So I am trying to count the number of consecutive same values in a dataframe and put that information into a new column in the dataframe, but I want the count to look iterative.
Here is what I have so far:
df = pd.DataFrame(np.random.randint(0,3, size=(15,4)), columns=list('ABCD'))
df['subgroupA'] = (df.A != df.A.shift(1)).cumsum()
dfg = df.groupby(by='subgroupA', as_index=False).apply(lambda grp: len(grp))
dfg.rename(columns={None: 'numConsec'}, inplace=True)
df = df.merge(dfg, how='left', on='subgroupA')
df
Here is the result:
A B C D subgroupA numConsec
0 2 1 1 1 1 1
1 1 2 1 0 2 2
2 1 0 2 1 2 2
3 0 1 2 0 3 1
4 1 0 0 1 4 1
5 0 2 2 1 5 2
6 0 2 1 1 5 2
7 1 0 0 1 6 1
8 0 2 0 0 7 4
9 0 0 0 2 7 4
10 0 2 1 1 7 4
11 0 2 2 0 7 4
12 1 2 0 1 8 1
13 0 1 1 0 9 1
14 1 1 1 0 10 1
The problem is, in the numConsec column, I don't want the full count for every row. I want it to reflect how it looks as you iteratively look at the dataframe. The problem is, my dataframe is too large to iteratively loop through and make the counts, as that would be too slow. I need to do it in a pythonic way and make it look like this:
A B C D subgroupA numConsec
0 2 1 1 1 1 1
1 1 2 1 0 2 1
2 1 0 2 1 2 2
3 0 1 2 0 3 1
4 1 0 0 1 4 1
5 0 2 2 1 5 1
6 0 2 1 1 5 2
7 1 0 0 1 6 1
8 0 2 0 0 7 1
9 0 0 0 2 7 2
10 0 2 1 1 7 3
11 0 2 2 0 7 4
12 1 2 0 1 8 1
13 0 1 1 0 9 1
14 1 1 1 0 10 1
Any ideas?
I have a dataframe with the following form:
data = pd.DataFrame({'ID':[1,1,1,2,2,2,2,3,3],'Time':[0,1,2,0,1,2,3,0,1],
'sig':[2,3,1,4,2,0,2,3,5],'sig2':[9,2,8,0,4,5,1,1,0],
'group':['A','A','A','B','B','B','B','A','A']})
print(data)
ID Time sig sig2 group
0 1 0 2 9 A
1 1 1 3 2 A
2 1 2 1 8 A
3 2 0 4 0 B
4 2 1 2 4 B
5 2 2 0 5 B
6 2 3 2 1 B
7 3 0 3 1 A
8 3 1 5 0 A
I want to reshape and pad such that each 'ID' has the same number of Time values, the sig1,sig2 are padded with zeros (or mean value within ID) and the group carries the same letter value. The output after repadding would be :
data_pad = pd.DataFrame({'ID':[1,1,1,1,2,2,2,2,3,3,3,3],'Time':[0,1,2,3,0,1,2,3,0,1,2,3],
'sig1':[2,3,1,0,4,2,0,2,3,5,0,0],'sig2':[9,2,8,0,0,4,5,1,1,0,0,0],
'group':['A','A','A','A','B','B','B','B','A','A','A','A']})
print(data_pad)
ID Time sig1 sig2 group
0 1 0 2 9 A
1 1 1 3 2 A
2 1 2 1 8 A
3 1 3 0 0 A
4 2 0 4 0 B
5 2 1 2 4 B
6 2 2 0 5 B
7 2 3 2 1 B
8 3 0 3 1 A
9 3 1 5 0 A
10 3 2 0 0 A
11 3 3 0 0 A
My end goal is to ultimately reshape this into something with shape (number of ID, number of time points, number of sequences {2 here}).
It seems that if I pivot data, it fills in with nan values, which is fine for the signal values, but not the groups. I am also hoping to avoid looping through data.groupby('ID'), since my actual data has a large number of groups and the looping would likely be very slow.
Here's one approach creating the new index with pd.MultiIndex.from_product and using it to reindex on the Time column:
df = data.set_index(['ID', 'Time'])
# define a the new index
ix = pd.MultiIndex.from_product([df.index.levels[0],
df.index.levels[1]],
names=['ID', 'Time'])
# reindex using the above multiindex
df = df.reindex(ix, fill_value=0)
# forward fill the missing values in group
df['group'] = df.group.mask(df.group.eq(0)).ffill()
print(df.reset_index())
ID Time sig sig2 group
0 1 0 2 9 A
1 1 1 3 2 A
2 1 2 1 8 A
3 1 3 0 0 A
4 2 0 4 0 B
5 2 1 2 4 B
6 2 2 0 5 B
7 2 3 2 1 B
8 3 0 3 1 A
9 3 1 5 0 A
10 3 2 0 0 A
11 3 3 0 0 A
IIUC:
(data.pivot_table(columns='Time', index=['ID','group'], fill_value=0)
.stack('Time')
.sort_index(level=['ID','Time'])
.reset_index()
)
Output:
ID group Time sig sig2
0 1 A 0 2 9
1 1 A 1 3 2
2 1 A 2 1 8
3 1 A 3 0 0
4 2 B 0 4 0
5 2 B 1 2 4
6 2 B 2 0 5
7 2 B 3 2 1
8 3 A 0 3 1
9 3 A 1 5 0
10 3 A 2 0 0
11 3 A 3 0 0
I am trying to create a new index for a dataframe from created from a root file. I'm using uproot to bring in the file using the command
upfile_muon = uproot.open(file_prefix_muon + '.root')
tree_muon = upfile_muon['ntupler']['tree']
df_muon = tree_muon.pandas.df(['vh_sim_r','vh_sim_phi','vh_sim_z','vh_sim_tp1','vh_sim_tp2',
'vh_type','vh_station','vh_ring','vh_sim_theta'], entrystop=args.max_events)
This then creates a multiindex pandas dataframe with entries and subentries as my two indexes. I want to filter out all subentries of length 3 or less. I do that with the following command while creating vectors that slice the dataframe into the data that I need.
a = 0
bad_entries = 0
entries = []
nuindex = []
tru = 0
while(a < args.max_events):
if(df_muon.loc[(a),:].shape[0] > 3):
entries.append(a)
b = 0
while( b < df_muon.loc[(a),:].shape[0]):
nuindex.append(tru)
b = b + 1
tru = tru + 1
else:
bad_entries = bad_entries + 1
a = a + 1
df_muon = df_muon.loc[pd.IndexSlice[entries,:],:]
So now my dataframe looks like this
vh_sim_r vh_sim_phi vh_sim_z vh_sim_tp1 vh_sim_tp2 vh_type vh_station vh_ring vh_sim_theta
entry subentry
0 0 149.724701 -124.728081 793.598755 0 0 3 2 1 10.684152
1 149.236725 -124.180763 796.001221 -1 -1 3 2 1 10.618716
2 149.456131 -124.687302 796.001221 0 0 3 2 1 10.633972
3 92.405533 -126.913628 539.349976 0 0 4 1 1 9.721958
4 149.345184 -124.332527 839.810669 0 0 1 2 1 10.083608
5 176.544983 -123.978333 964.500000 0 0 2 3 1 10.372764
6 194.614502 -123.764595 1054.994995 0 0 2 4 1 10.451831
7 149.236725 -124.180763 796.001221 -1 -1 3 2 1 10.618716
8 149.456131 -124.687302 796.001221 0 0 3 2 1 10.633972
9 92.405533 -126.913628 539.349976 0 0 4 1 1 9.721958
10 149.345184 -124.332527 839.810669 0 0 1 2 1 10.083608
11 176.544983 -123.978333 964.500000 0 0 2 3 1 10.372764
12 194.614502 -123.764595 1054.994995 0 0 2 4 1 10.451831
1 0 265.027252 -3.324370 796.001221 0 0 3 2 1 18.415092
1 272.908997 -3.531896 839.903625 0 0 1 2 1 18.000479
2 299.305176 -3.531351 923.885132 0 0 1 3 1 17.950438
3 312.799255 -3.499015 964.500000 0 0 2 3 1 17.968519
4 328.321442 -3.530087 1013.620056 0 0 1 4 1 17.947645
5 181.831726 -1.668625 567.971252 0 0 3 1 1 17.752077
6 265.027252 -3.324370 796.001221 0 0 3 2 1 18.415092
7 197.739120 -2.073746 615.796265 0 0 1 1 1 17.802410
8 272.908997 -3.531896 839.903625 0 0 1 2 1 18.000479
9 299.305176 -3.531351 923.885132 0 0 1 3 1 17.950438
10 312.799255 -3.499015 964.500000 0 0 2 3 1 17.968519
11 328.321442 -3.530087 1013.620056 0 0 1 4 1 17.947645
12 356.493073 -3.441958 1065.694946 0 0 2 4 2 18.495964
2 0 204.523163 -124.065643 839.835571 0 0 1 2 1 13.686690
1 135.439163 -122.568153 567.971252 0 0 3 1 1 13.412345
2 196.380875 -123.940300 796.001221 0 0 3 2 1 13.858652
3 129.801193 -122.348656 539.349976 0 0 4 1 1 13.531607
4 224.134796 -124.194283 923.877441 0 0 1 3 1 13.636631
5 237.166031 -124.181770 964.500000 0 0 2 3 1 13.814683
6 246.809235 -124.196938 1013.871643 0 0 1 4 1 13.681540
7 259.389587 -124.164017 1054.994995 0 0 2 4 1 13.813211
8 204.523163 -124.065643 839.835571 0 0 1 2 1 13.686690
9 196.380875 -123.940300 796.001221 0 0 3 2 1 13.858652
10 129.801193 -122.348656 539.349976 0 0 4 1 1 13.531607
11 224.134796 -124.194283 923.877441 0 0 1 3 1 13.636631
12 237.166031 -124.181770 964.500000 0 0 2 3 1 13.814683
13 246.809235 -124.196938 1013.871643 0 0 1 4 1 13.681540
14 259.389587 -124.164017 1054.994995 0 0 2 4 1 13.813211
3 0 120.722900 -22.053474 615.786621 0 0 1 1 4 11.091969
1 170.635376 -23.190208 793.598755 0 0 3 2 1 12.134683
2 110.061127 -21.370941 539.349976 0 0 4 1 1 11.533570
3 164.784668 -23.263920 814.977478 0 0 1 2 1 11.430829
4 192.868652 -23.398684 948.691345 0 0 1 3 1 11.491603
5 199.817978 -23.325649 968.900024 0 0 2 3 1 11.652840
6 211.474625 -23.265354 1038.803833 0 0 1 4 1 11.506759
7 216.406830 -23.275047 1059.395020 0 0 2 4 1 11.545199
8 170.612457 -23.136520 793.598755 -1 -1 3 2 1 12.133101
5 0 179.913177 -14.877813 615.749207 0 0 1 1 1 16.287615
1 160.188034 -14.731569 565.368774 0 0 3 1 1 15.819215
2 240.671204 -15.410946 793.598755 0 0 3 2 1 16.870745
3 166.238678 -14.774992 586.454590 0 0 1 1 1 15.826117
4 241.036865 -15.400753 815.009399 0 0 1 2 1 16.475443
5 281.086792 -15.534301 948.707581 0 0 1 3 1 16.503710
6 288.768768 -15.577776 968.900024 0 0 2 3 1 16.596043
7 309.145935 -15.533208 1038.588745 0 0 1 4 1 16.576143
8 312.951233 -15.579374 1059.395020 0 0 2 4 1 16.457436
9 312.313416 -16.685022 1059.395020 -1 -1 2 4 1 16.425705
Now my goal is to find a way to change the 5 value in the entry index to a 4. I want to do this in a way that automates the process such that I can have a huge number of entries (~20,000), I can have my filter delete the unusable entries, then it renumbers all of the entries sequentially from 0 to the last unfiltered entry. I've tried all sorts of commands but I've had no luck. Is there a way to do this directly?
df_muon = (df_muon
.reset_index() # Get the multi-index back as columns
.replace({'entry': 5}, {'entry': 4}) # Replace 5 in column 'entry' with 4
.set_index(['entry', 'subentry']) # Go back to the multi-index
)
I have the following short dataframe:
A B C
1 1 3
2 1 3
3 2 3
4 2 3
5 0 0
I want the output to look like this:
A B C
1 1 3
2 1 3
3 0 0
4 0 0
5 0 0
1 1 3
2 1 3
3 2 3
4 2 3
5 0 0
use pd.MultiIndex.from_product with unique As and Bs. Then reindex.
cols = list('AB')
mux = pd.MultiIndex.from_product([df.A.unique(), df.B.unique()], names=cols)
df.set_index(cols).reindex(mux, fill_value=0).reset_index()
A B C
0 1 1 3
1 1 2 0
2 1 0 0
3 2 1 3
4 2 2 0
5 2 0 0
6 3 1 0
7 3 2 3
8 3 0 0
9 4 1 0
10 4 2 3
11 4 0 0
12 5 1 0
13 5 2 0
14 5 0 0
I have data frame containing the IDs of animals and types they belong to as given below
ID Class
1 1
2 1
3 0
4 4
5 3
6 2
7 1
8 0
I want convert it to a new style with the classes on the header row as follows.
ID 0 1 2 3 4
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
Can you help me to do it with python
See get_dummies():
>>> print df
ID Class
0 1 1
1 2 1
2 3 0
3 4 4
4 5 3
5 6 2
6 7 1
7 8 0
>>> df2 = pd.get_dummies(df, columns=['Class'])
>>> print df2
ID Class_0 Class_1 Class_2 Class_3 Class_4
0 1 0 1 0 0 0
1 2 0 1 0 0 0
2 3 1 0 0 0 0
3 4 0 0 0 0 1
4 5 0 0 0 1 0
5 6 0 0 1 0 0
6 7 0 1 0 0 0
7 8 1 0 0 0 0
And if you want to get rid of "Class_" in the column headers, set both prefix and prefix_sep to the empty string:
df2 = pd.get_dummies(df, columns=['Class'], prefix='', prefix_sep='')