Python scipy overload _stats function for beta distribution - python

I need to overload the _stats function for my beta distribution. This is my current code:
from scipy.stats import beta
import scipy.stats as st
class CustomBeta(st.rv_continuous):
def _stats(self, a, b):
# will add own code here
mn = a * 1.0 / (a + b)
var = (a * b * 1.0) / (a + b + 1.0) / (a + b) ** 2.0
g1 = 2.0 * (b - a) * sqrt((1.0 + a + b) / (a * b)) / (2 + a + b)
g2 = 6.0 * (a ** 3 + a ** 2 * (1 - 2 * b) + b ** 2 * (1 + b) - 2 * a * b * (2 + b))
g2 /= a * b * (a + b + 2) * (a + b + 3)
return mn, var, g1, g2
dist = beta(4, 6)
print dist.rvs() # works fine
dist = CustomBeta(4, 6)
print dist.rvs() # crashes
Getting _rvs() from my custom object gives me a long stacktrace and an error
RuntimeError: maximum recursion depth exceeded

This has nothing to do with overloading _stats. The same behavior is caused simply by
class CustomBeta(st.rv_continuous):
pass
dist = CustomBeta(4, 6)
print(dist.rvs()) # crashes
The documentation of rv_continuous states that
New random variables can be defined by subclassing the rv_continuous class and re-defining at least the _pdf or the _cdf method.
You will need to provide at least one of these methods to compute the probability density function (pdf) or the cumulative probability density function(cdf).
Furthermore,
[rv_continuous] cannot be used directly as a distribution.
It is used as follows:
class CustomBetaGen(st.rv_continuous):
...
CustomBeta = CustomBetaGen(name='CustomBeta')
dist = CustomBeta(4, 6)
Finally, rvs.() does not seem to work properly for the beta distribution if you do not provide a _rvs method.
Putting everything together and stealing the appropriate methods from the beta distribution:
from scipy.stats import beta
import scipy.stats as st
import numpy as np
class CustomBetaGen(st.rv_continuous):
def _cdf(self, x, a, b):
return beta.cdf(x, a, b)
def _pdf(self, x, a, b):
return beta.pdf(x, a, b)
def _rvs(self, a, b):
return beta.rvs(a, b)
def _stats(self, a, b):
# will add own code here
mn = a * 1.0 / (a + b)
var = (a * b * 1.0) / (a + b + 1.0) / (a + b) ** 2.0
g1 = 2.0 * (b - a) * np.sqrt((1.0 + a + b) / (a * b)) / (2 + a + b)
g2 = 6.0 * (a ** 3 + a ** 2 * (1 - 2 * b) + b ** 2 * (1 + b) - 2 * a * b * (2 + b))
g2 /= a * b * (a + b + 2) * (a + b + 3)
return mn, var, g1, g2
CustomBeta = CustomBetaGen(name='CustomBeta')
dist = beta(4, 6)
print(dist.rvs()) # works fine
print(dist.stats()) # (array(0.4), array(0.021818181818181816))
dist = CustomBeta(4, 6)
print(dist.rvs()) # works fine
print(dist.stats()) # (array(0.4), array(0.021818181818181816))

Related

python algorithm for solving systems of equations without

I need algorithm, that solve systems like this:
Example 1:
5x - 6y = 0 <--- line
(10- x)**2 + (10- y)**2 = 2 <--- circle
Solution:
find y:
(10- 6/5*y)**2 + (10- y)**2 = 2
100 - 24y + 1.44y**2 + 100 - 20y + y**2 = 2
2.44y**2 - 44y + 198 = 0
D = b**2 - 4ac
D = 44*44 - 4*2.44*198 = 3.52
y[1,2] = (-b+-sqrt(D))/2a
y[1,2] = (44+-1.8761)/4.88 = 9.4008 , 8.6319
find x:
(10- x)**2 + (10- 5/6y)**2 = 2
100 - 20x + y**2 + 100 - 5/6*20y + (5/6*y)**2 = 2
1.6944x**2 - 36.6666x + 198 = 0
D = b**2 - 4ac
D = 36.6666*36.6666 - 4*1.6944*198 = 2.4747
x[1,2] = (-b+-sqrt(D))/2a
x[1,2] = (36.6666+-1.5731)/3.3888 = 11.2841 , 10.3557
my skills are not enough to write this algorithm please help
and another algorithm that solve this system.
5x - 6y = 0 <--- line
|-10 - x| + |-10 - y| = 2 <--- rhomb
as answer here i need two x and two y.
You can use sympy, Python's symbolic math library.
Solutions for fixed parameters
from sympy import symbols, Eq, solve
x, y = symbols('x y', real=True)
eq1 = Eq(5 * x - 6 * y, 0)
eq2 = Eq((10 - x) ** 2 + (10 - y) ** 2, 2)
solutions = solve([eq1, eq2], (x, y))
print(solutions)
for x, y in solutions:
print(f'{x.evalf()}, {y.evalf()}')
This leads to two solutions:
[(660/61 - 6*sqrt(22)/61, 550/61 - 5*sqrt(22)/61),
(6*sqrt(22)/61 + 660/61, 5*sqrt(22)/61 + 550/61)]
10.3583197613288, 8.63193313444070
11.2810245009662, 9.40085375080520
The other equations work very similar:
eq1 = Eq(5 * x - 6 * y, 0)
eq2 = Eq(Abs(-10 - x) + Abs(-10 - y), 2)
leading to :
[(-12, -10),
(-108/11, -90/11)]
-12.0000000000000, -10.0000000000000
-9.81818181818182, -8.18181818181818
Dealing with arbitrary parameters
For your new question, how to deal with arbitrary parameters, sympy can help to find formulas, at least when the structure of the equations is fixed:
from sympy import symbols, Eq, Abs, solve
x, y = symbols('x y', real=True)
a, b, xc, yc = symbols('a b xc yc', real=True)
r = symbols('r', real=True, positive=True)
eq1 = Eq(a * x - b * y, 0)
eq2 = Eq((xc - x) ** 2 + (yc - y) ** 2, r ** 2)
solutions = solve([eq1, eq2], (x, y))
Studying the generated solutions, some complicated expressions are repeated. Those could be substituted by auxiliary variables. Note that this step isn't necessary, but helps a lot in making sense of the solutions. Also note that substitution in sympy often only considers quite literal replacements. That's by the introduction of c below is done in two steps:
c, d = symbols('c d', real=True)
for xi, yi in solutions:
print(xi.subs(a ** 2 + b ** 2, c)
.subs(r ** 2 * a ** 2 + r ** 2 * b ** 2, c * r ** 2)
.subs(-a ** 2 * xc ** 2 + 2 * a * b * xc * yc - b ** 2 * yc ** 2 + c * r ** 2, d)
.simplify())
print(yi.subs(a ** 2 + b ** 2, c)
.subs(r ** 2 * a ** 2 + r ** 2 * b ** 2, c * r ** 2)
.subs(-a ** 2 * xc ** 2 + 2 * a * b * xc * yc - b ** 2 * yc ** 2 + c * r ** 2, d)
.simplify())
Which gives the formulas:
x1 = b*(a*yc + b*xc - sqrt(d))/c
y1 = a*(a*yc + b*xc - sqrt(d))/c
x2 = b*(a*yc + b*xc + sqrt(d))/c
y2 = a*(a*yc + b*xc + sqrt(d))/c
These formulas then can be converted to regular Python code without the need of sympy. That code will only work for an arbitrary line and circle. Some tests need to be added around, such as c == 0 (meaning the line is just a dot), and d either be zero, positive or negative.
The stand-alone code could look like:
import math
def give_solutions(a, b, xc, yc, r):
# intersection between a line a*x-b*y==0 and a circle with center (xc, yc) and radius r
c =a ** 2 + b ** 2
if c == 0:
print("degenerate line equation given")
else:
d = -a**2 * xc**2 + 2*a*b * xc*yc - b**2 * yc**2 + c * r**2
if d < 0:
print("no solutions")
elif d == 0:
print("1 solution:")
print(f" x1 = {b*(a*yc + b*xc)/c}")
print(f" y1 = {a*(a*yc + b*xc)/c}")
else: # d > 0
print("2 solutions:")
sqrt_d = math.sqrt(d)
print(f" x1 = {b*(a*yc + b*xc - sqrt_d)/c}")
print(f" y1 = {a*(a*yc + b*xc - sqrt_d)/c}")
print(f" x2 = {b*(a*yc + b*xc + sqrt_d)/c}")
print(f" y2 = {a*(a*yc + b*xc + sqrt_d)/c}")
For the rhombus, sympy doesn't seem to be able to work well with abs in the equations. However, you could use equations for the 4 sides, and test whether the obtained intersections are inside the range of the rhombus. (The four sides would be obtained by replacing abs with either + or -, giving four combinations.)
Working this out further, is far beyond the reach of a typical stackoverflow answer, especially as you seem to ask for an even more general solution.

TypeError: f_p() argument after * must be an iterable, not numpy.float64

I'm coding an algorithm that takes the inverse of a Laplace transform, iterates it until it converges and live-plots the graph. I've dealt with a bunch of errors so far and solved them all but on this one, I'm stumped. Here's the function f_p() that I'm getting the error from. For context, it contains 6 Laplace transforms that I painstakingly derived by hand to eliminate the imaginary component:
def f_p(u, omega, m):
a = gamma
b = (omega + k * math.pi) / u
if m == 1:
f = a * (1 / (a ** 2 + (b + 1) ** 2) + 1 / (a ** 2 + (b - 1) ** 2))
return f * math.cos(omega)
elif m == 2:
f = a / (a ** 2 + b ** 2)
return f * math.cos(omega)
elif m == 3:
f = math.e ** (-a / (a ** 2 + b ** 2)) * (a ** 2 + b ** 2) ** (1 / 4) * math.cos(
(math.atan2(b, a) + 2 * n * math.pi) / 2) * math.cos(b / (a ** 2 + b ** 2)) / (
math.sqrt(a ** 2 + b ** 2) * (math.cos((math.atan2(b, a) + 2 * n * math.pi) / 2) ** 2 + math.sin(
(math.atan2(b, a) + 2 * n * math.pi) / 2)))
return f * math.cos(omega)
elif m == 4:
a = math.e
f = -(a * math.log(a ** 2 + b ** 2) + a ** 2) / (a ** 2 + b ** 2)
return f * math.cos(omega)
elif m == 5:
f = a * (math.e ** (-a) * math.cos(b) - math.e ** (-2 * a) * math.cos(2 * b)) / (a ** 2 + b ** 2)
return f * math.cos(omega)
elif m == 6:
f = math.sqrt((a ** 2 - b ** 2 + 1) ** 2 + (2 * a * b) ** 2) * math.cos(
(math.atan2(2 * a * b, a ** 2 - b ** 2 + 1) + 2 * n * math.pi) / 2) / (
((a ** 2 - b ** 2 + 1) ** 2 + (2 * a * b) ** 2) * (
math.cos((math.atan2(2 * a * b, a ** 2 - b ** 2 + 1) + 2 * n * math.pi) / 2) ** 2 + math.sin(
(math.atan2(2 * a * b, a ** 2 - b ** 2 + 1) + 2 * n * math.pi) / 2) ** 2))
return f * math.cos(omega)
else:
return 0
This function feeds into another function f_u(), which contains the algorithm itself, which integrates over omega, removing it as a variable. The remaining variable is u, which I need to iterate until the function converges. Here's the execution of the algorithm:
u = np.linspace(0.000001, 100, 100000)
if __name__ == '__main__':
pool = Pool(processes=4)
for m in range(1, 7):
if m == 4:
gamma = math.e
else:
gamma = 10
pool.map(f_u, u)
Maybe it could be a syntax problem? I don't know. Any help would be much appreciated.

Python3: How do I make this equation readable?

So for this internship I am doing, I need to use the integral of (x^(9/2))/((1-x)^2) as part of an equation I am graphing. However, the variable that I am graphing along the x axis appears in both limits of integration. Since I am a complete and total novice at python, my code is atrocious, but I ended up copy+pasting the indefinite integral twice, plugging in the limits of integration, and subtracting. How can I make the code better?
import numpy as np
import matplotlib.pyplot as plt
from scipy import integrate
x = np.arange(0,2.5,0.00001)
zs = 8
zr = 6
rbub = 5
sig = 2.5
XHI = 0.5
sigma = 10**-sig
L = 10**-3
zb = zs - (((1 + zs)/8)**(3/2)) * (0.0275) * (rbub/10)
a = (1+zr)/((1+zs)*(x+1))
b = (1+zb)/((1+zs)*(x+1))
def f(x):
ans = 0.000140092
ans = ans * ((1+zs)**(3/2))
ans = ans * ((x+1)**(3/2))
ans = ans * XHI
return ans * ((9/2)*(np.log(1-np.sqrt(b)) - np.log(np.sqrt(b)+1)) + (1/35 * (1/(b-1)) * (10*(b**(9/2)) + 18*(b**(7/2)) + 42*(b**(5/2)) + 210*(b**(3/2)) - 315*(b**(1/2))) - ((9/2)*(np.log(1-np.sqrt(a)) - np.log(np.sqrt(a)+1)) + (1/35 * (1/(a-1)) * (10*(a**(9/2)) + 18*(a**(7/2)) + 42*(a**(5/2)) + 210*(a**(3/2)) - 315*(a**(1/2)))))))
Here is one take. Of course, I have no idea what this is doing. You should be in a much better position to add comments / sensible variable names, as others have pointed out. Still, here is what you could do.
First, run a code formatter to make the code more human-friendly.
def f(x):
ans = 0.000140092
ans = ans * ((1 + zs) ** (3 / 2))
ans = ans * ((x + 1) ** (3 / 2))
ans = ans * XHI
return ans * (
(9 / 2) * (np.log(1 - np.sqrt(b)) - np.log(np.sqrt(b) + 1))
+ (
1
/ 35
* (1 / (b - 1))
* (
10 * (b ** (9 / 2))
+ 18 * (b ** (7 / 2))
+ 42 * (b ** (5 / 2))
+ 210 * (b ** (3 / 2))
- 315 * (b ** (1 / 2))
)
- (
(9 / 2) * (np.log(1 - np.sqrt(a)) - np.log(np.sqrt(a) + 1))
+ (
1
/ 35
* (1 / (a - 1))
* (
10 * (a ** (9 / 2))
+ 18 * (a ** (7 / 2))
+ 42 * (a ** (5 / 2))
+ 210 * (a ** (3 / 2))
- 315 * (a ** (1 / 2))
)
)
)
)
)
Right away you see some symemtry. This chunk
10 * (b ** (9 / 2))
+ 18 * (b ** (7 / 2))
+ 42 * (b ** (5 / 2))
+ 210 * (b ** (3 / 2))
- 315 * (b ** (1 / 2))
is a dot product of some weights and a b raised to a vector of powers. If b were scalar, we could write it as np.dot(weights, np.sqrt(b) ** powers). Maybe we would even score some optimization points from using integral powers.
Putting thigs together, we can get something like this:
weights = np.array([10, 18, 42, 210, -315])
powers = np.array([9, 7, 5, 3, 1])
def log_term(x):
return (9 / 2) * (np.log(1 - np.sqrt(x)) - np.log(np.sqrt(x) + 1))
def dot_term(x):
return (1 / 35) * 1 / (x - 1) * np.dot(np.sqrt(x)[..., None] ** powers, weights)
def integrate(x):
return log_term(x) + dot_term(x)
factor1 = integrate(b) - integrate(a)
factor2 = 0.000140092 * ((1 + zs) ** (3 / 2)) * XHI
factor = factor1 * factor2
def f(x):
return factor * ((x + 1) ** (3 / 2))
With better variable names and comments this could almost be readable.
Side comment. Both in your original code and in this version, you define x in the body of your script. You also define several variables as a function of x, such as a and b.
Python scoping rules mean that these variables will not change if you pass a different x to f. If you want all of your variables to change with x, you should move the definitions inside the function.
Using good variable names will help a lot for who gonna read the code or even for you, and comments will help too.
For the rest, it is a equation, there is no good way of putting it.

python triangle angles returns null

A function that returns the value of triangle angles in degrees from length of the sides, the results are integers sorted from lowest to highest
from math import acos, degrees
def angles(a, b, c):
alpha = beta = gamma = 0
if a !=0 and b != 0 and c != 0:
if a + b < c or a + c < b or b + c < a:
return [alpha, beta, gamma]
else:
alpha = int(degrees(acos(( c*c + b*b - a*a ) / (2 * c * b))))
beta = int(degrees(acos(( a*a + c*c - b*b ) / (2 * a * c))))
gamma = int(degrees(acos(( a*a + b*b - c*c ) / (2 * a * b))))
return list.sort([alpha, beta, gamma])
why do I get None as a result?
list.sort sorts the list in-place and returns None. You could use sorted instead:
return sorted([alpha, beta, gamma])
Try this code:
from math import acos, degrees
def angles(a, b, c):
alpha = beta = gamma = 0
if a !=0 and b != 0 and c != 0:
if a + b < c or a + c < b or b + c < a:
return [alpha, beta, gamma]
else:
alpha = int(degrees(acos(( c*c + b*b - a*a ) / (2 * c * b))))
beta = int(degrees(acos(( a*a + c*c - b*b ) / (2 * a * c))))
gamma = int(degrees(acos(( a*a + b*b - c*c ) / (2 * a * b))))
lst = [alpha, beta, gamma]
lst.sort()
return lst
print angles(4,4,4)

Intersections between Geodesics (shortest distance paths) on the surface of a sphere

I've searched far and wide but have yet to find a suitable answer to this problem. Given two lines on a sphere, each defined by their start and end points, determine whether or not and where they intersect. I've found this site (http://mathforum.org/library/drmath/view/62205.html) which runs through a good algorithm for the intersections of two great circles, although I'm stuck on determining whether the given point lies along the finite section of the great circles.
I've found several sites which claim they've implemented this, Including some questions here and on stackexchange, but they always seem to reduce back to the intersections of two great circles.
The python class I'm writing is as follows and seems to almost work:
class Geodesic(Boundary):
def _SecondaryInitialization(self):
self.theta_1 = self.point1.theta
self.theta_2 = self.point2.theta
self.phi_1 = self.point1.phi
self.phi_2 = self.point2.phi
sines = math.sin(self.phi_1) * math.sin(self.phi_2)
cosines = math.cos(self.phi_1) * math.cos(self.phi_2)
self.d = math.acos(sines - cosines * math.cos(self.theta_2 - self.theta_1))
self.x_1 = math.cos(self.theta_1) * math.cos(self.phi_1)
self.x_2 = math.cos(self.theta_2) * math.cos(self.phi_2)
self.y_1 = math.sin(self.theta_1) * math.cos(self.phi_1)
self.y_2 = math.sin(self.theta_2) * math.cos(self.phi_2)
self.z_1 = math.sin(self.phi_1)
self.z_2 = math.sin(self.phi_2)
self.theta_wraps = (self.theta_2 - self.theta_1 > PI)
self.phi_wraps = ((self.phi_1 < self.GetParametrizedCoords(0.01).phi and
self.phi_2 < self.GetParametrizedCoords(0.99).phi) or (
self.phi_1 > self.GetParametrizedCoords(0.01).phi) and
self.phi_2 > self.GetParametrizedCoords(0.99))
def Intersects(self, boundary):
A = self.y_1 * self.z_2 - self.z_1 * self.y_2
B = self.z_1 * self.x_2 - self.x_1 * self.z_2
C = self.x_1 * self.y_2 - self.y_1 * self.x_2
D = boundary.y_1 * boundary.z_2 - boundary.z_1 * boundary.y_2
E = boundary.z_1 * boundary.x_2 - boundary.x_1 * boundary.z_2
F = boundary.x_1 * boundary.y_2 - boundary.y_1 * boundary.x_2
try:
z = 1 / math.sqrt(((B * F - C * E) ** 2 / (A * E - B * D) ** 2)
+ ((A * F - C * D) ** 2 / (B * D - A * E) ** 2) + 1)
except ZeroDivisionError:
return self._DealWithZeroZ(A, B, C, D, E, F, boundary)
x = ((B * F - C * E) / (A * E - B * D)) * z
y = ((A * F - C * D) / (B * D - A * E)) * z
theta = math.atan2(y, x)
phi = math.atan2(z, math.sqrt(x ** 2 + y ** 2))
if self._Contains(theta, phi):
return point.SPoint(theta, phi)
theta = (theta + 2* PI) % (2 * PI) - PI
phi = -phi
if self._Contains(theta, phi):
return spoint.SPoint(theta, phi)
return None
def _Contains(self, theta, phi):
contains_theta = False
contains_phi = False
if self.theta_wraps:
contains_theta = theta > self.theta_2 or theta < self.theta_1
else:
contains_theta = theta > self.theta_1 and theta < self.theta_2
phi_wrap_param = self._PhiWrapParam()
if phi_wrap_param <= 1.0 and phi_wrap_param >= 0.0:
extreme_phi = self.GetParametrizedCoords(phi_wrap_param).phi
if extreme_phi < self.phi_1:
contains_phi = (phi < max(self.phi_1, self.phi_2) and
phi > extreme_phi)
else:
contains_phi = (phi > min(self.phi_1, self.phi_2) and
phi < extreme_phi)
else:
contains_phi = (phi > min(self.phi_1, self.phi_2) and
phi < max(self.phi_1, self.phi_2))
return contains_phi and contains_theta
def _PhiWrapParam(self):
a = math.sin(self.d)
b = math.cos(self.d)
c = math.sin(self.phi_2) / math.sin(self.phi_1)
param = math.atan2(c - b, a) / self.d
return param
def _DealWithZeroZ(self, A, B, C, D, E, F, boundary):
if (A - D) is 0:
y = 0
x = 1
elif (E - B) is 0:
y = 1
x = 0
else:
y = 1 / math.sqrt(((E - B) / (A - D)) ** 2 + 1)
x = ((E - B) / (A - D)) * y
theta = (math.atan2(y, x) + PI) % (2 * PI) - PI
return point.SPoint(theta, 0)
def GetParametrizedCoords(self, param_value):
A = math.sin((1 - param_value) * self.d) / math.sin(self.d)
B = math.sin(param_value * self.d) / math.sin(self.d)
x = A * math.cos(self.phi_1) * math.cos(self.theta_1) + (
B * math.cos(self.phi_2) * math.cos(self.theta_2))
y = A * math.cos(self.phi_1) * math.sin(self.theta_1) + (
B * math.cos(self.phi_2) * math.sin(self.theta_2))
z = A * math.sin(self.phi_1) + B * math.sin(self.phi_2)
new_phi = math.atan2(z, math.sqrt(x**2 + y**2))
new_theta = math.atan2(y, x)
return point.SPoint(new_theta, new_phi)
EDIT: I forgot to specify that if two curves are determined to intersect, I then need to have the point of intersection.
A simpler approach is to express the problem in terms of geometric primitive operations like the dot product, the cross product, and the triple product. The sign of the determinant of u, v, and w tells you which side of the plane spanned by v and w contains u. This enables us to detect when two points are on opposite sites of a plane. That's equivalent to testing whether a great circle segment crosses another great circle. Performing this test twice tells us whether two great circle segments cross each other.
The implementation requires no trigonometric functions, no division, no comparisons with pi, and no special behavior around the poles!
class Vector:
def __init__(self, x, y, z):
self.x = x
self.y = y
self.z = z
def dot(v1, v2):
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z
def cross(v1, v2):
return Vector(v1.y * v2.z - v1.z * v2.y,
v1.z * v2.x - v1.x * v2.z,
v1.x * v2.y - v1.y * v2.x)
def det(v1, v2, v3):
return dot(v1, cross(v2, v3))
class Pair:
def __init__(self, v1, v2):
self.v1 = v1
self.v2 = v2
# Returns True if the great circle segment determined by s
# straddles the great circle determined by l
def straddles(s, l):
return det(s.v1, l.v1, l.v2) * det(s.v2, l.v1, l.v2) < 0
# Returns True if the great circle segments determined by a and b
# cross each other
def intersects(a, b):
return straddles(a, b) and straddles(b, a)
# Test. Note that we don't need to normalize the vectors.
print(intersects(Pair(Vector(1, 0, 1), Vector(-1, 0, 1)),
Pair(Vector(0, 1, 1), Vector(0, -1, 1))))
If you want to initialize unit vectors in terms of angles theta and phi, you can do that, but I recommend immediately converting to Cartesian (x, y, z) coordinates to perform all subsequent calculations.
Intersection using plane trig can be calculated using the below code in UBasic.
5 'interx.ub adapted from code at
6 'https://rosettacode.org
7 '/wiki/Find_the_intersection_of_two_linesSinclair_ZX81_BASIC
8 'In U Basic by yuji kida https://en.wikipedia.org/wiki/UBASIC
10 XA=48.7815144526:'669595.708
20 YA=-117.2847245001:'2495736.332
30 XB=48.7815093807:'669533.412
40 YB=-117.2901673467:'2494425.458
50 XC=48.7824947147:'669595.708
60 YC=-117.28751374:'2495736.332
70 XD=48.77996737:'669331.214
80 YD=-117.2922957:'2494260.804
90 print "THE TWO LINES ARE:"
100 print "YAB=";YA-XA*((YB-YA)/(XB-XA));"+X*";((YB-YA)/(XB-XA))
110 print "YCD=";YC-XC*((YD-YC)/(XD-XC));"+X*";((YD-YC)/(XD-XC))
120 X=((YC-XC*((YD-YC)/(XD-XC)))-(YA-XA*((YB-YA)/(XB-XA))))/(((YB-YA)/(XB-XA))-((YD-YC)/(XD-XC)))
130 print "Lat = ";X
140 Y=YA-XA*((YB-YA)/(XB-XA))+X*((YB-YA)/(XB-XA))
150 print "Lon = ";Y
160 'print "YCD=";YC-XC*((YD-YC)/(XD-XC))+X*((YD-YC)/(XD-XC))

Categories

Resources