I've written some Python code to emulate MATLABs xcorr function for cross correlations:
def xcorr(x, y, scale='none'):
# Pad shorter array if signals are different lengths
if x.size > y.size:
pad_amount = x.size - y.size
y = np.append(y, np.repeat(0, pad_amount))
elif y.size > x.size:
pad_amount = y.size - x.size
x = np.append(x, np.repeat(0, pad_amount))
corr = np.correlate(x, y, mode='full') # scale = 'none'
lags = np.arange(-(x.size - 1), x.size)
if scale == 'biased':
corr = corr / x.size
elif scale == 'unbiased':
corr /= (x.size - abs(lags))
elif scale == 'coeff':
corr /= np.sqrt(np.dot(x, x) * np.dot(y, y))
I get the same values when comparing the values of the different scale types to MATLABs implementation, so this seems correct
One additional thing I'd like to add is the ability to normalize the cross correlation values so peaks don't exceed 1.0, and valleys dont drop below -1.0
coeff is already normalized so I'm not worried about that. However, the other scale types can exceed the -1/1 bounds.
I've tried a couple of things:
Adding corr /= max(corr) to the end of my function to normalize corr regardless of which scale option is chosen. This keeps the upper bound in check, but I'm not sure if this correctly handles the lower bound
Adding corr /= np.sqrt(np.dot(x, x) * np.dot(y, y)) to the end of my function for all options, but this seems to squash my values far away from 1.0
Whats the correct way to normalize none, biased, and unbiased scale options? MATLAB doesnt have the functionality for this, and Google doesnt turn up any results for normalization of biased/unbiased cross correlation estimates.
I’m confused. none implies no normalization, and biased and unbiased imply the appropriate normalization so samples of the output correspond to the appropriate estimators. It doesn’t make sense to as “what normalization should I apply to a biased estimate of correlation so that it’s bounded to [-1, 1]” because then the estimate wouldn’t be a biased estimate any more, it’d be something else. The only estimator (among this bunch) that has this property is the correlation coefficient (the signal-processing-variant of Pearson’s coefficient), which is what coeff corresponds to.
This implementation is fine as it is. Anyone seeking numbers in the [-1, 1] interval knows they should ask for the correlation coefficients via np.corrcoef().
The following should do what you seek, though I am not sure if it is statistically valid:
corr /= max(np.abs(corr))
Related
I want to implement ifft2 using DFT matrix. The following code works for fft2.
import numpy as np
def DFT_matrix(N):
i, j = np.meshgrid(np.arange(N), np.arange(N))
omega = np.exp( - 2 * np.pi * 1j / N )
W = np.power( omega, i * j ) # Normalization by sqrt(N) Not included
return W
sizeM=40
sizeN=20
np.random.seed(0)
rA=np.random.rand(sizeM,sizeN)
rAfft=np.fft.fft2(rA)
dftMtxM=DFT_matrix(sizeM)
dftMtxN=DFT_matrix(sizeN)
# Matrix multiply the 3 matrices together
mA = dftMtxM # rA # dftMtxN
print(np.allclose(np.abs(mA), np.abs(rAfft)))
print(np.allclose(np.angle(mA), np.angle(rAfft)))
To get to ifft2 I assumd I need to change only the dft matrix to it's transpose, so expected the following to work, but I got false for the last two print any suggesetion please?
import numpy as np
def DFT_matrix(N):
i, j = np.meshgrid(np.arange(N), np.arange(N))
omega = np.exp( - 2 * np.pi * 1j / N )
W = np.power( omega, i * j ) # Normalization by sqrt(N) Not included
return W
sizeM=40
sizeN=20
np.random.seed(0)
rA=np.random.rand(sizeM,sizeN)
rAfft=np.fft.ifft2(rA)
dftMtxM=np.conj(DFT_matrix(sizeM))
dftMtxN=np.conj(DFT_matrix(sizeN))
# Matrix multiply the 3 matrices together
mA = dftMtxM # rA # dftMtxN
print(np.allclose(np.abs(mA), np.abs(rAfft)))
print(np.allclose(np.angle(mA), np.angle(rAfft)))
I am going to be building on some things from my answer to your previous question. Please note that I will try to distinguish between the terms Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT). Remember that DFT is the transform while FFT is only an efficient algorithm for performing it. People, including myself, however very commonly refer to the DFT as FFT since it is practically the only algorithm used for computing the DFT
The problem here is again the normalization of the data. It's interesting that this is such a fundamental and confusing part of any DFT operations yet I couldn't find a good explanation on the internet. I will try to provide a summary at the end about DFT normalization however I think the best way to understand this is by working through some examples yourself.
Why the comparisons fail?
It's important to note, that even though both of the allclose tests seemingly fail, they are actually not a very good method of comparing two complex number arrays.
Difference between two angles
In particular, the problem is when it comes to comparing angles. If you just take the difference of two close angles that are on the border between -pi and pi, you can get a value that is around 2*pi. The allclose just takes differences between values and checks that they are bellow some threshold. Thus in our cases, it can report a false negative.
A better way to compare angles is something along the lines of this function:
def angle_difference(a, b):
diff = a - b
diff[diff < -np.pi] += 2*np.pi
diff[diff > np.pi] -= 2*np.pi
return diff
You can then take the maximum absolute value and check that it's bellow some threshold:
np.max(np.abs(angle_difference(np.angle(mA), np.angle(rAfft)))) < threshold
In the case of your example, the maximum difference was 3.072209153742733e-12.
So the angles are actually correct!
Magnitude scaling
We can get an idea of the issue is when we look at the magnitude ratio between the matrix iDFT and the library iFFT.
print(np.abs(mA)/np.abs(rAfft))
We find that all the values in mA are 800, which means that our absolute values are 800 times larger than those computed by the library. Suspiciously, 800 = 40 * 20, the dimensions of our data! I think you can see where I am going with this.
Confusing DFT normalization
We spot some indications why this is the case when we have a look at the FFT formulas as taken from the Numpy FFT documentation:
You will notice that while the forward transform doesn't normalize by anything. The reverse transform divides the output by 1/N. These are the 1D FFTs but the exact same thing applies in the 2D case, the inverse transform multiplies everything by 1/(N*M)
So in our example, if we update this line, we will get the magnitudes to agree:
mA = dftMtxM # rA/(sizeM * sizeN) # dftMtxN
A side note on comparing the outputs, an alternative way to compare complex numbers is to compare the real and imaginary components:
print(np.allclose(mA.real, rAfft.real))
print(np.allclose(mA.imag, rAfft.imag))
And we find that now indeed both methods agree.
Why all this normalization mess and which should I use?
The fundamental property of the DFT transform must satisfy is that iDFT(DFT(x)) = x. When you work through the math, you find that the product of the two coefficients before the sum has to be 1/N.
There is also something called the Parseval's theorem. In simple terms, it states that the energy in the signals is just the sum of square absolutes in both the time domain and frequency domain. For the FFT this boils down to this relationship:
Here is the function for computing the energy of a signal:
def energy(x):
return np.sum(np.abs(x)**2)
You are basically faced with a choice about the 1/N factor:
You can put the 1/N before the DFT sum. This makes senses as then the k=0 DC component will be equal to the average of the time domain values. However you will have to multiply the energy in frequency domain by N in order to match it with time domain frequency.
N = len(x)
X = np.fft.fft(x)/N # Compute the FFT scaled by `1/N`
# Energy related by `N`
np.allclose(energy(x), energy(X) * N) == True
# Perform some processing...
Y = X * H
y = np.fft.ifft(Y*N) # Compute the iFFT, remember to cancel out the built in `1/N` of ifft
You put the 1/N before the iDFT. This is, slightly counterintuitively, what most implementations, including Numpy do. I could not find a definitive consensus on the reasoning behind this, but I think it has something to do with the implementation efficiency. (If anyone has a better explanation for this, please leave it in the comments) As shown in the equations earlier, the energy in the frequency domain has to be divided by N to match the time domain energy.
N = len(x)
X = np.fft.fft(x) # Compute the FFT without scaling
# Energy, related by 1/N
np.allclose(energy(x), energy(X) / N) == True
# Perform some processing...
Y = X * H
y = np.fft.ifft(Y) # Compute the iFFT with the build in `1/N`
You can split the 1/N by placing 1/sqrt(N) before each of the transforms making them perfectly symmetric. In Numpy, you can provide the parameter norm="ortho" to the fft functions which will make them use the 1/sqrt(N) normalization instead: np.fft.fft(x, norm="ortho") The nice property here is that the energy now matches in both domains.
X = np.fft.fft(x, norm='orth') # Compute the FFT scaled by `1/sqrt(N)`
# Perform some processing...
# Energy are equal:
np.allclose(energy(x), energy(X)) == True
Y = X * H
y = np.fft.ifft(Y, norm='orth') # Compute the iFFT, with scaling by `1/sqrt(N)`
In the end it boils down to what you need. Most of the time the absolute magnitude of your DFT is actually not that important. You are mostly interested in the ratio of various components or you want to perform some operation in the frequency domain but then transform back to the time domain or you are interested in the phase (angles). In all of these case, the normalization does not really play an important role, as long as you stay consistent.
So the output of my network is a list of propabilities, which I then round using tf.round() to be either 0 or 1, this is crucial for this project.
I then found out that tf.round isn't differentiable so I'm kinda lost there.. :/
Something along the lines of x - sin(2pi x)/(2pi)?
I'm sure there's a way to squish the slope to be a bit steeper.
You can use the fact that tf.maximum() and tf.minimum() are differentiable, and the inputs are probabilities from 0 to 1
# round numbers less than 0.5 to zero;
# by making them negative and taking the maximum with 0
differentiable_round = tf.maximum(x-0.499,0)
# scale the remaining numbers (0 to 0.5) to greater than 1
# the other half (zeros) is not affected by multiplication
differentiable_round = differentiable_round * 10000
# take the minimum with 1
differentiable_round = tf.minimum(differentiable_round, 1)
Example:
[0.1, 0.5, 0.7]
[-0.0989, 0.001, 0.20099] # x - 0.499
[0, 0.001, 0.20099] # max(x-0.499, 0)
[0, 10, 2009.9] # max(x-0.499, 0) * 10000
[0, 1.0, 1.0] # min(max(x-0.499, 0) * 10000, 1)
This works for me:
x_rounded_NOT_differentiable = tf.round(x)
x_rounded_differentiable = x - tf.stop_gradient(x - x_rounded_NOT_differentiable)
Rounding is a fundamentally nondifferentiable function, so you're out of luck there. The normal procedure for this kind of situation is to find a way to either use the probabilities, say by using them to calculate an expected value, or by taking the maximum probability that is output and choose that one as the network's prediction. If you aren't using the output for calculating your loss function though, you can go ahead and just apply it to the result and it doesn't matter if it's differentiable. Now, if you want an informative loss function for the purpose of training the network, maybe you should consider whether keeping the output in the format of probabilities might actually be to your advantage (it will likely make your training process smoother)- that way you can just convert the probabilities to actual estimates outside of the network, after training.
Building on a previous answer, a way to get an arbitrarily good approximation is to approximate round() using a finite Fourier approximation and use as many terms as you need. Fundamentally, you can think of round(x) as adding a reverse (i. e. descending) sawtooth wave to x. So, using the Fourier expansion of the sawtooth wave we get
With N = 5, we get a pretty nice approximation:
Kind of an old question, but I just solved this problem for TensorFlow 2.0. I am using the following round function on in my audio auto-encoder project. I basically want to create a discrete representation of sound which is compressed in time. I use the round function to clamp the output of the encoder to integer values. It has been working well for me so far.
#tf.custom_gradient
def round_with_gradients(x):
def grad(dy):
return dy
return tf.round(x), grad
In range 0 1, translating and scaling a sigmoid can be a solution:
slope = 1000
center = 0.5
e = tf.exp(slope*(x-center))
round_diff = e/(e+1)
In tensorflow 2.10, there is a function called soft_round which achieves exactly this.
Fortunately, for those who are using lower versions, the source code is really simple, so I just copy-pasted those lines, and it works like a charm:
def soft_round(x, alpha, eps=1e-3):
"""Differentiable approximation to `round`.
Larger alphas correspond to closer approximations of the round function.
If alpha is close to zero, this function reduces to the identity.
This is described in Sec. 4.1. in the paper
> "Universally Quantized Neural Compression"<br />
> Eirikur Agustsson & Lucas Theis<br />
> https://arxiv.org/abs/2006.09952
Args:
x: `tf.Tensor`. Inputs to the rounding function.
alpha: Float or `tf.Tensor`. Controls smoothness of the approximation.
eps: Float. Threshold below which `soft_round` will return identity.
Returns:
`tf.Tensor`
"""
# This guards the gradient of tf.where below against NaNs, while maintaining
# correctness, as for alpha < eps the result is ignored.
alpha_bounded = tf.maximum(alpha, eps)
m = tf.floor(x) + .5
r = x - m
z = tf.tanh(alpha_bounded / 2.) * 2.
y = m + tf.tanh(alpha_bounded * r) / z
# For very low alphas, soft_round behaves like identity
return tf.where(alpha < eps, x, y, name="soft_round")
alpha sets how soft the function is. Greater values leads to better approximations of round function, but then it becomes harder to fit since gradients vanish:
x = tf.convert_to_tensor(np.arange(-2,2,.1).astype(np.float32))
for alpha in [ 3., 7., 15.]:
y = soft_round(x, alpha)
plt.plot(x.numpy(), y.numpy(), label=f'alpha={alpha}')
plt.legend()
plt.title('Soft round function for different alphas')
plt.grid()
In my case, I tried different values for alpha, and 3. looks like a good choice.
I'm was hoping to use singular value decomposition to estimate the standard deviation of eliptoid data. I'm not sure if this is the best approach and I may be overthinking the entire process so I need some help.
I simulated some data using the following script...
from matplotlib import pyplot as plt
import numpy
def svd_example():
# simulate some data...
# x values have standard deviation 3000
xdata = numpy.random.normal(0, 3000, 5000).reshape(-1, 1)
# y values standard deviation 300
ydata = numpy.random.normal(0, 300, 5000).reshape(-1, 1)
# apply some rotation
ydata_rotated = ydata + (xdata * 0.5)
data = numpy.hstack((xdata, ydata_rotated))
# get singular values
left_singular_matrix, singular_values, right_singular_matrix = numpy.linalg.svd(data)
print 'singular values', singular_values
# plot data....
plt.scatter(data[:, 0], data[:, 1], s=5)
plt.ylim(-15000, 15000)
plt.show()
svd_example()
I get singular values of...
>>> singular values [ 234001.71228678 18850.45155942]
My data looks like this...
I was under the assumption that the singular values would give me some indication of the spread of data regardless of it's rotation, right? But these values, [234001.71228678 18850.45155942], make no sense to me. My standard deviations were 3000 and 300. Do these singular values represent variance? How do I convert them?
The singular values indeed give some indication of the spread. In fact, they are related to the standard deviation in these directions. However, they are not normalized. If you divide by the square-root of the number samples, you will get values that closely resemble the standard deviations used for creating the data:
singular_values / np.sqrt(5000)
# array([ 3398.61320614, 264.00975837])
Why do you get 3400 and 264 instead of 3000 and 300? That is because ydata + (xdata * 0.5) is not a rotation but a shearing operation. A real rotation would preserve the original standard deviations.
For example, the following code would rotate the data by 40 degrees:
# apply some rotation
s = numpy.sin(40 * numpy.pi / 180)
c = numpy.cos(40 * numpy.pi / 180)
data = numpy.hstack((xdata, ydata)).dot([[c, s], [-s, c]])
With such a rotation you will get normalized singular values that are pretty close to the original standard deviations.
Edit:
On Normalization
I have to admit, normalization is probably not the correct term to apply here. It does not necessarily mean to scale values to a certain range. Normalization, as I meant it, was to bring values into a defined range, independent of the number of samples.
To understand where the division by sqrt(5000) comes from, let's talk about the standard deviation. Let x, be a data vector of n samples with zero mean. Then the standard deviation is computed as sqrt(sum(x**2)/n) or sqrt(sum(x**2)) / sqrt(n). Now, you can think of the singular value decomposition to compute only the sqrt(sum(x**2)) part, so we have to divide by sqrt(n) ourselves.
I'm afraid, this is not a very mathematical explanation, but hopefully it conveys the idea.
I have a set of points (x,y) as two vectors
x,y for example:
from pylab import *
x = sorted(random(30))
y = random(30)
plot(x,y, 'o-')
Now I would like to smooth this data with a Gaussian and evaluate it only at certain (regularly spaced) points on the x-axis. lets say for:
x_eval = linspace(0,1,11)
I got the tip that this method is called a "Gaussian sum filter", but so far I have not found any implementation in numpy/scipy for that, although it seems like a standard problem at first glance.
As the x values are not equally spaced I can't use the scipy.ndimage.gaussian_filter1d.
Usually this kind of smoothing is done going through furrier space and multiplying with the kernel, but I don't really know if this will be possible with irregular spaced data.
Thanks for any ideas
This will blow up for very large datasets, but the proper calculaiton you are asking for would be done as follows:
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0) # for repeatability
x = np.random.rand(30)
x.sort()
y = np.random.rand(30)
x_eval = np.linspace(0, 1, 11)
sigma = 0.1
delta_x = x_eval[:, None] - x
weights = np.exp(-delta_x*delta_x / (2*sigma*sigma)) / (np.sqrt(2*np.pi) * sigma)
weights /= np.sum(weights, axis=1, keepdims=True)
y_eval = np.dot(weights, y)
plt.plot(x, y, 'bo-')
plt.plot(x_eval, y_eval, 'ro-')
plt.show()
I'll preface this answer by saying that this is more of a DSP question than a programming question...
...that being said there, there is a simple two step solution to your problem.
Step 1: Resample the data
So to illustrate this we can create a random data set with unequal sampling:
import numpy as np
x = np.cumsum(np.random.randint(0,100,100))
y = np.random.normal(0,1,size=100)
This gives something like:
We can resample this data using simple linear interpolation:
nx = np.arange(x.max()) # choose new x axis sampling
ny = np.interp(nx,x,y) # generate y values for each x
This converts our data to:
Step 2: Apply filter
At this stage you can use some of the tools available through scipy to apply a Gaussian filter to the data with a given sigma value:
import scipy.ndimage.filters as filters
fx = filters.gaussian_filter1d(ny,sigma=100)
Plotting this up against the original data we get:
The choice of the sigma value determines the width of the filter.
Based on #Jaime's answer I wrote a function that implements this with some additional documentation and the ability to discard estimates far from the datapoints.
I think confidence intervals could be obtained on this estimate by bootstrapping, but I haven't done this yet.
def gaussian_sum_smooth(xdata, ydata, xeval, sigma, null_thresh=0.6):
"""Apply gaussian sum filter to data.
xdata, ydata : array
Arrays of x- and y-coordinates of data.
Must be 1d and have the same length.
xeval : array
Array of x-coordinates at which to evaluate the smoothed result
sigma : float
Standard deviation of the Gaussian to apply to each data point
Larger values yield a smoother curve.
null_thresh : float
For evaluation points far from data points, the estimate will be
based on very little data. If the total weight is below this threshold,
return np.nan at this location. Zero means always return an estimate.
The default of 0.6 corresponds to approximately one sigma away
from the nearest datapoint.
"""
# Distance between every combination of xdata and xeval
# each row corresponds to a value in xeval
# each col corresponds to a value in xdata
delta_x = xeval[:, None] - xdata
# Calculate weight of every value in delta_x using Gaussian
# Maximum weight is 1.0 where delta_x is 0
weights = np.exp(-0.5 * ((delta_x / sigma) ** 2))
# Multiply each weight by every data point, and sum over data points
smoothed = np.dot(weights, ydata)
# Nullify the result when the total weight is below threshold
# This happens at evaluation points far from any data
# 1-sigma away from a data point has a weight of ~0.6
nan_mask = weights.sum(1) < null_thresh
smoothed[nan_mask] = np.nan
# Normalize by dividing by the total weight at each evaluation point
# Nullification above avoids divide by zero warning shere
smoothed = smoothed / weights.sum(1)
return smoothed
I'm trying to replicate some Matlab code in python. I could not find an exact equivalent to the Matlab function quantile. What I found most close is python's mquantiles.
Matlab example:
quantile( [ 8.60789925e-05, 1.98989354e-05 , 1.68308882e-04, 1.69379370e-04], 0.8)
...gives: 0.00016958
Same example in python:
scipy.stats.mstats.mquantiles( [8.60789925e-05, 1.98989354e-05, 1.68308882e-04, 1.69379370e-04], 0.8)
...gives 0.00016912
Does anyone know how to exactly replicate Matlab's quantile function?
The documentation for quantile (under the More About => Algorithms section) gives the exact algorithm used. Here's some python code that does it for a single quantile for a flat array, using bottleneck to do partial sorting:
import numpy as np
import botteleneck as bn
def quantile(a, prob):
"""
Estimates the prob'th quantile of the values in a data array.
Uses the algorithm of matlab's quantile(), namely:
- Remove any nan values
- Take the sorted data as the (.5/n), (1.5/n), ..., (1-.5/n) quantiles.
- Use linear interpolation for values between (.5/n) and (1 - .5/n).
- Use the minimum or maximum for quantiles outside that range.
See also: scipy.stats.mstats.mquantiles
"""
a = np.asanyarray(a)
a = a[np.logical_not(np.isnan(a))].ravel()
n = a.size
if prob >= 1 - .5/n:
return a.max()
elif prob <= .5 / n:
return a.min()
# find the two bounds we're interpreting between:
# that is, find i such that (i+.5) / n <= prob <= (i+1.5)/n
t = n * prob - .5
i = np.floor(t)
# partial sort so that the ith element is at position i, with bigger ones
# to the right and smaller to the left
a = bn.partsort(a, i)
if i == t: # did we luck out and get an integer index?
return a[i]
else:
# we'll linearly interpolate between this and the next index
smaller = a[i]
larger = a[i+1:].min()
if np.isinf(smaller):
return smaller # avoid inf - inf
return smaller + (larger - smaller) * (t - i)
I only did the single-quantile, 1d case because that's all I needed. If you want several quantiles, it's probably worth just doing the full sort; to do it per-axis and knew you didn't have any nans, all you should need to do is add an axis argument to the sort and vectorize the linear interpolation bit. Doing it per-axis with nans would be a little trickier.
This code gives:
>>> quantile([ 8.60789925e-05, 1.98989354e-05 , 1.68308882e-04, 1.69379370e-04], 0.8)
0.00016905822360000001
and the matlab code gave 0.00016905822359999999; the difference is 3e-20. (which is less than machine precision)
Your input vector only has 4 values, which is far too few to get a good approximation of the quantiles of the underlying distribution. The discrepancy is probably the result of Matlab and SciPy using different heuristics to compute quantiles on under sampled distributions.
A bit late, but:
mquantiles is very flexible. You just need to provide alphap and betap parameters.
Here, since MATLAB does a linear interpolation, you need to set the parameters to (0.5,0.5).
In [9]: scipy.stats.mstats.mquantiles( [8.60789925e-05, 1.98989354e-05, 1.68308882e-04, 1.69379370e-04], 0.8, alphap=0.5, betap=0.5)
EDIT: MATLAB says that it does linear interpolation, however it seems that it calculates the quantile through piece-wise linear interpolation, which is equivalent to Type 5 quantile in R, and (0.5, 0.5) in scipy.