Create a dictionary using key sets - python

I have 2 dictionary:
a = {'a':5, 'b':3, 'c':1}
b = {"ca":10, "sd":4, "aa":2}
What I want to obtain is:
z = {'a':"ca", 'b':"sd", 'c':"aa"}
How can I do this?
Edit:
I want to match the 1st key of a with the 1st key of b, the 2nd of a with the 2nd of b and so on.

In a (now edited into ambiguity) comment you suggested that the ordering you had in mind was by "frequency". Interpreting that as meaning ordering by dictionary value, you could make a new dict from zipping the keys sorted by the corresponding value:
In [14]: dict(zip(sorted(a, key=a.get), sorted(b, key=b.get)))
Out[14]: {'a': 'ca', 'b': 'sd', 'c': 'aa'}
This works because a.get is a method which gives us the values, so when we sort a (iteration of which is over the keys), we get them ordered by increasing value.
In [15]: sorted(a, key=a.get)
Out[15]: ['c', 'b', 'a']
This doesn't specify what to do in case of ties, though. To handle that you could sort the argument to sorted (e.g. sorted(sorted(a),key=a.get))) or use a key function (e.g. sorted(a, key=lambda x: (a[x], x))) so that at least the output is deterministic.

Try this:
a = {'a':5, 'b':3, 'c':1}
b = {"ca":10, "sd":4, "aa":2}
print {a.keys()[i]:b.keys()[i] for i in range(len(a.keys()))}

In that case you need to use OrderedDict to preserve the order. Here is an example:
import collections
import itertools
a = collections.OrderedDict()
b = collections.OrderedDict()
# add the data based on the order that you need
a['a'] = 5
a['b'] = 3
a['c'] = 1
b["ca"] = 10
b["sd"] = 4
b["aa"] = 2
# put them together. I user izip and iterkeys assuming you have a large data set
# also assuming the order in the new dictionary doesn't matter otherwise you have to use OrderedDict again.
z = {i: j for i, j in itertools.izip(a.iterkeys(), b.iterkeys())}
print z
>> {'a': 'ca', 'c': 'aa', 'b': 'sd'}

Related

Moving elements in dictionary python to another index

If i have a dictionary like this for example:
dicta={1:['a','a','a'],2:['b,'b','b'],'N':['n','n','n'],3:['c','c','c']}
and i want the N to be in the last position as i convert this dict later on into a df. Is there a way to shift it down?
Finding the index of the N is fine: index=list(dicta.keys()).index('N')
but then how would you do the (in pseudo code) dicta.position[-1] = dicta[index] bit?
If you're using CPython 3.6+, since dict are insertion-based ordered, you can move an item to the end by popping it and then re-assigning it to the dictionary.
>>> dicta = {1: 'a', 2: 'b', 'N': 'n', 3: 'c'}
>>> dicta['N'] = dicta.pop('N')
>>> dicta
{1: 'a', 2: 'b', 3: 'c', 'N': 'n'}
If you're using lower versions then you're outta luck!
It can also be done with the collections.OrderedDict and its method OrderedDict.move_to_end() with keyword argument last set to True.
When the order of the dictionaty cannot be relied on (Python <3.7) you also should make sure the numbers are sorted. You could take the keys, remove the 'N', sort the remaining keys, and append the 'N' afterwards. Then use this list as explicit column argument to the DataFrame:
In [16]: dicta = {1:['a','a','a'], 2:['b','b','b'],
...: 'N': ['n','n','n'], 3:['c','c','c']}
In [17]: columns = list(dicta.keys())
In [18]: columns.remove('N')
In [19]: columns.sort()
In [20]: columns.append('N')
In [21]: pd.DataFrame(dicta, columns=columns)
Out[21]:
1 2 3 N
0 a b c n
1 a b c n
2 a b c n

Count how many times are items from list 1 in list 2

I have 2 lists:
1. ['a', 'b', 'c']
2. ['a', 'd', 'a', 'b']
And I want dictionary output like this:
{'a': 2, 'b': 1, 'c': 0}
I already made it:
#b = list #1
#words = list #2
c = {}
for i in b:
c.update({i:words.count(i)})
But it is very slow, I need to process like 10MB txt file.
EDIT: Entire code, currently testing so unused imports..
import string
import os
import operator
import time
from collections import Counter
def getbookwords():
a = open("wu.txt", encoding="utf-8")
b = a.read().replace("\n", "").lower()
a.close()
b.translate(string.punctuation)
b = b.split(" ")
return b
def wordlist(words):
a = open("wordlist.txt")
b = a.read().lower()
b = b.split("\n")
a.close()
t = time.time()
#c = dict((i, words.count(i)) for i in b )
c = Counter(words)
result = {k: v for k, v in c.items() if k in set(b)}
print(time.time() - t)
sorted_d = sorted(c.items(), key=operator.itemgetter(1))
return(sorted_d)
print(wordlist(getbookwords()))
Since speed is currently an issue, it might be worth considering not passing through the list for each thing you want to count. The set() function allows you to only use the unique keys in your list words.
An important thing to remember for speed in all cases is the line unique_words = set(b). Without this, an entire pass through your list is being done to create a set from b at every iteration in whichever kind of data structure you happen to use.
c = {k:0 for k in set(words)}
for w in words:
c[w] += 1
unique_words = set(b)
c = {k:counts[k] for k in c if k in unique_words}
Alternatively, defaultdicts can be used to eliminate some of the initialization.
from collections import defaultdict
c = defaultdict(int)
for w in words:
c[w] += 1
unique_words = set(b)
c = {k:counts[k] for k in c if k in unique_words}
For completeness sake, I do like the Counter based solutions in the other answers (like from Reut Sharabani). The code is cleaner, and though I haven't benchmarked it I wouldn't be surprised if a built-in counting class is faster than home-rolled solutions with dictionaries.
from collections import Counter
c = Counter(words)
unique_words = set(b)
c = {k:v for k, v in c.items() if k in unique_words}
Try using collections.Counter and move b to a set, not a list:
from collections import Counter
c = Counter(words)
b = set(b)
result = {k: v for k, v in c.items() if k in b}
Also, if you can read the words lazily and not create an intermediate list that should be faster.
Counter provides the functionality you want (counting items), and filtering the result against a set uses hashing which should be a lot faster.
You can use collection.Counter on a generator that skips ignored keys using a set lookup.
from collections import Counter
keys = ['a', 'b', 'c']
lst = ['a', 'd', 'a', 'b']
unique_keys = set(keys)
count = Counter(x for x in lst if x in unique_keys)
print(count) # Counter({'a': 2, 'b': 1})
# count['c'] == 0
Note that count['c'] is not printed, but is still 0 by default in a Counter.
Here's an example I just coughed up in repl. Assuming you're not counting duplicates in list two. We create a hash table using a dictionary. For each item in the list were matching two, we create a key value pair with the item being the key and we set the value to 0.
Next we iterate through the second list, for each value, we check if the value has been defined already, if it has been, than we increment the value using the key. Else, we ignore.
Least amount of iterations possible. You hit each item in each list only once.
x = [1, 2, 3, 4, 5];
z = [1, 2, 2, 2, 1];
y = {};
for n in x:
y[n] = 0; //Set the value to zero for each item in the list
for n in z:
if(n in y): //If we defined the value in the hash already, increment by one
y[n] += 1;
print(y)
#Makalone, above answers are appreciable. You can also try the below code sample which uses Python's Counter() from collections module.
You can try it at http://rextester.com/OTYG56015.
Python code »
from collections import Counter
list1 = ['a', 'b', 'c']
list2 = ['a', 'd', 'a', 'b']
counter = Counter(list2)
d = {key: counter[key] for key in set(list1)}
print(d)
Output »
{'a': 2, 'c': 0, 'b': 1}

Comparing values in a dictionary and grouping them again in Python [duplicate]

Given a dictionary like so:
my_map = {'a': 1, 'b': 2}
How can one invert this map to get:
inv_map = {1: 'a', 2: 'b'}
Python 3+:
inv_map = {v: k for k, v in my_map.items()}
Python 2:
inv_map = {v: k for k, v in my_map.iteritems()}
Assuming that the values in the dict are unique:
Python 3:
dict((v, k) for k, v in my_map.items())
Python 2:
dict((v, k) for k, v in my_map.iteritems())
If the values in my_map aren't unique:
Python 3:
inv_map = {}
for k, v in my_map.items():
inv_map[v] = inv_map.get(v, []) + [k]
Python 2:
inv_map = {}
for k, v in my_map.iteritems():
inv_map[v] = inv_map.get(v, []) + [k]
To do this while preserving the type of your mapping (assuming that it is a dict or a dict subclass):
def inverse_mapping(f):
return f.__class__(map(reversed, f.items()))
Try this:
inv_map = dict(zip(my_map.values(), my_map.keys()))
(Note that the Python docs on dictionary views explicitly guarantee that .keys() and .values() have their elements in the same order, which allows the approach above to work.)
Alternatively:
inv_map = dict((my_map[k], k) for k in my_map)
or using python 3.0's dict comprehensions
inv_map = {my_map[k] : k for k in my_map}
Another, more functional, way:
my_map = { 'a': 1, 'b':2 }
dict(map(reversed, my_map.items()))
We can also reverse a dictionary with duplicate keys using defaultdict:
from collections import Counter, defaultdict
def invert_dict(d):
d_inv = defaultdict(list)
for k, v in d.items():
d_inv[v].append(k)
return d_inv
text = 'aaa bbb ccc ddd aaa bbb ccc aaa'
c = Counter(text.split()) # Counter({'aaa': 3, 'bbb': 2, 'ccc': 2, 'ddd': 1})
dict(invert_dict(c)) # {1: ['ddd'], 2: ['bbb', 'ccc'], 3: ['aaa']}
See here:
This technique is simpler and faster than an equivalent technique using dict.setdefault().
This expands upon the answer by Robert, applying to when the values in the dict aren't unique.
class ReversibleDict(dict):
# Ref: https://stackoverflow.com/a/13057382/
def reversed(self):
"""
Return a reversed dict, with common values in the original dict
grouped into a list in the returned dict.
Example:
>>> d = ReversibleDict({'a': 3, 'c': 2, 'b': 2, 'e': 3, 'd': 1, 'f': 2})
>>> d.reversed()
{1: ['d'], 2: ['c', 'b', 'f'], 3: ['a', 'e']}
"""
revdict = {}
for k, v in self.items():
revdict.setdefault(v, []).append(k)
return revdict
The implementation is limited in that you cannot use reversed twice and get the original back. It is not symmetric as such. It is tested with Python 2.6. Here is a use case of how I am using to print the resultant dict.
If you'd rather use a set than a list, and there could exist unordered applications for which this makes sense, instead of setdefault(v, []).append(k), use setdefault(v, set()).add(k).
Combination of list and dictionary comprehension. Can handle duplicate keys
{v:[i for i in d.keys() if d[i] == v ] for k,v in d.items()}
A case where the dictionary values is a set. Like:
some_dict = {"1":{"a","b","c"},
"2":{"d","e","f"},
"3":{"g","h","i"}}
The inverse would like:
some_dict = {vi: k for k, v in some_dict.items() for vi in v}
The output is like this:
{'c': '1',
'b': '1',
'a': '1',
'f': '2',
'd': '2',
'e': '2',
'g': '3',
'h': '3',
'i': '3'}
For instance, you have the following dictionary:
my_dict = {'a': 'fire', 'b': 'ice', 'c': 'fire', 'd': 'water'}
And you wanna get it in such an inverted form:
inverted_dict = {'fire': ['a', 'c'], 'ice': ['b'], 'water': ['d']}
First Solution. For inverting key-value pairs in your dictionary use a for-loop approach:
# Use this code to invert dictionaries that have non-unique values
inverted_dict = dict()
for key, value in my_dict.items():
inverted_dict.setdefault(value, list()).append(key)
Second Solution. Use a dictionary comprehension approach for inversion:
# Use this code to invert dictionaries that have unique values
inverted_dict = {value: key for key, value in my_dict.items()}
Third Solution. Use reverting the inversion approach (relies on the second solution):
# Use this code to invert dictionaries that have lists of values
my_dict = {value: key for key in inverted_dict for value in my_map[key]}
Lot of answers but didn't find anything clean in case we are talking about a dictionary with non-unique values.
A solution would be:
from collections import defaultdict
inv_map = defaultdict(list)
for k, v in my_map.items():
inv_map[v].append(k)
Example:
If initial dict my_map = {'c': 1, 'd': 5, 'a': 5, 'b': 10}
then, running the code above will give:
{5: ['a', 'd'], 1: ['c'], 10: ['b']}
I found that this version is more than 10% faster than the accepted version of a dictionary with 10000 keys.
d = {i: str(i) for i in range(10000)}
new_d = dict(zip(d.values(), d.keys()))
In addition to the other functions suggested above, if you like lambdas:
invert = lambda mydict: {v:k for k, v in mydict.items()}
Or, you could do it this way too:
invert = lambda mydict: dict( zip(mydict.values(), mydict.keys()) )
I think the best way to do this is to define a class. Here is an implementation of a "symmetric dictionary":
class SymDict:
def __init__(self):
self.aToB = {}
self.bToA = {}
def assocAB(self, a, b):
# Stores and returns a tuple (a,b) of overwritten bindings
currB = None
if a in self.aToB: currB = self.bToA[a]
currA = None
if b in self.bToA: currA = self.aToB[b]
self.aToB[a] = b
self.bToA[b] = a
return (currA, currB)
def lookupA(self, a):
if a in self.aToB:
return self.aToB[a]
return None
def lookupB(self, b):
if b in self.bToA:
return self.bToA[b]
return None
Deletion and iteration methods are easy enough to implement if they're needed.
This implementation is way more efficient than inverting an entire dictionary (which seems to be the most popular solution on this page). Not to mention, you can add or remove values from your SymDict as much as you want, and your inverse-dictionary will always stay valid -- this isn't true if you simply reverse the entire dictionary once.
If the values aren't unique, and you're a little hardcore:
inv_map = dict(
(v, [k for (k, xx) in filter(lambda (key, value): value == v, my_map.items())])
for v in set(my_map.values())
)
Especially for a large dict, note that this solution is far less efficient than the answer Python reverse / invert a mapping because it loops over items() multiple times.
This handles non-unique values and retains much of the look of the unique case.
inv_map = {v:[k for k in my_map if my_map[k] == v] for v in my_map.itervalues()}
For Python 3.x, replace itervalues with values.
I am aware that this question already has many good answers, but I wanted to share this very neat solution that also takes care of duplicate values:
def dict_reverser(d):
seen = set()
return {v: k for k, v in d.items() if v not in seen or seen.add(v)}
This relies on the fact that set.add always returns None in Python.
Here is another way to do it.
my_map = {'a': 1, 'b': 2}
inv_map= {}
for key in my_map.keys() :
val = my_map[key]
inv_map[val] = key
dict([(value, key) for key, value in d.items()])
Function is symmetric for values of type list; Tuples are coverted to lists when performing reverse_dict(reverse_dict(dictionary))
def reverse_dict(dictionary):
reverse_dict = {}
for key, value in dictionary.iteritems():
if not isinstance(value, (list, tuple)):
value = [value]
for val in value:
reverse_dict[val] = reverse_dict.get(val, [])
reverse_dict[val].append(key)
for key, value in reverse_dict.iteritems():
if len(value) == 1:
reverse_dict[key] = value[0]
return reverse_dict
Since dictionaries require one unique key within the dictionary unlike values, we have to append the reversed values into a list of sort to be included within the new specific keys.
def r_maping(dictionary):
List_z=[]
Map= {}
for z, x in dictionary.iteritems(): #iterate through the keys and values
Map.setdefault(x,List_z).append(z) #Setdefault is the same as dict[key]=default."The method returns the key value available in the dictionary and if given key is not available then it will return provided default value. Afterward, we will append into the default list our new values for the specific key.
return Map
Fast functional solution for non-bijective maps (values not unique):
from itertools import imap, groupby
def fst(s):
return s[0]
def snd(s):
return s[1]
def inverseDict(d):
"""
input d: a -> b
output : b -> set(a)
"""
return {
v : set(imap(fst, kv_iter))
for (v, kv_iter) in groupby(
sorted(d.iteritems(),
key=snd),
key=snd
)
}
In theory this should be faster than adding to the set (or appending to the list) one by one like in the imperative solution.
Unfortunately the values have to be sortable, the sorting is required by groupby.
Try this for python 2.7/3.x
inv_map={};
for i in my_map:
inv_map[my_map[i]]=i
print inv_map
def invertDictionary(d):
myDict = {}
for i in d:
value = d.get(i)
myDict.setdefault(value,[]).append(i)
return myDict
print invertDictionary({'a':1, 'b':2, 'c':3 , 'd' : 1})
This will provide output as : {1: ['a', 'd'], 2: ['b'], 3: ['c']}
A lambda solution for current python 3.x versions:
d1 = dict(alice='apples', bob='bananas')
d2 = dict(map(lambda key: (d1[key], key), d1.keys()))
print(d2)
Result:
{'apples': 'alice', 'bananas': 'bob'}
This solution does not check for duplicates.
Some remarks:
The lambda construct can access d1 from the outer scope, so we only
pass in the current key. It returns a tuple.
The dict() constructor accepts a list of tuples. It
also accepts the result of a map, so we can skip the conversion to a
list.
This solution has no explicit for loop. It also avoids using a list comprehension for those who are bad at math ;-)
Taking up the highly voted answer starting If the values in my_map aren't unique:, I had a problem where not only the values were not unique, but in addition, they were a list, with each item in the list consisting again of a list of three elements: a string value, a number, and another number.
Example:
mymap['key1'] gives you:
[('xyz', 1, 2),
('abc', 5, 4)]
I wanted to switch only the string value with the key, keeping the two number elements at the same place. You simply need another nested for loop then:
inv_map = {}
for k, v in my_map.items():
for x in v:
# with x[1:3] same as x[1], x[2]:
inv_map[x[0]] = inv_map.get(x[0], []) + [k, x[1:3]]
Example:
inv_map['abc'] now gives you:
[('key1', 1, 2),
('key1', 5, 4)]
This works even if you have non-unique values in the original dictionary.
def dict_invert(d):
'''
d: dict
Returns an inverted dictionary
'''
# Your code here
inv_d = {}
for k, v in d.items():
if v not in inv_d.keys():
inv_d[v] = [k]
else:
inv_d[v].append(k)
inv_d[v].sort()
print(f"{inv_d[v]} are the values")
return inv_d
I would do it that way in python 2.
inv_map = {my_map[x] : x for x in my_map}
Not something completely different, just a bit rewritten recipe from Cookbook. It's futhermore optimized by retaining setdefault method, instead of each time getting it through the instance:
def inverse(mapping):
'''
A function to inverse mapping, collecting keys with simillar values
in list. Careful to retain original type and to be fast.
>> d = dict(a=1, b=2, c=1, d=3, e=2, f=1, g=5, h=2)
>> inverse(d)
{1: ['f', 'c', 'a'], 2: ['h', 'b', 'e'], 3: ['d'], 5: ['g']}
'''
res = {}
setdef = res.setdefault
for key, value in mapping.items():
setdef(value, []).append(key)
return res if mapping.__class__==dict else mapping.__class__(res)
Designed to be run under CPython 3.x, for 2.x replace mapping.items() with mapping.iteritems()
On my machine runs a bit faster, than other examples here

Inverting a dictionary when some of the original values are identical

Say I have a dictionary called word_counter_dictionary that counts how many words are in the document in the form {'word' : number}. For example, the word "secondly" appears one time, so the key/value pair would be {'secondly' : 1}. I want to make an inverted list so that the numbers will become keys and the words will become the values for those keys so I can then graph the top 25 most used words. I saw somewhere where the setdefault() function might come in handy, but regardless I cannot use it because so far in the class I am in we have only covered get().
inverted_dictionary = {}
for key in word_counter_dictionary:
new_key = word_counter_dictionary[key]
inverted_dictionary[new_key] = word_counter_dictionary.get(new_key, '') + str(key)
inverted_dictionary
So far, using this method above, it works fine until it reaches another word with the same value. For example, the word "saves" also appears once in the document, so Python will add the new key/value pair just fine. BUT it erases the {1 : 'secondly'} with the new pair so that only {1 : 'saves'} is in the dictionary.
So, bottom line, my goal is to get ALL of the words and their respective number of repetitions in this new dictionary called inverted_dictionary.
A defaultdict is perfect for this
word_counter_dictionary = {'first':1, 'second':2, 'third':3, 'fourth':2}
from collections import defaultdict
d = defaultdict(list)
for key, value in word_counter_dictionary.iteritems():
d[value].append(key)
print(d)
Output:
defaultdict(<type 'list'>, {1: ['first'], 2: ['second', 'fourth'], 3: ['third']})
What you can do is convert the value in a list of words with the same key:
word_counter_dictionary = {'first':1, 'second':2, 'third':3, 'fourth':2}
inverted_dictionary = {}
for key in word_counter_dictionary:
new_key = word_counter_dictionary[key]
if new_key in inverted_dictionary:
inverted_dictionary[new_key].append(str(key))
else:
inverted_dictionary[new_key] = [str(key)]
print inverted_dictionary
>>> {1: ['first'], 2: ['second', 'fourth'], 3: ['third']}
Python dicts do NOT allow repeated keys, so you can't use a simple dictionary to store multiple elements with the same key (1 in your case). For your example, I'd rather have a list as the value of your inverted dictionary, and store in that list the words that share the number of appearances, like:
inverted_dictionary = {}
for key in word_counter_dictionary:
new_key = word_counter_dictionary[key]
if new_key in inverted_dictionary:
inverted_dictionary[new_key].append(key)
else:
inverted_dictionary[new_key] = [key]
In order to get the 25 most repeated words, you should iterate through the (sorted) keys in the inverted_dictionary and store the words:
common_words = []
for key in sorted(inverted_dictionary.keys(), reverse=True):
if len(common_words) < 25:
common_words.extend(inverted_dictionary[key])
else:
break
common_words = common_words[:25] # In case there are more than 25 words
Here's a version that doesn't "invert" the dictionary:
>>> import operator
>>> A = {'a':10, 'b':843, 'c': 39, 'd': 10}
>>> B = sorted(A.iteritems(), key=operator.itemgetter(1), reverse=True)
>>> B
[('b', 843), ('c', 39), ('a', 10), ('d', 10)]
Instead, it creates a list that is sorted, highest to lowest, by value.
To get the top 25, you simply slice it: B[:25].
And here's one way to get the keys and values separated (after putting them into a list of tuples):
>>> [x[0] for x in B]
['b', 'c', 'a', 'd']
>>> [x[1] for x in B]
[843, 39, 10, 10]
or
>>> C, D = zip(*B)
>>> C
('b', 'c', 'a', 'd')
>>> D
(843, 39, 10, 10)
Note that if you only want to extract the keys or the values (and not both) you should have done so earlier. This is just examples of how to handle the tuple list.
For getting the largest elements of some dataset an inverted dictionary might not be the best data structure.
Either put the items in a sorted list (example assumes you want to get to two most frequent words):
word_counter_dictionary = {'first':1, 'second':2, 'third':3, 'fourth':2}
counter_word_list = sorted((count, word) for word, count in word_counter_dictionary.items())
Result:
>>> print(counter_word_list[-2:])
[(2, 'second'), (3, 'third')]
Or use Python's included batteries (heapq.nlargest in this case):
import heapq, operator
print(heapq.nlargest(2, word_counter_dictionary.items(), key=operator.itemgetter(1)))
Result:
[('third', 3), ('second', 2)]

Reverse / invert a dictionary mapping

Given a dictionary like so:
my_map = {'a': 1, 'b': 2}
How can one invert this map to get:
inv_map = {1: 'a', 2: 'b'}
Python 3+:
inv_map = {v: k for k, v in my_map.items()}
Python 2:
inv_map = {v: k for k, v in my_map.iteritems()}
Assuming that the values in the dict are unique:
Python 3:
dict((v, k) for k, v in my_map.items())
Python 2:
dict((v, k) for k, v in my_map.iteritems())
If the values in my_map aren't unique:
Python 3:
inv_map = {}
for k, v in my_map.items():
inv_map[v] = inv_map.get(v, []) + [k]
Python 2:
inv_map = {}
for k, v in my_map.iteritems():
inv_map[v] = inv_map.get(v, []) + [k]
To do this while preserving the type of your mapping (assuming that it is a dict or a dict subclass):
def inverse_mapping(f):
return f.__class__(map(reversed, f.items()))
Try this:
inv_map = dict(zip(my_map.values(), my_map.keys()))
(Note that the Python docs on dictionary views explicitly guarantee that .keys() and .values() have their elements in the same order, which allows the approach above to work.)
Alternatively:
inv_map = dict((my_map[k], k) for k in my_map)
or using python 3.0's dict comprehensions
inv_map = {my_map[k] : k for k in my_map}
Another, more functional, way:
my_map = { 'a': 1, 'b':2 }
dict(map(reversed, my_map.items()))
We can also reverse a dictionary with duplicate keys using defaultdict:
from collections import Counter, defaultdict
def invert_dict(d):
d_inv = defaultdict(list)
for k, v in d.items():
d_inv[v].append(k)
return d_inv
text = 'aaa bbb ccc ddd aaa bbb ccc aaa'
c = Counter(text.split()) # Counter({'aaa': 3, 'bbb': 2, 'ccc': 2, 'ddd': 1})
dict(invert_dict(c)) # {1: ['ddd'], 2: ['bbb', 'ccc'], 3: ['aaa']}
See here:
This technique is simpler and faster than an equivalent technique using dict.setdefault().
This expands upon the answer by Robert, applying to when the values in the dict aren't unique.
class ReversibleDict(dict):
# Ref: https://stackoverflow.com/a/13057382/
def reversed(self):
"""
Return a reversed dict, with common values in the original dict
grouped into a list in the returned dict.
Example:
>>> d = ReversibleDict({'a': 3, 'c': 2, 'b': 2, 'e': 3, 'd': 1, 'f': 2})
>>> d.reversed()
{1: ['d'], 2: ['c', 'b', 'f'], 3: ['a', 'e']}
"""
revdict = {}
for k, v in self.items():
revdict.setdefault(v, []).append(k)
return revdict
The implementation is limited in that you cannot use reversed twice and get the original back. It is not symmetric as such. It is tested with Python 2.6. Here is a use case of how I am using to print the resultant dict.
If you'd rather use a set than a list, and there could exist unordered applications for which this makes sense, instead of setdefault(v, []).append(k), use setdefault(v, set()).add(k).
Combination of list and dictionary comprehension. Can handle duplicate keys
{v:[i for i in d.keys() if d[i] == v ] for k,v in d.items()}
A case where the dictionary values is a set. Like:
some_dict = {"1":{"a","b","c"},
"2":{"d","e","f"},
"3":{"g","h","i"}}
The inverse would like:
some_dict = {vi: k for k, v in some_dict.items() for vi in v}
The output is like this:
{'c': '1',
'b': '1',
'a': '1',
'f': '2',
'd': '2',
'e': '2',
'g': '3',
'h': '3',
'i': '3'}
For instance, you have the following dictionary:
my_dict = {'a': 'fire', 'b': 'ice', 'c': 'fire', 'd': 'water'}
And you wanna get it in such an inverted form:
inverted_dict = {'fire': ['a', 'c'], 'ice': ['b'], 'water': ['d']}
First Solution. For inverting key-value pairs in your dictionary use a for-loop approach:
# Use this code to invert dictionaries that have non-unique values
inverted_dict = dict()
for key, value in my_dict.items():
inverted_dict.setdefault(value, list()).append(key)
Second Solution. Use a dictionary comprehension approach for inversion:
# Use this code to invert dictionaries that have unique values
inverted_dict = {value: key for key, value in my_dict.items()}
Third Solution. Use reverting the inversion approach (relies on the second solution):
# Use this code to invert dictionaries that have lists of values
my_dict = {value: key for key in inverted_dict for value in my_map[key]}
Lot of answers but didn't find anything clean in case we are talking about a dictionary with non-unique values.
A solution would be:
from collections import defaultdict
inv_map = defaultdict(list)
for k, v in my_map.items():
inv_map[v].append(k)
Example:
If initial dict my_map = {'c': 1, 'd': 5, 'a': 5, 'b': 10}
then, running the code above will give:
{5: ['a', 'd'], 1: ['c'], 10: ['b']}
I found that this version is more than 10% faster than the accepted version of a dictionary with 10000 keys.
d = {i: str(i) for i in range(10000)}
new_d = dict(zip(d.values(), d.keys()))
In addition to the other functions suggested above, if you like lambdas:
invert = lambda mydict: {v:k for k, v in mydict.items()}
Or, you could do it this way too:
invert = lambda mydict: dict( zip(mydict.values(), mydict.keys()) )
I think the best way to do this is to define a class. Here is an implementation of a "symmetric dictionary":
class SymDict:
def __init__(self):
self.aToB = {}
self.bToA = {}
def assocAB(self, a, b):
# Stores and returns a tuple (a,b) of overwritten bindings
currB = None
if a in self.aToB: currB = self.bToA[a]
currA = None
if b in self.bToA: currA = self.aToB[b]
self.aToB[a] = b
self.bToA[b] = a
return (currA, currB)
def lookupA(self, a):
if a in self.aToB:
return self.aToB[a]
return None
def lookupB(self, b):
if b in self.bToA:
return self.bToA[b]
return None
Deletion and iteration methods are easy enough to implement if they're needed.
This implementation is way more efficient than inverting an entire dictionary (which seems to be the most popular solution on this page). Not to mention, you can add or remove values from your SymDict as much as you want, and your inverse-dictionary will always stay valid -- this isn't true if you simply reverse the entire dictionary once.
If the values aren't unique, and you're a little hardcore:
inv_map = dict(
(v, [k for (k, xx) in filter(lambda (key, value): value == v, my_map.items())])
for v in set(my_map.values())
)
Especially for a large dict, note that this solution is far less efficient than the answer Python reverse / invert a mapping because it loops over items() multiple times.
This handles non-unique values and retains much of the look of the unique case.
inv_map = {v:[k for k in my_map if my_map[k] == v] for v in my_map.itervalues()}
For Python 3.x, replace itervalues with values.
I am aware that this question already has many good answers, but I wanted to share this very neat solution that also takes care of duplicate values:
def dict_reverser(d):
seen = set()
return {v: k for k, v in d.items() if v not in seen or seen.add(v)}
This relies on the fact that set.add always returns None in Python.
Here is another way to do it.
my_map = {'a': 1, 'b': 2}
inv_map= {}
for key in my_map.keys() :
val = my_map[key]
inv_map[val] = key
dict([(value, key) for key, value in d.items()])
Function is symmetric for values of type list; Tuples are coverted to lists when performing reverse_dict(reverse_dict(dictionary))
def reverse_dict(dictionary):
reverse_dict = {}
for key, value in dictionary.iteritems():
if not isinstance(value, (list, tuple)):
value = [value]
for val in value:
reverse_dict[val] = reverse_dict.get(val, [])
reverse_dict[val].append(key)
for key, value in reverse_dict.iteritems():
if len(value) == 1:
reverse_dict[key] = value[0]
return reverse_dict
Since dictionaries require one unique key within the dictionary unlike values, we have to append the reversed values into a list of sort to be included within the new specific keys.
def r_maping(dictionary):
List_z=[]
Map= {}
for z, x in dictionary.iteritems(): #iterate through the keys and values
Map.setdefault(x,List_z).append(z) #Setdefault is the same as dict[key]=default."The method returns the key value available in the dictionary and if given key is not available then it will return provided default value. Afterward, we will append into the default list our new values for the specific key.
return Map
Fast functional solution for non-bijective maps (values not unique):
from itertools import imap, groupby
def fst(s):
return s[0]
def snd(s):
return s[1]
def inverseDict(d):
"""
input d: a -> b
output : b -> set(a)
"""
return {
v : set(imap(fst, kv_iter))
for (v, kv_iter) in groupby(
sorted(d.iteritems(),
key=snd),
key=snd
)
}
In theory this should be faster than adding to the set (or appending to the list) one by one like in the imperative solution.
Unfortunately the values have to be sortable, the sorting is required by groupby.
Try this for python 2.7/3.x
inv_map={};
for i in my_map:
inv_map[my_map[i]]=i
print inv_map
def invertDictionary(d):
myDict = {}
for i in d:
value = d.get(i)
myDict.setdefault(value,[]).append(i)
return myDict
print invertDictionary({'a':1, 'b':2, 'c':3 , 'd' : 1})
This will provide output as : {1: ['a', 'd'], 2: ['b'], 3: ['c']}
A lambda solution for current python 3.x versions:
d1 = dict(alice='apples', bob='bananas')
d2 = dict(map(lambda key: (d1[key], key), d1.keys()))
print(d2)
Result:
{'apples': 'alice', 'bananas': 'bob'}
This solution does not check for duplicates.
Some remarks:
The lambda construct can access d1 from the outer scope, so we only
pass in the current key. It returns a tuple.
The dict() constructor accepts a list of tuples. It
also accepts the result of a map, so we can skip the conversion to a
list.
This solution has no explicit for loop. It also avoids using a list comprehension for those who are bad at math ;-)
Taking up the highly voted answer starting If the values in my_map aren't unique:, I had a problem where not only the values were not unique, but in addition, they were a list, with each item in the list consisting again of a list of three elements: a string value, a number, and another number.
Example:
mymap['key1'] gives you:
[('xyz', 1, 2),
('abc', 5, 4)]
I wanted to switch only the string value with the key, keeping the two number elements at the same place. You simply need another nested for loop then:
inv_map = {}
for k, v in my_map.items():
for x in v:
# with x[1:3] same as x[1], x[2]:
inv_map[x[0]] = inv_map.get(x[0], []) + [k, x[1:3]]
Example:
inv_map['abc'] now gives you:
[('key1', 1, 2),
('key1', 5, 4)]
This works even if you have non-unique values in the original dictionary.
def dict_invert(d):
'''
d: dict
Returns an inverted dictionary
'''
# Your code here
inv_d = {}
for k, v in d.items():
if v not in inv_d.keys():
inv_d[v] = [k]
else:
inv_d[v].append(k)
inv_d[v].sort()
print(f"{inv_d[v]} are the values")
return inv_d
I would do it that way in python 2.
inv_map = {my_map[x] : x for x in my_map}
Not something completely different, just a bit rewritten recipe from Cookbook. It's futhermore optimized by retaining setdefault method, instead of each time getting it through the instance:
def inverse(mapping):
'''
A function to inverse mapping, collecting keys with simillar values
in list. Careful to retain original type and to be fast.
>> d = dict(a=1, b=2, c=1, d=3, e=2, f=1, g=5, h=2)
>> inverse(d)
{1: ['f', 'c', 'a'], 2: ['h', 'b', 'e'], 3: ['d'], 5: ['g']}
'''
res = {}
setdef = res.setdefault
for key, value in mapping.items():
setdef(value, []).append(key)
return res if mapping.__class__==dict else mapping.__class__(res)
Designed to be run under CPython 3.x, for 2.x replace mapping.items() with mapping.iteritems()
On my machine runs a bit faster, than other examples here

Categories

Resources