How to display stock_img() using Basemap? - python

According to Cartopy docs, stock_img() has only one (and default) option - a down sampled version of the Natural Earth shaded relief raster.
How do I display this image using Basemap?

Here is an example:
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
ax = plt.gca()
bmap = Basemap( projection='ortho', lat_0=45, lon_0=-100, resolution='l', ax=ax )
bmap.shadedrelief(scale=0.25)
plt.show()

Related

How to create legend with proxy artist for contourf plot in Matplotlib

I am trying to create a graphic where I overlay multiple contour plots on a single image. So I want to have colorbars for each of the plots, as well as a legend indicating what each contour represents. However Matplotlib will not allow me to create a separate legend for my contour plots. Simple example:
import matplotlib as mpl
import matplotlib.pyplot as plt
import cartopy
import cartopy.crs as ccrs
import numpy as np
def create_contour(i,j):
colors = ["red","green","blue"]
hatches = ['-','+','x','//','*']
fig = plt.figure()
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent((-15.0,15.0,-15.0,15.0))
delta = 0.25
x = np.arange(-3.0,3.0,delta)
y = np.arange(-2.0,2.0,delta)
X, Y = np.meshgrid(x, y)
data = np.full(np.shape(X), 1.0)
plot = ax.contourf(X,Y,data, levels = [float(i),float(i+1)], hatch=[hatches[j]], colors = colors[i], label="label")
plt.legend(handles=[plot], labels=["label"])
plt.savefig("figure_"+str(i)+".png")
create_contour(1,3)
When I run this, I get the following message:
UserWarning: Legend does not support
(matplotlib.contour.QuadContourSet object at 0x7fa69df7cac8)
instances. A proxy artist may be used instead. See:
http://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-adding-to-the-legend-aka-proxy-artists
"aka-proxy-artists".format(orig_handle)
But as far as I can tell, I am following those directions as closely as possible, the only difference being that they do not use contourf in the example.
Any help would be greatly appreciated.
The comments to your question look like they have solved the question (by making custom patches and passing those through to the legend). There is also an example that I added many years ago to the matplotlib documentation to do something similar (about the same time I added contour hatching to matplotlib): https://matplotlib.org/examples/pylab_examples/contourf_hatching.html#pylab-examples-contourf-hatching
It is such a reasonable request that there is even a method on the contour set to give you legend proxies out of the box: ContourSet.legend_elements.
So your example might look something like:
%matplotlib inline
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import numpy as np
fig = plt.figure(figsize=(10, 10))
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines('10m')
y = np.linspace(40.0, 60.0, 30)
x = np.linspace(-10.0, 10.0, 40)
X, Y = np.meshgrid(x, y)
data = 2*np.cos(2*X**2/Y) - np.sin(Y**X)
cs = ax.contourf(X, Y, data, 3,
hatches=['//','+','x','o'],
alpha=0.5)
artists, labels = cs.legend_elements()
plt.legend(handles=artists, labels=labels)
plt.show()

sns.relplot change figure size [duplicate]

How do I change the size of my image so it's suitable for printing?
For example, I'd like to use to A4 paper, whose dimensions are 11.7 inches by 8.27 inches in landscape orientation.
You can also set figure size by passing dictionary to rc parameter with key 'figure.figsize' in seaborn set method:
import seaborn as sns
sns.set(rc={'figure.figsize':(11.7,8.27)})
Other alternative may be to use figure.figsize of rcParams to set figure size as below:
from matplotlib import rcParams
# figure size in inches
rcParams['figure.figsize'] = 11.7,8.27
More details can be found in matplotlib documentation
You need to create the matplotlib Figure and Axes objects ahead of time, specifying how big the figure is:
from matplotlib import pyplot
import seaborn
import mylib
a4_dims = (11.7, 8.27)
df = mylib.load_data()
fig, ax = pyplot.subplots(figsize=a4_dims)
seaborn.violinplot(ax=ax, data=df, **violin_options)
Note that if you are trying to pass to a "figure level" method in seaborn (for example lmplot, catplot / factorplot, jointplot) you can and should specify this within the arguments using height and aspect.
sns.catplot(data=df, x='xvar', y='yvar',
hue='hue_bar', height=8.27, aspect=11.7/8.27)
See https://github.com/mwaskom/seaborn/issues/488 and Plotting with seaborn using the matplotlib object-oriented interface for more details on the fact that figure level methods do not obey axes specifications.
first import matplotlib and use it to set the size of the figure
from matplotlib import pyplot as plt
import seaborn as sns
plt.figure(figsize=(15,8))
ax = sns.barplot(x="Word", y="Frequency", data=boxdata)
You can set the context to be poster or manually set fig_size.
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
np.random.seed(0)
n, p = 40, 8
d = np.random.normal(0, 2, (n, p))
d += np.log(np.arange(1, p + 1)) * -5 + 10
# plot
sns.set_style('ticks')
fig, ax = plt.subplots()
# the size of A4 paper
fig.set_size_inches(11.7, 8.27)
sns.violinplot(data=d, inner="points", ax=ax)
sns.despine()
fig.savefig('example.png')
This can be done using:
plt.figure(figsize=(15,8))
sns.kdeplot(data,shade=True)
In addition to elz answer regarding "figure level" methods that return multi-plot grid objects it is possible to set the figure height and width explicitly (that is without using aspect ratio) using the following approach:
import seaborn as sns
g = sns.catplot(data=df, x='xvar', y='yvar', hue='hue_bar')
g.fig.set_figwidth(8.27)
g.fig.set_figheight(11.7)
This shall also work.
from matplotlib import pyplot as plt
import seaborn as sns
plt.figure(figsize=(15,16))
sns.countplot(data=yourdata, ...)
For my plot (a sns factorplot) the proposed answer didn't works fine.
Thus I use
plt.gcf().set_size_inches(11.7, 8.27)
Just after the plot with seaborn (so no need to pass an ax to seaborn or to change the rc settings).
See How to change the image size for seaborn.objects for a solution with the new seaborn.objects interface from seaborn v0.12, which is not the same as seaborn axes-level or figure-level plots.
Adjusting the size of the plot depends if the plot is a figure-level plot like seaborn.displot, or an axes-level plot like seaborn.histplot. This answer applies to any figure or axes level plots.
See the the seaborn API reference
seaborn is a high-level API for matplotlib, so seaborn works with matplotlib methods
Tested in python 3.8.12, matplotlib 3.4.3, seaborn 0.11.2
Imports and Data
import seaborn as sns
import matplotlib.pyplot as plt
# load data
df = sns.load_dataset('penguins')
sns.displot
The size of a figure-level plot can be adjusted with the height and/or aspect parameters
Additionally, the dpi of the figure can be set by accessing the fig object and using .set_dpi()
p = sns.displot(data=df, x='flipper_length_mm', stat='density', height=4, aspect=1.5)
p.fig.set_dpi(100)
Without p.fig.set_dpi(100)
With p.fig.set_dpi(100)
sns.histplot
The size of an axes-level plot can be adjusted with figsize and/or dpi
# create figure and axes
fig, ax = plt.subplots(figsize=(6, 5), dpi=100)
# plot to the existing fig, by using ax=ax
p = sns.histplot(data=df, x='flipper_length_mm', stat='density', ax=ax)
Without dpi=100
With dpi=100
# Sets the figure size temporarily but has to be set again the next plot
plt.figure(figsize=(18,18))
sns.barplot(x=housing.ocean_proximity, y=housing.median_house_value)
plt.show()
Some tried out ways:
import seaborn as sns
import matplotlib.pyplot as plt
ax, fig = plt.subplots(figsize=[15,7])
sns.boxplot(x="feature1", y="feature2",data=df) # where df would be your dataframe
or
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=[15,7])
sns.boxplot(x="feature1", y="feature2",data=df) # where df would be your dataframe
The top answers by Paul H and J. Li do not work for all types of seaborn figures. For the FacetGrid type (for instance sns.lmplot()), use the size and aspect parameter.
Size changes both the height and width, maintaining the aspect ratio.
Aspect only changes the width, keeping the height constant.
You can always get your desired size by playing with these two parameters.
Credit: https://stackoverflow.com/a/28765059/3901029

Using Python to plot Natural Earth shapes as polygons in Matplotlib Basemap

I'm close to getting the map that I want. Matplotlib's Basemap is great, but the coastlines are too coarse when I zoom in. I can read the Natural Earth shapefiles and plot them, which are much better... but when I try and fill the polygons, I think it's treating all of the points as belonging to a single polygon. How can I iterate through the polygons and display the map correctly?
Thanks in advance!
Here's the code:
import numpy as np
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
%matplotlib inline
landColor, coastColor, oceanColor, popColor, countyColor = '#eedd99','#93ccfa','#93ccfa','#ffee99','#aa9955'
fig = plt.figure()
ax = fig.add_subplot(111)
s = 1900000
m = Basemap(projection='ortho',lon_0=-86.5,lat_0=30.3,resolution='l',llcrnrx=-s,llcrnry=-s,urcrnrx=s,urcrnry=s)
m.drawmapboundary(fill_color=oceanColor) # fill in the ocean
# generic function for reading polygons from file and plotting them on the map. This works with Natural Earth shapes.
def drawShapesFromFile(filename,facecolor,edgecolor,m):
m.readshapefile(filename, 'temp', drawbounds = False)
patches = []
for info, shape in zip(m.temp_info, m.temp): patches.append( Polygon(np.array(shape), True) )
ax.add_collection(PatchCollection(patches, facecolor=facecolor, edgecolor=edgecolor, linewidths=1))
# read the higher resolution Natural Earth coastline (land polygons) shapefile and display it as a series of polygons
drawShapesFromFile('\\Conda\\notebooks\\shapes\\ne_10m_coastline',landColor,coastColor,m)
drawShapesFromFile('\\Conda\\notebooks\\shapes\\ne_10m_urban_areas',popColor,'none',m)
m.drawcounties(color=countyColor)
plt.gcf().set_size_inches(10,10)
As requested, here's the updated code and resulting map. All I had to do was change ne_10m_coastline to ne_10m_land like this:
import numpy as np
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
%matplotlib inline
landColor, coastColor, oceanColor, popColor, countyColor = '#eedd99','#93ccfa','#93ccfa','#ffee99','#aa9955'
fig = plt.figure()
ax = fig.add_subplot(111)
s = 1900000
m = Basemap(projection='ortho',lon_0=-86.5,lat_0=30.3,resolution='l',llcrnrx=-s,llcrnry=-s,urcrnrx=s,urcrnry=s)
m.drawmapboundary(fill_color=oceanColor) # fill in the ocean
# generic function for reading polygons from file and plotting them on the map. This works with Natural Earth shapes.
def drawShapesFromFile(filename,facecolor,edgecolor,m):
m.readshapefile(filename, 'temp', drawbounds = False)
patches = []
for info, shape in zip(m.temp_info, m.temp): patches.append( Polygon(np.array(shape), True) )
ax.add_collection(PatchCollection(patches, facecolor=facecolor, edgecolor=edgecolor, linewidths=1))
# read the higher resolution Natural Earth coastline (land polygons) shapefile and display it as a series of polygons
drawShapesFromFile('\\Conda\\notebooks\\shapes\\ne_10m_land',landColor,coastColor,m)
drawShapesFromFile('\\Conda\\notebooks\\shapes\\ne_10m_urban_areas',popColor,'none',m)
m.drawcounties(color=countyColor)
plt.gcf().set_size_inches(10,10)

How to change the figure size of a seaborn axes or figure level plot

How do I change the size of my image so it's suitable for printing?
For example, I'd like to use to A4 paper, whose dimensions are 11.7 inches by 8.27 inches in landscape orientation.
You can also set figure size by passing dictionary to rc parameter with key 'figure.figsize' in seaborn set method:
import seaborn as sns
sns.set(rc={'figure.figsize':(11.7,8.27)})
Other alternative may be to use figure.figsize of rcParams to set figure size as below:
from matplotlib import rcParams
# figure size in inches
rcParams['figure.figsize'] = 11.7,8.27
More details can be found in matplotlib documentation
You need to create the matplotlib Figure and Axes objects ahead of time, specifying how big the figure is:
from matplotlib import pyplot
import seaborn
import mylib
a4_dims = (11.7, 8.27)
df = mylib.load_data()
fig, ax = pyplot.subplots(figsize=a4_dims)
seaborn.violinplot(ax=ax, data=df, **violin_options)
Note that if you are trying to pass to a "figure level" method in seaborn (for example lmplot, catplot / factorplot, jointplot) you can and should specify this within the arguments using height and aspect.
sns.catplot(data=df, x='xvar', y='yvar',
hue='hue_bar', height=8.27, aspect=11.7/8.27)
See https://github.com/mwaskom/seaborn/issues/488 and Plotting with seaborn using the matplotlib object-oriented interface for more details on the fact that figure level methods do not obey axes specifications.
first import matplotlib and use it to set the size of the figure
from matplotlib import pyplot as plt
import seaborn as sns
plt.figure(figsize=(15,8))
ax = sns.barplot(x="Word", y="Frequency", data=boxdata)
You can set the context to be poster or manually set fig_size.
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
np.random.seed(0)
n, p = 40, 8
d = np.random.normal(0, 2, (n, p))
d += np.log(np.arange(1, p + 1)) * -5 + 10
# plot
sns.set_style('ticks')
fig, ax = plt.subplots()
# the size of A4 paper
fig.set_size_inches(11.7, 8.27)
sns.violinplot(data=d, inner="points", ax=ax)
sns.despine()
fig.savefig('example.png')
This can be done using:
plt.figure(figsize=(15,8))
sns.kdeplot(data,shade=True)
In addition to elz answer regarding "figure level" methods that return multi-plot grid objects it is possible to set the figure height and width explicitly (that is without using aspect ratio) using the following approach:
import seaborn as sns
g = sns.catplot(data=df, x='xvar', y='yvar', hue='hue_bar')
g.fig.set_figwidth(8.27)
g.fig.set_figheight(11.7)
This shall also work.
from matplotlib import pyplot as plt
import seaborn as sns
plt.figure(figsize=(15,16))
sns.countplot(data=yourdata, ...)
For my plot (a sns factorplot) the proposed answer didn't works fine.
Thus I use
plt.gcf().set_size_inches(11.7, 8.27)
Just after the plot with seaborn (so no need to pass an ax to seaborn or to change the rc settings).
See How to change the image size for seaborn.objects for a solution with the new seaborn.objects interface from seaborn v0.12, which is not the same as seaborn axes-level or figure-level plots.
Adjusting the size of the plot depends if the plot is a figure-level plot like seaborn.displot, or an axes-level plot like seaborn.histplot. This answer applies to any figure or axes level plots.
See the the seaborn API reference
seaborn is a high-level API for matplotlib, so seaborn works with matplotlib methods
Tested in python 3.8.12, matplotlib 3.4.3, seaborn 0.11.2
Imports and Data
import seaborn as sns
import matplotlib.pyplot as plt
# load data
df = sns.load_dataset('penguins')
sns.displot
The size of a figure-level plot can be adjusted with the height and/or aspect parameters
Additionally, the dpi of the figure can be set by accessing the fig object and using .set_dpi()
p = sns.displot(data=df, x='flipper_length_mm', stat='density', height=4, aspect=1.5)
p.fig.set_dpi(100)
Without p.fig.set_dpi(100)
With p.fig.set_dpi(100)
sns.histplot
The size of an axes-level plot can be adjusted with figsize and/or dpi
# create figure and axes
fig, ax = plt.subplots(figsize=(6, 5), dpi=100)
# plot to the existing fig, by using ax=ax
p = sns.histplot(data=df, x='flipper_length_mm', stat='density', ax=ax)
Without dpi=100
With dpi=100
# Sets the figure size temporarily but has to be set again the next plot
plt.figure(figsize=(18,18))
sns.barplot(x=housing.ocean_proximity, y=housing.median_house_value)
plt.show()
Some tried out ways:
import seaborn as sns
import matplotlib.pyplot as plt
ax, fig = plt.subplots(figsize=[15,7])
sns.boxplot(x="feature1", y="feature2",data=df) # where df would be your dataframe
or
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=[15,7])
sns.boxplot(x="feature1", y="feature2",data=df) # where df would be your dataframe
The top answers by Paul H and J. Li do not work for all types of seaborn figures. For the FacetGrid type (for instance sns.lmplot()), use the size and aspect parameter.
Size changes both the height and width, maintaining the aspect ratio.
Aspect only changes the width, keeping the height constant.
You can always get your desired size by playing with these two parameters.
Credit: https://stackoverflow.com/a/28765059/3901029

Drawing a graph with NetworkX on a Basemap

I want to plot a graph on a map where the nodes would be defined by coordinates (lat, long) and have some value associated.
I have been able to plot points as a scatterplot on a basemap but can't seem to find how to plot a graph on the map.
Thanks.
EDIT: I have added code on how I plotted the points on a basemap. Most of it has been adapted from code in this article.
from mpl_toolkits.basemap import Basemap
from shapely.geometry import Point, MultiPoint
import pandas as pd
import matplotlib.pyplot as plt
m = Basemap(
projection='merc',
ellps = 'WGS84',
llcrnrlon=-130,
llcrnrlat=25,
urcrnrlon=-60,
urcrnrlat=50,
lat_ts=0,
resolution='i',
suppress_ticks=True)
# Create Point objects in map coordinates from dataframe lon
# and lat values
# I have a dataframe of coordinates
map_points = pd.Series(
[Point(m(mapped_x, mapped_y))
for mapped_x, mapped_y in zip(df['lon'],
df['lat'])])
amre_points = MultiPoint(list(map_points.values))
plt.clf()
fig = plt.figure()
ax = fig.add_subplot(111, axisbg='w', frame_on=False)
fig.set_size_inches(18.5, 10.5)
# Create a scatterplot on the map
dev = m.scatter(
[geom.x for geom in map_points],
[geom.y for geom in map_points],
20, marker='o', lw=.25,
facecolor='#33ccff', edgecolor='w',
alpha=0.9,antialiased=True,
zorder=3)
m.fillcontinents(color='#555555')
I get this image:
Here is one way to do it:
import networkx as nx
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap as Basemap
m = Basemap(
projection='merc',
llcrnrlon=-130,
llcrnrlat=25,
urcrnrlon=-60,
urcrnrlat=50,
lat_ts=0,
resolution='i',
suppress_ticks=True)
# position in decimal lat/lon
lats=[37.96,42.82]
lons=[-121.29,-73.95]
# convert lat and lon to map projection
mx,my=m(lons,lats)
# The NetworkX part
# put map projection coordinates in pos dictionary
G=nx.Graph()
G.add_edge('a','b')
pos={}
pos['a']=(mx[0],my[0])
pos['b']=(mx[1],my[1])
# draw
nx.draw_networkx(G,pos,node_size=200,node_color='blue')
# Now draw the map
m.drawcountries()
m.drawstates()
m.bluemarble()
plt.title('How to get from point a to point b')
plt.show()
As of today there is a nice alternative to basemap. Mplleaflet is a library inspired by mpld3. It plots faster than basemap, is more easy to use and allows to visualizing geographic data on beautiful interactive openstreetmap. The input can be longitude and latitude the library automatically projects the data properly.
Input dictionary pos, where the node (country) is the key and long lat are saved as value.
pos = {u'Afghanistan': [66.00473365578554, 33.83523072784668],
u'Aland': [19.944009818523348, 60.23133494165451],
u'Albania': [20.04983396108883, 41.14244989474517],
u'Algeria': [2.617323009197829, 28.158938494487625],
.....
Plotting is as easy as:
import mplleaflet
fig, ax = plt.subplots()
nx.draw_networkx_nodes(GG,pos=pos,node_size=10,node_color='red',edge_color='k',alpha=.5, with_labels=True)
nx.draw_networkx_edges(GG,pos=pos,edge_color='gray', alpha=.1)
nx.draw_networkx_labels(GG,pos, label_pos =10.3)
mplleaflet.display(fig=ax.figure)

Categories

Resources