Temporarily preventing matplotlib from re-painting the plot - python

When using matplotlib in a jupyter environment, it is typical to have it in an interactive mode, which means that as soon as a plotting command is given, the figure changes accordingly.
I have a big matplotlib plot with lots of lines, re-painting the thing takes a lot of time.
Is there a way to prevent matplotlib from re-painting while I'm giving the plotting commands?
e.g.
%matplotlib Qt5agg
from matplotlib import pyplot as plt
import numpy as np
# Interactive work, everything is fine
plt.plot([1, 2, 3, 4])
# Trying different things...
plt.plot([2, 5, 3, 4, 1])
# Now I'm going to plot something big.
# Hold off on drawing this huge plot while I construct it.
plt.figure()
plt.plot(np.random.rand(100, 1000))
plt.grid()
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('A title')
# Ok, now show the big plot
plt.show()

Related

How to add hovering annotations with multiple curves

I am using matplotlib to plot multiple curves (time series) in one plot. To do this, I use a for loop as seen below.
%matplotlib
for i in range(0, len(force)):
plt.plot(distance, (force[i]), alpha=0.1)
plt.xlabel('Distance [mm]', fontsize=12)
plt.ylabel('Force [N]', fontsize=12)
Unfortunately, with the number of curves (approx. 70) that I have, the plot would be unreadable if I labeled each curve. Does anyone know of a way to create labels that only appear when the cursor hovers in the vicinity of that curve (timeseries)?
I looked on the example from this post, but have no clue how to adapt it to my issue:
Possible to make labels appear when hovering over a point in matplotlib?
You could use mplcursors. Each curve can have a unique label, which is shown by default.
from matplotlib import pyplot as plt
import mplcursors
import numpy as np
force = np.random.randn(70, 100).cumsum(axis=1)
force -= force.mean(axis=1, keepdims=True)
plt.figure(figsize=(12, 5))
for i in range(len(force)):
plt.plot(force[i], alpha=0.2, label=f'force[{i}]')
plt.margins(x=0.01)
cursor = mplcursors.cursor(hover=True)
plt.show()
If you're working with a Jupyter notebook, you might need %matplotlib nbagg or %matplotlib qt instead of %matplotlib inline to enable interactivity.

plt.show () does not open a new figure window

I am trying to show some plots using plt.show (). i get the plots shown on the IPython console, but I need to see each figure in a new window. What can I do ?
In your notebook, try
import matplotlib.pyplot as plt
%matplotlib
Called alone like this, it should give output in a separate window. There are also several options to %matplotlib depending on your system. To see all options available to you, use
%matplotlib -l
Calling
%matplotlib inline
will draw the plots in the notebook again.
You want to type %matplotlib qt into your iPython console. This changes it for the session you're in only. To change it for the future, go Tools > Preferences, select iPython Console > Graphics, then set Graphics Backend to Qt4 or Qt5. This ought to work.
Other option is using plt.figure:
import matplotlib.pyplot as plt
plt.figure(1) # the first figure
plt.subplot(211) # the first subplot in the first figure
plt.plot([1, 2, 3])
plt.subplot(212) # the second subplot in the first figure
plt.plot([4, 5, 6])
plt.show(block=False)
plt.figure(2) # a second figure
plt.plot([4, 5, 6]) # creates a subplot(111) by default
plt.show(block=False)
plt.figure(1) # figure 1 current; subplot(212) still current
plt.subplot(211) # make subplot(211) in figure1 current
plt.title('Easy as 1, 2, 3') # subplot 211 title
plt.show(block=False)
(see: https://matplotlib.org/users/pyplot_tutorial.html)

Showing a few figures without stopping calculations in matplotlib

Hi I would like to show a few figures in matplotlib without stopping calculations. I would like the figure to show up right after the calculations that concern it are finished for example:
import numpy as np
import pylab as py
x=np.linspace(0,50,51)
y=x
fig, axs = plt.subplots(1, 1)
cs = axs.plot(x, y)
now i want to show the plot without blocking the possibility to make some other calculations
plt.show(block=False)
plt.pause(5)
I create the second plot
y1=2*x
fig1, axs1 = plt.subplots(1, 1)
cs1 = axs1.plot(x, y1)
plt.show()
This works however the first freezes (after 5 secound pause which I added) until I call plt.show() at the end. It is crucial that the first figure shows and works, then after calculations another figure is added to it.
The following code should do what you want. I did this in an IPython Notebook.
from IPython import display
import matplotlib.pyplot as plt
def stream_plot(iterable, plotlife=10.):
for I in iterable:
display.clear_output(wait=True)
output = do_calculations_on_i(I)
plt.plot(output)
display.display(plt.gca());
time.sleep(plotlife); #how long to show the plot for
the wait=True will wait to clear the old plot until it has something new to plot, or any other output is printed.
I put the sleep in there so I can observe each plot before it is wiped away. This was useful for having to observe distributions for several entities. You may or may not need it for what you want to do.

Why do pyplot methods apply instantly and subplot axes methods do not?

I'm editing my graphs step by step. Doing so, plt functions from matplotlib.pyplot apply instantly to my graphical output of pylab. That's great.
If I address axes of a subplot, it does not happen anymore.
Please find both alternatives in my minimal working example.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
f = plt.figure()
sp1 = f.add_subplot(1,1,1)
f.show()
# This works well
sp1.set_xlim([1,5])
# Now I plot the graph
df = pd.Series([0,5,9,10,15])
df.hist(bins=50, color="red", alpha=0.5, normed=True, ax=sp1)
# ... and try to change the ticks of the x-axis
sp1.set_xticks(np.arange(1, 15, 1))
# Unfortunately, it does not result in an instant change
# because my plot has already been drawn.
# If I wanted to use the code above,
# I would have to execute him before drawing the graph.
# Therefore, I have to use this function:
plt.xticks(np.arange(1, 15, 1))
I understand that there is a difference between matplotlib.pyplot and an axis instance. Did I miss anything or does it just work this way?
Most of pyplot functions (if not all) have a call to plt.draw_if_interactive() before returning. So if you do
plt.ion()
plt.plot([1,2,3])
plt.xlim([-1,4])
you obtain that the plot is updated as you go. If you have interactive off, it won't create or update the plot until you don't call plt.show().
But all pyplot functions are wrappers around corresponding (usually) Axes methods.
If you want to use the OO interface, and still draw stuff as you type, you can do something like this
plt.ion() # if you don't have this, you probably don't get anything until you don't call a blocking `plt.show`
fig, ax = plt.subplots() # create an empty plot
ax.plot([1,2,3]) # create the line
plt.draw() # draw it (you can also use `draw_if_interactive`)
ax.set_xlim([-1,4]) #set the limits
plt.draw() # updata the plot
You don't have to use the pyplot you don't want, just remember to draw
The plt.xticks() method calls a function draw_if_interactive() that comes from pylab_setup(), who is updating the graph. In order to do it using sp1.set_xticks(), just call the corresponding show() method:
sp1.figure.show()

Save plot to image file instead of displaying it using Matplotlib

This displays the figure in a GUI:
import matplotlib.pyplot as plt
plt.plot([1, 2, 3], [1, 4, 9])
plt.show()
But how do I instead save the figure to a file (e.g. foo.png)?
When using matplotlib.pyplot.savefig, the file format can be specified by the extension:
from matplotlib import pyplot as plt
plt.savefig('foo.png')
plt.savefig('foo.pdf')
That gives a rasterized or vectorized output respectively.
In addition, there is sometimes undesirable whitespace around the image, which can be removed with:
plt.savefig('foo.png', bbox_inches='tight')
Note that if showing the plot, plt.show() should follow plt.savefig(); otherwise, the file image will be blank.
As others have said, plt.savefig() or fig1.savefig() is indeed the way to save an image.
However I've found that in certain cases the figure is always shown. (eg. with Spyder having plt.ion(): interactive mode = On.) I work around this by
forcing the the figure window to close with:
plt.close(figure_object)
(see documentation). This way I don't have a million open figures during a large loop. Example usage:
import matplotlib.pyplot as plt
fig, ax = plt.subplots( nrows=1, ncols=1 ) # create figure & 1 axis
ax.plot([0,1,2], [10,20,3])
fig.savefig('path/to/save/image/to.png') # save the figure to file
plt.close(fig) # close the figure window
You should be able to re-open the figure later if needed to with fig.show() (didn't test myself).
The solution is:
pylab.savefig('foo.png')
Just found this link on the MatPlotLib documentation addressing exactly this issue:
http://matplotlib.org/faq/howto_faq.html#generate-images-without-having-a-window-appear
They say that the easiest way to prevent the figure from popping up is to use a non-interactive backend (eg. Agg), via matplotib.use(<backend>), eg:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.savefig('myfig')
I still personally prefer using plt.close( fig ), since then you have the option to hide certain figures (during a loop), but still display figures for post-loop data processing. It is probably slower than choosing a non-interactive backend though - would be interesting if someone tested that.
UPDATE: for Spyder, you usually can't set the backend in this way (Because Spyder usually loads matplotlib early, preventing you from using matplotlib.use()).
Instead, use plt.switch_backend('Agg'), or Turn off "enable support" in the Spyder prefs and run the matplotlib.use('Agg') command yourself.
From these two hints: one, two
If you don't like the concept of the "current" figure, do:
import matplotlib.image as mpimg
img = mpimg.imread("src.png")
mpimg.imsave("out.png", img)
import datetime
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
# Create the PdfPages object to which we will save the pages:
# The with statement makes sure that the PdfPages object is closed properly at
# the end of the block, even if an Exception occurs.
with PdfPages('multipage_pdf.pdf') as pdf:
plt.figure(figsize=(3, 3))
plt.plot(range(7), [3, 1, 4, 1, 5, 9, 2], 'r-o')
plt.title('Page One')
pdf.savefig() # saves the current figure into a pdf page
plt.close()
plt.rc('text', usetex=True)
plt.figure(figsize=(8, 6))
x = np.arange(0, 5, 0.1)
plt.plot(x, np.sin(x), 'b-')
plt.title('Page Two')
pdf.savefig()
plt.close()
plt.rc('text', usetex=False)
fig = plt.figure(figsize=(4, 5))
plt.plot(x, x*x, 'ko')
plt.title('Page Three')
pdf.savefig(fig) # or you can pass a Figure object to pdf.savefig
plt.close()
# We can also set the file's metadata via the PdfPages object:
d = pdf.infodict()
d['Title'] = 'Multipage PDF Example'
d['Author'] = u'Jouni K. Sepp\xe4nen'
d['Subject'] = 'How to create a multipage pdf file and set its metadata'
d['Keywords'] = 'PdfPages multipage keywords author title subject'
d['CreationDate'] = datetime.datetime(2009, 11, 13)
d['ModDate'] = datetime.datetime.today()
I used the following:
import matplotlib.pyplot as plt
p1 = plt.plot(dates, temp, 'r-', label="Temperature (celsius)")
p2 = plt.plot(dates, psal, 'b-', label="Salinity (psu)")
plt.legend(loc='upper center', numpoints=1, bbox_to_anchor=(0.5, -0.05), ncol=2, fancybox=True, shadow=True)
plt.savefig('data.png')
plt.show()
plt.close()
I found very important to use plt.show after saving the figure, otherwise it won't work.figure exported in png
The other answers are correct. However, I sometimes find that I want to open the figure object later. For example, I might want to change the label sizes, add a grid, or do other processing. In a perfect world, I would simply rerun the code generating the plot, and adapt the settings. Alas, the world is not perfect. Therefore, in addition to saving to PDF or PNG, I add:
with open('some_file.pkl', "wb") as fp:
pickle.dump(fig, fp, protocol=4)
Like this, I can later load the figure object and manipulate the settings as I please.
I also write out the stack with the source-code and locals() dictionary for each function/method in the stack, so that I can later tell exactly what generated the figure.
NB: Be careful, as sometimes this method generates huge files.
After using the plot() and other functions to create the content you want, you could use a clause like this to select between plotting to the screen or to file:
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(4, 5)) # size in inches
# use plot(), etc. to create your plot.
# Pick one of the following lines to uncomment
# save_file = None
# save_file = os.path.join(your_directory, your_file_name)
if save_file:
plt.savefig(save_file)
plt.close(fig)
else:
plt.show()
If, like me, you use Spyder IDE, you have to disable the interactive mode with :
plt.ioff()
(this command is automatically launched with the scientific startup)
If you want to enable it again, use :
plt.ion()
You can either do:
plt.show(hold=False)
plt.savefig('name.pdf')
and remember to let savefig finish before closing the GUI plot. This way you can see the image beforehand.
Alternatively, you can look at it with plt.show()
Then close the GUI and run the script again, but this time replace plt.show() with plt.savefig().
Alternatively, you can use
fig, ax = plt.figure(nrows=1, ncols=1)
plt.plot(...)
plt.show()
fig.savefig('out.pdf')
According to question Matplotlib (pyplot) savefig outputs blank image.
One thing should note: if you use plt.show and it should after plt.savefig, or you will give a blank image.
A detailed example:
import numpy as np
import matplotlib.pyplot as plt
def draw_result(lst_iter, lst_loss, lst_acc, title):
plt.plot(lst_iter, lst_loss, '-b', label='loss')
plt.plot(lst_iter, lst_acc, '-r', label='accuracy')
plt.xlabel("n iteration")
plt.legend(loc='upper left')
plt.title(title)
plt.savefig(title+".png") # should before plt.show method
plt.show()
def test_draw():
lst_iter = range(100)
lst_loss = [0.01 * i + 0.01 * i ** 2 for i in xrange(100)]
# lst_loss = np.random.randn(1, 100).reshape((100, ))
lst_acc = [0.01 * i - 0.01 * i ** 2 for i in xrange(100)]
# lst_acc = np.random.randn(1, 100).reshape((100, ))
draw_result(lst_iter, lst_loss, lst_acc, "sgd_method")
if __name__ == '__main__':
test_draw()
The Solution :
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.style.use('ggplot')
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
plt.figure()
ts.plot()
plt.savefig("foo.png", bbox_inches='tight')
If you do want to display the image as well as saving the image use:
%matplotlib inline
after
import matplotlib
When using matplotlib.pyplot, you must first save your plot and then close it using these 2 lines:
fig.savefig('plot.png') # save the plot, place the path you want to save the figure in quotation
plt.close(fig) # close the figure window
import matplotlib.pyplot as plt
plt.savefig("image.png")
In Jupyter Notebook you have to remove plt.show() and add plt.savefig(), together with the rest of the plt-code in one cell.
The image will still show up in your notebook.
Additionally to those above, I added __file__ for the name so the picture and Python file get the same names. I also added few arguments to make It look better:
# Saves a PNG file of the current graph to the folder and updates it every time
# (nameOfimage, dpi=(sizeOfimage),Keeps_Labels_From_Disappearing)
plt.savefig(__file__+".png",dpi=(250), bbox_inches='tight')
# Hard coded name: './test.png'
Just a extra note because I can't comment on posts yet.
If you are using plt.savefig('myfig') or something along these lines make sure to add a plt.clf() after your image is saved. This is because savefig does not close the plot and if you add to the plot after without a plt.clf() you'll be adding to the previous plot.
You may not notice if your plots are similar as it will plot over the previous plot, but if you are in a loop saving your figures the plot will slowly become massive and make your script very slow.
Given that today (was not available when this question was made) lots of people use Jupyter Notebook as python console, there is an extremely easy way to save the plots as .png, just call the matplotlib's pylab class from Jupyter Notebook, plot the figure 'inline' jupyter cells, and then drag that figure/image to a local directory. Don't forget
%matplotlib inline in the first line!
As suggested before, you can either use:
import matplotlib.pyplot as plt
plt.savefig("myfig.png")
For saving whatever IPhython image that you are displaying. Or on a different note (looking from a different angle), if you ever get to work with open cv, or if you have open cv imported, you can go for:
import cv2
cv2.imwrite("myfig.png",image)
But this is just in case if you need to work with Open CV. Otherwise plt.savefig() should be sufficient.
well, I do recommend using wrappers to render or control the plotting. examples can be mpltex (https://github.com/liuyxpp/mpltex) or prettyplotlib (https://github.com/olgabot/prettyplotlib).
import mpltex
#mpltex.acs_decorator
def myplot():
plt.figure()
plt.plot(x,y,'b-',lable='xxx')
plt.tight_layout(pad=0.5)
plt.savefig('xxxx') # the figure format was controlled by the decorator, it can be either eps, or pdf or png....
plt.close()
I basically use this decorator a lot for publishing academic papers in various journals at American Chemical Society, American Physics Society, Opticcal Society American, Elsivier and so on.
An example can be found as following image (https://github.com/MarkMa1990/gradientDescent):
You can do it like this:
def plotAFig():
plt.figure()
plt.plot(x,y,'b-')
plt.savefig("figurename.png")
plt.close()
Nothing was working for me. The problem is that the saved imaged was very small and I could not find how the hell make it bigger.
This seems to make it bigger, but still not full screen.
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.set_size_inches
fig.set_size_inches((w, h))
Hope that helps somebody.
You can save your image with any extension(png, jpg,etc.) and with the resolution you want. Here's a function to save your figure.
import os
def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
print("Saving figure", fig_id)
if tight_layout:
plt.tight_layout()
plt.savefig(path, format=fig_extension, dpi=resolution)
'fig_id' is the name by which you want to save your figure. Hope it helps:)
using 'agg' due to no gui on server.
Debugging on ubuntu 21.10 with gui and VSC.
In debug, trying to both display a plot and then saving to file for web UI.
Found out that saving before showing is required, otherwise saved plot is blank. I suppose that showing will clear the plot for some reason. Do this:
plt.savefig(imagePath)
plt.show()
plt.close(fig)
Instead of this:
plt.show()
plt.savefig(imagePath)
plt.close(fig)

Categories

Resources