Euclidean distance between matrix and vector - python

Calculate the euclidean of a vector from each column of another vector.
Is this correct?
distances=np.sqrt(np.sum(np.square(new_v-val.reshape(10,1)),axis=0))
new_v is a matrix.
val.reshape(10,1) is a column vector.
Another other/better ways to do it.

What you have is correct. There is a simpler method available in numpy.linalg:
from numpy.linalg import norm
norm(new_v.T-val, axis=1, ord=2)

You can make use of the efficient np.einsum -
subs = new_v - val[:,None]
out = np.sqrt(np.einsum('ij,ij->j',subs,subs))
Alternatively, using (a-b)^2 = a^2 + b^2 - 2ab formula -
out = np.sqrt(np.einsum('ij,ij->j',new_v, new_v) + val.dot(val) - 2*val.dot(new_v))
If the second axis of new_v is a large one, we can also numexpr module to compute the sqrt part at the end.
Runtime test
Approaches -
import numexpr as ne
def einsum_based(new_v, val):
subs = new_v - val[:,None]
return np.sqrt(np.einsum('ij,ij->j',subs,subs))
def dot_based(new_v, val):
return np.sqrt(np.einsum('ij,ij->j',new_v, new_v) + \
val.dot(val) - 2*val.dot(new_v))
def einsum_numexpr_based(new_v, val):
subs = new_v - val[:,None]
sq_dists = np.einsum('ij,ij->j',subs,subs)
return ne.evaluate('sqrt(sq_dists)')
def dot_numexpr_based(new_v, val):
sq_dists = np.einsum('ij,ij->j',new_v, new_v) + val.dot(val) - 2*val.dot(new_v)
return ne.evaluate('sqrt(sq_dists)')
Timings -
In [85]: # Inputs
...: new_v = np.random.randint(0,9,(10,100000))
...: val = np.random.randint(0,9,(10))
In [86]: %timeit np.sqrt(np.sum(np.square(new_v-val.reshape(10,1)),axis=0))
...: %timeit einsum_based(new_v, val)
...: %timeit dot_based(new_v, val)
...: %timeit einsum_numexpr_based(new_v, val)
...: %timeit dot_numexpr_based(new_v, val)
...:
100 loops, best of 3: 2.91 ms per loop
100 loops, best of 3: 2.1 ms per loop
100 loops, best of 3: 2.12 ms per loop
100 loops, best of 3: 2.26 ms per loop
100 loops, best of 3: 2.43 ms per loop
In [87]: from numpy.linalg import norm
# #wim's solution
In [88]: %timeit norm(new_v.T-val, axis=1, ord=2)
100 loops, best of 3: 5.88 ms per loop

Related

convert time string XhYmZs to seconds in python

I have a string which comes in three forms:
XhYmZs or YmZs or Zs
where, h,m,s are for hours, mins, secs and X,Y,Z are the corresponding values.
How do I efficiently convert these strings to seconds in python2.7?
I guess I can do something like:
s="XhYmZs"
if "h" in s:
hours=s.split("h")
elif "m" in s:
mins=s.split("m")[0][-1]
... but this does not seem very efficient to me :(
Split on the delimiters you're interested in, then parse each resulting element into an integer and multiply as needed:
import re
def hms(s):
l = list(map(int, re.split('[hms]', s)[:-1]))
if len(l) == 3:
return l[0]*3600 + l[1]*60 + l[2]
elif len(l) == 2:
return l[0]*60 + l[1]
else:
return l[0]
This produces a duration normalized to seconds.
>>> hms('3h4m5s')
11045
>>> 3*3600+4*60+5
11045
>>> hms('70m5s')
4205
>>> 70*60+5
4205
>>> hms('300s')
300
You can also make this one line by turning the re.split() result around and multiplying by 60 raised to an incrementing power based on the element's position in the list:
def hms2(s):
return sum(int(x)*60**i for i,x in enumerate(re.split('[hms]', s)[-2::-1]))
>>> import datetime
>>> datetime.datetime.strptime('3h4m5s', '%Hh%Mm%Ss').time()
datetime.time(3, 4, 5)
Since it varies which fields are in your strings, you may have to build a matching format string.
>>> def parse(s):
... fmt=''.join('%'+c.upper()+c for c in 'hms' if c in s)
... return datetime.datetime.strptime(s, fmt).time()
The datetime module is the standard library way to handle times.
Asking to do this "efficiently" is a bit of a fool's errand. String parsing in an interpreted language isn't fast; aim for clarity. In addition, seeming efficient isn't very meaningful; either analyze the algorithm or benchmark, otherwise it's speculation.
Do not know how efficient this is, but this is how I would do it:
import re
test_data = [
'1h2m3s',
'1m2s',
'1s',
'3s1h2m',
]
HMS_REGEX = re.compile('^(\d+)h(\d+)m(\d+)s$')
MS_REGEX = re.compile('^(\d+)m(\d+)s$')
S_REGEX = re.compile('^(\d+)s$')
def total_seconds(hms_string):
found = HMS_REGEX.match(hms_string)
if found:
x = found.group(1)
return 3600 * int(found.group(1)) + \
60 * int(found.group(2)) + \
int(found.group(3))
found = MS_REGEX.match(hms_string)
if found:
return 60 * int(found.group(1)) + int(found.group(2))
found = S_REGEX.match(hms_string)
if found:
return int(found.group(1))
raise ValueError('Could not convert ' + hms_string)
for datum in test_data:
try:
print(total_seconds(datum))
except ValueError as exc:
print(exc)
or going to a single match and riffing on TigerhawkT3's one liner, but retaining the error checking of non-matching strings:
HMS_REGEX = re.compile('^(\d+)h(\d+)m(\d+)s$|^(\d+)m(\d+)s$|^(\d+)s$')
def total_seconds(hms_string):
found = HMS_REGEX.match(hms_string)
if found:
return sum(
int(x or 0) * 60 ** i for i, x in enumerate(
(y for y in reversed(found.groups()) if y is not None))
raise ValueError('Could not convert ' + hms_string)
My fellow pythonistas, please stop using regular expression for everything. Regular Expression is not needed for such simple tasks. Python is considered a slow language not because the GIL or the interpreter, because such mis-usage.
In [1]: import re
...: def hms(s):
...: l = list(map(int, re.split('[hms]', s)[:-1]))
...: if len(l) == 3:
...: return l[0]*3600 + l[1]*60 + l[2]
...: elif len(l) == 2:
...: return l[0]*60 + l[1]
...: else:
...: return l[0]
In [2]: %timeit hms("6h7m8s")
5.62 µs ± 722 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [6]: def ehms(s):
...: bases=dict(h=3600, m=60, s=1)
...: secs = 0
...: num = 0
...: for c in s:
...: if c.isdigit():
...: num = num * 10 + int(c)
...: else:
...: secs += bases[c] * num
...: num = 0
...: return secs
In [7]: %timeit ehms("6h7m8s")
2.07 µs ± 70.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [8]: %timeit hms("8s")
2.35 µs ± 124 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [9]: %timeit ehms("8s")
1.06 µs ± 118 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [10]: bases=dict(h=3600, m=60, s=1)
In [15]: a = ord('a')
In [16]: def eehms(s):
...: secs = 0
...: num = 0
...: for c in s:
...: if c.isdigit():
...: num = num * 10 + ord(c) - a
...: else:
...: secs += bases[c] * num
...: num = 0
...: return secs
In [17]: %timeit eehms("6h7m8s")
1.45 µs ± 30 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
see, almost 4 times as fast.
There's a library python-dateutil - pip install python-dateutil, it takes a string and returns a datetime.datetime.
It can parse values as 5h 30m, 0.5h 30m, 0.5h - with spaces or without.
from datetime import datetime
from dateutil import parser
time = '5h15m50s'
midnight_plus_time = parser.parse(time)
midnight: datetime = datetime.combine(datetime.today(), datetime.min.time())
timedelta = midnight_plus_time - midnight
print(timedelta.seconds) # 18950
It can't parse more than 24h at once though.

Selecting close matches from one array based on another reference array

I have an array A and a reference array B. Size of A is at least as big as B. e.g.
A = [2,100,300,793,1300,1500,1810,2400]
B = [4,305,789,1234,1890]
B is in fact the position of peaks in a signal at a specified time, and A contains position of peaks at a later time. But some of the elements in A are actually not the peaks I want (might be due to noise, etc), and I want to find the 'real' one in A based on B. The 'real' elements in A should be close to those in B, and in the example given above, the 'real' ones in A should be A'=[2,300,793,1300,1810]. It should be obvious in this example that 100,1500,2400 are not the ones we want as they are quite far off from any of the elements in B. How can I code this in the most efficient/accurate way in python/matlab?
Approach #1: With NumPy broadcasting, we can look for absolute element-wise subtractions between the input arrays and use an appropriate threshold to filter out unwanted elements from A. It seems for the given sample inputs, a threshold of 90 works.
Thus, we would have an implementation, like so -
thresh = 90
Aout = A[(np.abs(A[:,None] - B) < thresh).any(1)]
Sample run -
In [69]: A
Out[69]: array([ 2, 100, 300, 793, 1300, 1500, 1810, 2400])
In [70]: B
Out[70]: array([ 4, 305, 789, 1234, 1890])
In [71]: A[(np.abs(A[:,None] - B) < 90).any(1)]
Out[71]: array([ 2, 300, 793, 1300, 1810])
Approach #2: Based on this post, here's a memory efficient approach using np.searchsorted, which could be crucial for large arrays -
def searchsorted_filter(a, b, thresh):
choices = np.sort(b) # if b is already sorted, skip it
lidx = np.searchsorted(choices, a, 'left').clip(max=choices.size-1)
ridx = (np.searchsorted(choices, a, 'right')-1).clip(min=0)
cl = np.take(choices,lidx) # Or choices[lidx]
cr = np.take(choices,ridx) # Or choices[ridx]
return a[np.minimum(np.abs(a - cl), np.abs(a - cr)) < thresh]
Sample run -
In [95]: searchsorted_filter(A,B, thresh = 90)
Out[95]: array([ 2, 300, 793, 1300, 1810])
Runtime test
In [104]: A = np.sort(np.random.randint(0,100000,(1000)))
In [105]: B = np.sort(np.random.randint(0,100000,(400)))
In [106]: out1 = A[(np.abs(A[:,None] - B) < 10).any(1)]
In [107]: out2 = searchsorted_filter(A,B, thresh = 10)
In [108]: np.allclose(out1, out2) # Verify results
Out[108]: True
In [109]: %timeit A[(np.abs(A[:,None] - B) < 10).any(1)]
100 loops, best of 3: 2.74 ms per loop
In [110]: %timeit searchsorted_filter(A,B, thresh = 10)
10000 loops, best of 3: 85.3 µs per loop
Jan 2018 Update with further performance boost
We can avoid the second usage of np.searchsorted(..., 'right') by making use of the indices obtained from np.searchsorted(..., 'left') and also the absolute computations, like so -
def searchsorted_filter_v2(a, b, thresh):
N = len(b)
choices = np.sort(b) # if b is already sorted, skip it
l = np.searchsorted(choices, a, 'left')
l_invalid_mask = l==N
l[l_invalid_mask] = N-1
left_offset = choices[l]-a
left_offset[l_invalid_mask] *= -1
r = (l - (left_offset!=0))
r_invalid_mask = r<0
r[r_invalid_mask] = 0
r += l_invalid_mask
right_offset = a-choices[r]
right_offset[r_invalid_mask] *= -1
out = a[(left_offset < thresh) | (right_offset < thresh)]
return out
Updated timings to test the further speedup -
In [388]: np.random.seed(0)
...: A = np.random.randint(0,1000000,(100000))
...: B = np.unique(np.random.randint(0,1000000,(40000)))
...: np.random.shuffle(B)
...: thresh = 10
...:
...: out1 = searchsorted_filter(A, B, thresh)
...: out2 = searchsorted_filter_v2(A, B, thresh)
...: print np.allclose(out1, out2)
True
In [389]: %timeit searchsorted_filter(A, B, thresh)
10 loops, best of 3: 24.2 ms per loop
In [390]: %timeit searchsorted_filter_v2(A, B, thresh)
100 loops, best of 3: 13.9 ms per loop
Digging deeper -
In [396]: a = A; b = B
In [397]: N = len(b)
...:
...: choices = np.sort(b) # if b is already sorted, skip it
...:
...: l = np.searchsorted(choices, a, 'left')
In [398]: %timeit np.sort(B)
100 loops, best of 3: 2 ms per loop
In [399]: %timeit np.searchsorted(choices, a, 'left')
100 loops, best of 3: 10.3 ms per loop
Seems like searchsorted and sort are taking almost all of the runtime and they seem essential to this method. So, doesn't seem like it could be improved any further staying with this sort-based approach.
You could find the distance of each point in A from each value in B using bsxfun and then find the index of the point in A which is closest to each value in B using min.
[dists, ind] = min(abs(bsxfun(#minus, A, B.')), [], 2)
If you're on R2016b, bsxfun can be removed thanks to automatic broadcasting
[dists, ind] = min(abs(A - B.'), [], 2);
If you suspect that some values in B are not real peaks, then you can set a threshold value and remove any distances that were greater than this value.
threshold = 90;
ind = ind(dists < threshold);
Then we can use ind to index into A
output = A(ind);
You can use MATLAB interp1 function that exactly does what you want.
option nearest is used to find nearest points and there is no need to specify a threshold.
out = interp1(A, A, B, 'nearest', 'extrap');
comparing with other method:
A = sort(randi([0,1000000],1,10000));
B = sort(randi([0,1000000],1,4000));
disp('---interp1----------------')
tic
out = interp1(A, A, B, 'nearest', 'extrap');
toc
disp('---subtraction with threshold------')
%numpy version is the same
tic
[dists, ind] = min(abs(bsxfun(#minus, A, B.')), [], 2);
toc
Result:
---interp1----------------
Elapsed time is 0.00778699 seconds.
---subtraction with threshold------
Elapsed time is 0.445485 seconds.
interp1 can be used for inputs larger than 10000 and 4000 but in subtrction method out of memory error occured.

How to turn a 1D radial profile into a 2D array in python

I have a list that models a phenomenon that is a function of radius. I want to convert this to a 2D array. I wrote some code that does exactly what I want, but since it uses nested for loops, it is quite slow.
l = len(profile1D)/2
critDim = int((l**2 /2.)**(1/2.))
profile2D = np.empty([critDim, critDim])
for x in xrange(0, critDim):
for y in xrange(0,critDim):
r = ((x**2 + y**2)**(1/2.))
profile2D[x,y] = profile1D[int(l+r)]
Is there a more efficient way to do the same thing by avoiding these loops?
Here's a vectorized approach using broadcasting -
a = np.arange(critDim)**2
r2D = np.sqrt(a[:,None] + a)
out = profile1D[(l+r2D).astype(int)]
If there are many repeated indices generated by l+r2D, we can use np.take for some further performance boost, like so -
out = np.take(profile1D,(l+r2D).astype(int))
Runtime test
Function definitions -
def org_app(profile1D,l,critDim):
profile2D = np.empty([critDim, critDim])
for x in xrange(0, critDim):
for y in xrange(0,critDim):
r = ((x**2 + y**2)**(1/2.))
profile2D[x,y] = profile1D[int(l+r)]
return profile2D
def vect_app1(profile1D,l,critDim):
a = np.arange(critDim)**2
r2D = np.sqrt(a[:,None] + a)
out = profile1D[(l+r2D).astype(int)]
return out
def vect_app2(profile1D,l,critDim):
a = np.arange(critDim)**2
r2D = np.sqrt(a[:,None] + a)
out = np.take(profile1D,(l+r2D).astype(int))
return out
Timings and verification -
In [25]: # Setup input array and params
...: profile1D = np.random.randint(0,9,(1000))
...: l = len(profile1D)/2
...: critDim = int((l**2 /2.)**(1/2.))
...:
In [26]: np.allclose(org_app(profile1D,l,critDim),vect_app1(profile1D,l,critDim))
Out[26]: True
In [27]: np.allclose(org_app(profile1D,l,critDim),vect_app2(profile1D,l,critDim))
Out[27]: True
In [28]: %timeit org_app(profile1D,l,critDim)
10 loops, best of 3: 154 ms per loop
In [29]: %timeit vect_app1(profile1D,l,critDim)
1000 loops, best of 3: 1.69 ms per loop
In [30]: %timeit vect_app2(profile1D,l,critDim)
1000 loops, best of 3: 1.68 ms per loop
In [31]: # Setup input array and params
...: profile1D = np.random.randint(0,9,(5000))
...: l = len(profile1D)/2
...: critDim = int((l**2 /2.)**(1/2.))
...:
In [32]: %timeit org_app(profile1D,l,critDim)
1 loops, best of 3: 3.76 s per loop
In [33]: %timeit vect_app1(profile1D,l,critDim)
10 loops, best of 3: 59.8 ms per loop
In [34]: %timeit vect_app2(profile1D,l,critDim)
10 loops, best of 3: 59.5 ms per loop

Faster loop operating on two values of an array

Consider the following function:
def dostuff(n, f):
array = numpy.arange(0, n)
for i in range(1, n): # Line 1
array[i] = f(array[i-1], array[i]) # Line 2
return numpy.sum(array)
How can I rewrite the Line 1/Line 2 to make the loop faster in python 3 (without using cython)?
I encourage you to check this question on SO generalized cumulative functions in NumPy/SciPy? , since you want a generalized cumulative function .
also check scipy documentation for the function frompyfunc Here
func = np.frompyfunc(f , 2 , 1)
def dostuff(n,f):
final_array = func.accumulate(np.arange(0,n), dtype=np.object).astype(np.int)
return np.sum(final_array)
Example
In [86]:
def f(num1 , num2):
return num1 + num2
In [87]:
func = np.frompyfunc(f , 2 , 1)
In [88]:
def dostuff(n,f):
final_array = func.accumulate(np.arange(0,n), dtype=np.object).astype(np.int)
return np.sum(final_array)
In [108]:
dostuff(15,f)
Out[108]:
560
In [109]:
dostuff(10,f)
Out[109]:
165
Benchmarks
def dostuff1(n, f):
array = np.arange(0, n)
for i in range(1, n): # Line 1
array[i] = f(array[i-1], array[i]) # Line 2
return np.sum(array)
def dostuff2(n,f):
final_array = func.accumulate(np.arange(0,n), dtype=np.object).astype(np.int)
return np.sum(final_array)
In [126]:
%timeit dostuff1(100,f)
10000 loops, best of 3: 40.6 µs per loop
In [127]:
%timeit dostuff2(100,f)
The slowest run took 4.98 times longer than the fastest. This could mean that an intermediate result is being cached
10000 loops, best of 3: 23.8 µs per loop

Find indices of common values in two arrays

I'm using Python 2.7.
I have two arrays, A and B.
To find the indices of the elements in A that are present in B, I can do
A_inds = np.in1d(A,B)
I also want to get the indices of the elements in B that are present in A, i.e. the indices in B of the same overlapping elements I found using the above code.
Currently I am running the same line again as follows:
B_inds = np.in1d(B,A)
but this extra calculation seems like it should be unnecessary. Is there a more computationally efficient way of obtaining both A_inds and B_inds?
I am open to using either list or array methods.
np.unique and np.searchsorted could be used together to solve it -
def unq_searchsorted(A,B):
# Get unique elements of A and B and the indices based on the uniqueness
unqA,idx1 = np.unique(A,return_inverse=True)
unqB,idx2 = np.unique(B,return_inverse=True)
# Create mask equivalent to np.in1d(A,B) and np.in1d(B,A) for unique elements
mask1 = (np.searchsorted(unqB,unqA,'right') - np.searchsorted(unqB,unqA,'left'))==1
mask2 = (np.searchsorted(unqA,unqB,'right') - np.searchsorted(unqA,unqB,'left'))==1
# Map back to all non-unique indices to get equivalent of np.in1d(A,B),
# np.in1d(B,A) results for non-unique elements
return mask1[idx1],mask2[idx2]
Runtime tests and verify results -
In [233]: def org_app(A,B):
...: return np.in1d(A,B), np.in1d(B,A)
...:
In [234]: A = np.random.randint(0,10000,(10000))
...: B = np.random.randint(0,10000,(10000))
...:
In [235]: np.allclose(org_app(A,B)[0],unq_searchsorted(A,B)[0])
Out[235]: True
In [236]: np.allclose(org_app(A,B)[1],unq_searchsorted(A,B)[1])
Out[236]: True
In [237]: %timeit org_app(A,B)
100 loops, best of 3: 7.69 ms per loop
In [238]: %timeit unq_searchsorted(A,B)
100 loops, best of 3: 5.56 ms per loop
If the two input arrays are already sorted and unique, the performance boost would be substantial. Thus, the solution function would simplify to -
def unq_searchsorted_v1(A,B):
out1 = (np.searchsorted(B,A,'right') - np.searchsorted(B,A,'left'))==1
out2 = (np.searchsorted(A,B,'right') - np.searchsorted(A,B,'left'))==1
return out1,out2
Subsequent runtime tests -
In [275]: A = np.random.randint(0,100000,(20000))
...: B = np.random.randint(0,100000,(20000))
...: A = np.unique(A)
...: B = np.unique(B)
...:
In [276]: np.allclose(org_app(A,B)[0],unq_searchsorted_v1(A,B)[0])
Out[276]: True
In [277]: np.allclose(org_app(A,B)[1],unq_searchsorted_v1(A,B)[1])
Out[277]: True
In [278]: %timeit org_app(A,B)
100 loops, best of 3: 8.83 ms per loop
In [279]: %timeit unq_searchsorted_v1(A,B)
100 loops, best of 3: 4.94 ms per loop
A simple multiprocessing implementation will get you a little more speed:
import time
import numpy as np
from multiprocessing import Process, Queue
a = np.random.randint(0, 20, 1000000)
b = np.random.randint(0, 20, 1000000)
def original(a, b, q):
q.put( np.in1d(a, b) )
if __name__ == '__main__':
t0 = time.time()
q = Queue()
q2 = Queue()
p = Process(target=original, args=(a, b, q,))
p2 = Process(target=original, args=(b, a, q2))
p.start()
p2.start()
res = q.get()
res2 = q2.get()
print time.time() - t0
>>> 0.21398806572
Divakar's unq_searchsorted(A,B) method took 0.271834135056 seconds on my machine.

Categories

Resources