i,j in zip(X,Y):
result.append(np.log(i)+np.sin(j))
result[0][0] = float("nan")
upper_bound = np.array(result)+1
lower_bound = np.array(result)-1
fig = go.Figure(data=[
go.Surface(z=result),
go.Surface(z=upper_bound, showscale=False, opacity=0.3,colorscale='purp'),
go.Surface(z=lower_bound, showscale=False, opacity=0.3,colorscale='purp')])
fig.show()
I'm trying to do a contour plot using matplotlib of a file with the following format:
x1 y1 z1
x2 y2 z2
etc
I can load it with numpy.loadtxt to get the vectors. So far, no trouble.
I read this to learn how to plot, and can reproduce it by copy paste, so i'm sure nothin is wrong with my installation:
http://matplotlib.org/examples/pylab_examples/griddata_demo.html
I understand I have to input x and y as vector and z as an array ,which can be done with griddata. This is also what i find on this site.
The documentation says:
zi = griddata(x,y,z,xi,yi) fits a surface of the form z = f*(*x, y) to the data in the (usually) nonuniformly spaced vectors (x, y, z). griddata() interpolates this surface at the points specified by (xi, yi) to produce zi. xi and yi must describe a regular grid, can be either 1D or 2D, but must be monotonically increasing.
For the sake of the example, I have written this code:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as ml
x=np.linspace(1.,10.,20)
y=np.linspace(1.,10.,20)
z=np.linspace(1.,2.,20)
xi=np.linspace(1.,10.,10)
yi=np.linspace(1.,10.,10)
zi = ml.griddata(x,y,z,xi,yi)
However, I get the following error when it comes to the griddata:
IndexError: invalid index
So, I tried to modify a bit the exemple of the doc like following:
from matplotlib.mlab import griddata
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-2.1,2.1,300)
y = np.linspace(-2.1,2.1,300)
z = x*np.exp(-x**2-y**2)
# define grid.
xi = np.linspace(-2.1,2.1,100)
yi = np.linspace(-2.1,2.1,200)
# grid the data.
zi = griddata(x,y,z,xi,yi,interp='linear')
And I get the same error. I don't understand what's going wrong.
Thanks for your help.
Consider:
x = np.linspace(1., 10., 20)
y = np.linspace(1., 10., 20)
z = np.linspace(1., 2., 20)
This means we know the z-values at certain points along the line x=y.
From there,
zi = ml.griddata(x,y,z,xi,yi)
is asking mlab.griddata to extrapolate the values of z for all points in a rectangular grid.
We've given a lot of information about how z varies along this line, but no information about how z varies in the perpendicular direction (away from the x = y line). An error is being raised because mlab.griddata refuses to guess.
You'll get better results if your initial x, y data are distributed more randomly:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as ml
ndata = 10
ny, nx = 100, 200
xmin, xmax = 1, 10
ymin, ymax = 1, 10
# x = np.linspace(1, 10, ndata)
# y = np.linspace(1, 10, ndata)
x = np.random.randint(xmin, xmax, ndata)
y = np.random.randint(ymin, ymax, ndata)
z = np.random.random(ndata)
xi = np.linspace(xmin, xmax, nx)
yi = np.linspace(ymin, ymax, ny)
zi = ml.griddata(x, y, z, xi, yi)
plt.contour(xi, yi, zi, 15, linewidths = 0.5, colors = 'k')
plt.pcolormesh(xi, yi, zi, cmap = plt.get_cmap('rainbow'))
plt.colorbar()
plt.scatter(x, y, marker = 'o', c = 'b', s = 5, zorder = 10)
plt.xlim(xmin, xmax)
plt.ylim(ymin, ymax)
plt.show()
If you want mlab.griddata to extrapolate data along the line x=y to the entire grid in an arbitrary way, you could add two extra boundary points (xmin, ymax, z[0]) and (xmax,ymin,z[-1]):
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as ml
np.random.seed(8)
ndata = 10
ny, nx = 100, 200
xmin, xmax = 1, 10
ymin, ymax = 1, 10
x = np.linspace(1, 10, ndata)
y = np.linspace(1, 10, ndata)
z = np.random.random(ndata)
x = np.r_[x,xmin,xmax]
y = np.r_[y,ymax,ymin]
z = np.r_[z,z[0],z[-1]]
xi = np.linspace(xmin, xmax, nx)
yi = np.linspace(ymin, ymax, ny)
# Requires installation of natgrid
# http://sourceforge.net/projects/matplotlib/files/matplotlib-toolkits/
zi = ml.griddata(x, y, z, xi, yi, interp='nn')
# Or, without natgrid:
# zi = ml.griddata(x, y, z, xi, yi, interp='linear')
plt.contour(xi, yi, zi, 15, linewidths = 0.5, colors = 'k')
plt.pcolormesh(xi, yi, zi, cmap = plt.get_cmap('rainbow'))
plt.colorbar()
plt.scatter(x, y, marker = 'o', c = 'b', s = 10, zorder = 10)
plt.xlim(xmin, xmax)
plt.ylim(ymin, ymax)
plt.show()
ok, I finally found the solution to plot it. For those interested, here is the trick: use the griddata from Scipy with the 'nearest' method.
from scipy.interpolate import griddata
import numpy as np
import matplotlib.pyplot as plt
x=np.linspace(1.,10.,20)
y=np.linspace(1.,10.,20)
z=z = np.random.random(20)
xi=np.linspace(1.,10.,10)
yi=np.linspace(1.,10.,10)
X,Y= np.meshgrid(xi,yi)
Z = griddata((x, y), z, (X, Y),method='nearest')
plt.contourf(X,Y,Z)