Related
Problem statement
I had the following problem:
I have samples that ran independent tests. In my dataframe, tests of sample with the same "test name" are also independent. So the couple (test,sample) is independent and unique.
data are collected at non regular sampling rates, so we're speaking about unequaly spaced indices. This "time series" index is called unreg_idx in the example. For the sake of simplicity, it is a float between 0 & 1.
I want to figure out what the value at a specific index, e.g. for unreg_idx=0.5. If the value is missing, I just want a linear interpolation that depends on the index. If extrapolating because the value is at an extremum in the sorted unreg_idx of the group (test,sample), it can leave NaN.
Note the following from pandas documentation:
Please note that only method='linear' is supported for
DataFrame/Series with a MultiIndex.
’linear’: Ignore the index and treat the values as equally spaced.
This is the only method supported on MultiIndexes.
The only solution I found is long, complex and slow. I am wondering if I am missing out on something, or on the contrary something is missing from the pandas library. I believe this is a typical issue in scientific and engineering fields to have independent tests on various samples with non regular indices.
What I tried
sample data set preparation
This part is just for making an example
import pandas as pd
import numpy as np
tests = (f'T{i}' for i in range(20))
samples = (chr(i) for i in range(97,120))
idx = pd.MultiIndex.from_product((tests,samples),names=('tests','samples'))
idx
dfs=list()
for ids in idx:
group_idx = pd.MultiIndex.from_product(((ids[0],),(ids[1],),tuple(np.random.random_sample(size=(90,))))).sort_values()
dfs.append(pd.DataFrame(1000*np.random.random_sample(size=(90,)),index=group_idx))
df = pd.concat(dfs)
df = df.rename_axis(index=('test','sample','nonreg_idx')).rename({0:'value'},axis=1)
The (bad) solution
add_missing = df.index.droplevel('nonreg_idx').unique().to_frame().reset_index(drop=True)
add_missing['nonreg_idx'] = .5
add_missing = pd.MultiIndex.from_frame(add_missing)
added_missing = df.reindex(add_missing)
df_full = pd.concat([added_missing.loc[~added_missing.index.isin(df.index)], df])
df_full.sort_index(inplace=True)
def interp_fnc(group):
try:
return group.reset_index(['test','sample']).interpolate(method='slinear').set_index(['test','sample'], append=True).reorder_levels(['test','sample','value']).sort_index()
except:
return group
grouped = df_full.groupby(level=['test','sample'])
df_filled = grouped.apply(
interp_fnc
)
Here, the wanted values are in df_filled. So I can do df_filled.loc[(slice(None), slice(None), .5),'value'] to get what I need for each sample/test.
I would have expected to be able to do the same within 1 or maximum 2 lines of code. I have 14 here. apply is quite a slow method. I can't even use numba.
Question
Can someone propose a better solution?
If you think there is no better alternative, please comment and I'll open an issue...
I wrote some code to perform interpolation based on two criteria, the amount of insurance and the deductible amount %. I was struggling to do the interpolation all at once, so had split the filtering.The table hf contains the known data which I am using to base my interpolation results on.Table df contains the new data which needs the developed factors interpolated based on hf.
Right now my work around is first filtering each table based on the ded_amount percentage and then performing the interpolation into an empty data frame and appending after each loop.
I feel like this is inefficient, and there is a better way to perform this, looking to hear some feedback on some improvements I can make. Thanks
Test data provided below.
import pandas as pd
from scipy import interpolate
known_data={'AOI':[80000,100000,150000,200000,300000,80000,100000,150000,200000,300000],'Ded_amount':['2%','2%','2%','2%','2%','3%','3%','3%','3%','3%'],'factor':[0.797,0.774,0.739,0.733,0.719,0.745,0.737,0.715,0.711,0.709]}
new_data={'AOI':[85000,120000,130000,250000,310000,85000,120000,130000,250000,310000],'Ded_amount':['2%','2%','2%','2%','2%','3%','3%','3%','3%','3%']}
hf=pd.DataFrame(known_data)
df=pd.DataFrame(new_data)
deduct_fact=pd.DataFrame()
for deduct in hf['Ded_amount'].unique():
deduct_table=hf[hf['Ded_amount']==deduct]
aoi_table=df[df['Ded_amount']==deduct]
x=deduct_table['AOI']
y=deduct_table['factor']
f=interpolate.interp1d(x,y,fill_value="extrapolate")
xnew=aoi_table[['AOI']]
ynew=f(xnew)
append_frame=aoi_table
append_frame['Factor']=ynew
deduct_fact=deduct_fact.append(append_frame)
Yep, there is a way to do this more efficiently, without having to make a bunch of intermediate dataframes and appending them. have a look at this code:
from scipy import interpolate
known_data={'AOI':[80000,100000,150000,200000,300000,80000,100000,150000,200000,300000],'Ded_amount':['2%','2%','2%','2%','2%','3%','3%','3%','3%','3%'],'factor':[0.797,0.774,0.739,0.733,0.719,0.745,0.737,0.715,0.711,0.709]}
new_data={'AOI':[85000,120000,130000,250000,310000,85000,120000,130000,250000,310000],'Ded_amount':['2%','2%','2%','2%','2%','3%','3%','3%','3%','3%']}
hf=pd.DataFrame(known_data)
df=pd.DataFrame(new_data)
# Create this column now
df['Factor'] = None
# I like specifying this explicitly; easier to debug
deduction_amounts = list(hf.Ded_amount.unique())
for deduction_amount in deduction_amounts:
# You can index a dataframe and call a column in one line
x, y = hf[hf['Ded_amount']==deduction_amount]['AOI'], hf[hf['Ded_amount']==deduction_amount]['factor']
f = interpolate.interp1d(x, y, fill_value="extrapolate")
# This is the most important bit. Lambda function on the dataframe
df['Factor'] = df.apply(lambda x: f(x['AOI']) if x['Ded_amount']==deduction_amount else x['Factor'], axis=1)
The way the lambda function works is:
It goes row by row through the column 'Factor' and gives it a value based on conditions on the other columns.
It returns the interpolation of the AOI column of df (this is what you called xnew) if the deduction amount matches, otherwise it just returns the same thing back.
Has anyone had issues with rolling standard deviations not working on only one column in a pandas dataframe?
I have a dataframe with a datetime index and associated financial data. When I run df.rolling().std() (psuedo code, see actual below), I get correct data for all columns except one. That column returns 0's where there should be standard deviation values. I also get the same error when using .rolling_std() and I get an error when trying to run df.rolling().skew(), all the other columns work and this column gives NaN.
What's throwing me off about this error is that the other columns work correctly and for this column, df.rolling().mean() works. In addition, the column has dtype float64, which shouldn't be a problem. I also checked and don't see missing data. I'm using a rolling window of 30 days and if I try to get the last standard deviation value using series[-30:].std() I get a correct result. So it seems like something specifically about the rolling portion isn't working. I played around with the parameters of .rolling() but couldn't get anything to change.
# combine the return, volume and slope data
raw_factor_data = pd.concat([fut_rets, vol_factors, slope_factors], axis=1)
# create new dataframe for each factor type (mean,
# std dev, skew) and combine
mean_vals = raw_factor_data.rolling(window=past, min_periods=past).mean()
mean_vals.columns = [column + '_mean' for column in list(mean_vals)]
std_vals = raw_factor_data.rolling(window=past, min_periods=past).std()
std_vals.columns = [column + '_std' for column in list(std_vals)]
skew_vals = raw_factor_data.rolling(window=past, min_periods=past).skew()
skew_vals.columns = [column + '_skew' for column in list(skew_vals)]
fact_data = pd.concat([mean_vals, std_vals, skew_vals], axis=1)
The first line combines three dataframes together. Then I create separate dataframes with rolling mean, std and skew (past = 30), and then combine those into a single dataframe.
The name of the column I'm having trouble with is 'TY1_slope'. So I've run some code as follows to see where there is an error.
print raw_factor_data['TY1_slope'][-30:].std()
print raw_factor_data['TY1_slope'][-30:].mean()
print raw_factor_data['TY1_slope'].rolling(window=30, min_periods=30).std()
print raw_factor_data['TY1_slope'].rolling(window=30, min_periods=30).mean()
The first two lines of code output a correct standard deviation and mean (.08 and .14). However, the third line of code produces zeroes but the fourth line produces accurate mean values (the final values in those series are 0.0 and .14).
If anyone can help with how to look at the .rolling source code that would be helpful too. I'm new to doing that and tried the following, but just got a few lines that didn't seem very helpful.
import inspect
import pandas as pd
print inspect.getsourcelines(pd.rolling_std)
Quoting JohnE's comment since it worked (although still not sure the root cause of the issue). JohnE, feel free to change to an answer and I'll upvote.
shot in the dark, but you could try rolling(30).apply( lambda x: np.std(x,ddof=1) ) in case it's some weird syntax bug with rolling + std – JohnE
Ok so I have a dataframe object that's indexed as follows:
index, rev, metric1 (more metrics.....)
exp1, 92365, 0.018987
exp2, 92365, -0.070901
exp3, 92365, 0.150140
exp1, 87654, 0.003008
exp2, 87654, -0.065196
exp3, 87654, -0.174096
For each of these metrics I want to create individual stacked barplots comparing them based on their rev.
here's what I've tried:
df = df[['rev', 'metric1']]
df = df.groupby("rev")
df.plot(kind = 'bar')
This results in 2 individual bar graphs of the metric. Ideally I would have these two merged and stacked (right now stacked=true does nothing). Any help would be much appreciated.
This would give me my ideal result, however I don't think reorganizing to fit this is the best way to achieve my goal as I have many metrics and many revisions.
index, metric1(rev87654), metric1(rev92365)
exp1, 0.018987, 0.003008
exp2, -0.070901, -0.065196
exp3, 0.150140, -0.174096
This is my goal. (made by hand)
http://i.stack.imgur.com/5GRqB.png
following from this matplotlib gallery example:
http://matplotlib.org/examples/api/barchart_demo.html
there they get multiple to plot by calling bar once for each set.
You could access these values in pandas with indexing operations as follows:
fig, ax = subplots(figsize=(16.2,10),dpi=300)
Y = Tire2[Tire2.SL==Tire2.SL.unique()[0]].SA.values[0:13]
X = linspace(0,size(Y),size(Y))
ax.bar(X,Y,width=.4)
Y = Tire2[Tire2.SL==Tire2.SL.unique()[2]].SA.values[0:13]
X = linspace(0,size(Y),size(Y))+.5
ax.bar(X,Y,width=.4,color='r')
working from the inside out:
get all of the unique values of 'SL' in one of the cols (rev in your case)
Get a Boolean vector of all rows where 'SL' equals the first (or nth) unique value
Index Tire by that Boolean vector (this will pull out only those rows where the vector is True
access the values of SA or a metric in yourcase. (took only the `[0:13]' values because i was testing this on a huge data set)
bar plot those values
if your experiments are consistently in order in the frame(as shown), that's that. Otherwise you might need to run a little sorting to get your Y values in the right order. .sort(column name) should take care of that. In my code, i'd slip it in between ...[0]] and.SA...
In general, this kind of operation can really help you out in wrangling big frames. .between is useful. And you can always add, multiply etc. the Boolean vectors to construct more complex logic.
I'm not sure how to get the plot you want automatically without doing exactly the reorganization you specify at the end. The answer by user3823992 gives you more detailed control of the plots, but if you want them more automatic here is some temporary reorganization that should work using the indexing similarly but also concatenating back into a DataFrame that will do the plot for you.
import numpy as np
import pandas as pd
exp = ['exp1','exp2','exp3']*2
rev = [1,1,1,2,2,2]
met1 = np.linspace(-0.5,1,6)
met2 = np.linspace(1.0,5.0,6)
met3 = np.linspace(-1,1,6)
df = pd.DataFrame({'rev':rev, 'met1':met1, 'met2':met2, 'met3':met3}, index=exp)
for met in df.columns:
if met != 'rev':
merged = df[df['rev'] == df.rev.unique()[0]][met]
merged.name = merged.name+'rev'+str(df.rev.unique()[0])
for rev in df.rev.unique()[1:]:
tmp = df[df['rev'] == rev][met]
tmp.name = tmp.name+'rev'+str(rev)
merged = pd.concat([merged, tmp], axis=1)
merged.plot(kind='bar')
This should give you three plots, one for each of my fake metrics.
EDIT : Or something like this might do also
df['exp'] = df.index
pt = pd.pivot_table(df, values='met1', rows=['exp'], cols=['rev'])
pt.plot(kind='bar')
Thanks for reading, I've spent 3-4 hours searching for examples to solve this but can't find any that solve.. the ones I did try didn't seem to work with pandas DataFrame object.. any help would be very much appreciated!!:)
Ok this is my problem.
I have a Pandas DataFrame containing 12 columns.
I have 500,000 rows of data.
Most of the columns are useless. The variables/columns I am interested in are called: x,y and profit
Many of the x and y points are the same,
so i'd like to group them into a unique combination then add up all the profit for each unique combination.
Each unique combination is a bin (like a bin used in histograms)
Then I'd like to plot a 2d chart/heatmap etc of x,y for each bin and the colour to be total profit.
e.g.
x,y,profit
7,4,230.0
7,5,162.4
6,8,19.3
7,4,-11.6
7,4,180.2
7,5,15.7
4,3,121.0
7,4,1162.8
Note how values x=7, y=4, there are 3 rows that meet this criteria.. well the total profit should be:
230.0 - 11.6 +1162.8 = 1381.2
So in bin x=7, y = 4, the profit is 1381.2
Note for values x=7, y=5, there are 2 instances.. total profit should be: 162.4 + 15.7 = 178.1
So in bin x=7, y = 5, the profit is 178.1
So finally, I just want to be able to plot: x,y,total_profit_of_bin
e.g. To help illustrate what I'm looking for, I found this on internet, it is similar to what I'd like, (ignore the axis & numbers)
http://2.bp.blogspot.com/-F8q_ZcI-HJg/T4_l7D0C7yI/AAAAAAAAAgE/Bqtx3eIHzRk/s1600/heatmap.jpg
Thank-you so much for taking the time to read:)
If for 'bin' of x where the values are x are equal, and the values of y are equal, then you can use groupby.agg. That would look something like this
import pandas as pd
import numpy as np
df = YourData
AggDF = df.groupby('x').agg({'y' : 'max', 'profit' : 'sum'})
AggDF
That would get you the data I think you want, then you could plot as you see fit. Do you need assistance with that also?
NB this is only going to work in the way you want it to if within each 'bin' i.e. the data grouped according to the values of x, the values of y are equal. I assume this must be the case, as otherwise I don't think it would make much sense to be trying to graph x and y together.