How does graph-tool decide the number of blocks? - python

The documentation of minimize_blockmodel_dl says
See peixoto-hierarchical-2014 for details on the algorithm.
However, the paper explicitely states
However, in order to perform model selection, one first needs to find
optimal partitions of the network for given values of B, which is the
subproblem which we consider in detail in this work. Therefore, in the
remainder of this paper we will assume that the value of B is a fixed
parameter, unless otherwise stated, but the reader should be aware
that this value itself can be determined at a later step via model
selection, as described, e.g., in Refs. [19,26].
Hence, how exactly do minimize_blockmodel_dl and variants decide B? Ultimatively, I'd be interested in plotting the implied likelihoods for different values of B, but would first see what the algorythm has built-in by default - Bayesian model selection?

You are confusing two different papers. The quote you show does not come from the paper you mention. The cited paper:
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.011047
explains exactly your question, i.e. how the most appropriate number of groups is determined, using minimum description length. You can also read a more recent introduction to Bayesian inference of the stochastic block model, which deals with this issue at length:
https://arxiv.org/abs/1705.10225

Related

What happens when I add/remove parameters dynamically during an Optuna study?

Optuna's FAQ has a clear answer when it comes to dynamically adjusting the range of parameter during a study: it poses no problem since each sampler is defined individually.
But what about adding and/or removing parameters? Is Optuna able to handle such adjustments?
One thing I noticed when doing this is that in the results dataframe these parameters get nan entries for other trials. Would there be any benefit to being able to set these nans to their (default) value that they had when not being sampled? Is the study still sound with all these unknown values?
Question was answered here:
Thanks for the question. Optuna internally supports two types of sampling: optuna.samplers.BaseSampler.sample_independent and optuna.samplers.BaseSampler.sample_relative.
The former optuna.samplers.BaseSampler.sample_independent is a method that samples independently on each parameter, and is not affected by the addition or removal of parameters. The added parameters are taken into account from the timing when they are added.
The latter optuna.samplers.BaseSampler.sample_relative is a method that samples by considering the correlation of parameters and is affected by the addition or removal of parameters. Optuna's default search space for correlation is the product set of the domains of the parameters that exist from the beginning of the hyperparameter tuning to the present. Developers who implement samplers can implement their own search space calculation method optuna.samplers.BaseSampler.infer_relative_search_space. This may allow correlations to be considered for hyperparameters that have been added or removed, but this depends on the sampling algorithm, so there is no API for normal users to modify.

How to estimate the optimal cutpoint for a binary outcome in python

I have a dataset of diabetic patients which has been used to train an xgboost model in several outcomes such as stroke, amputation, and more. Originally we used the continuous numeric variables as-is, but we found ambiguity in the results since for example age was giving us results where the older you get the higher the risk to have a stroke.
But, for us as physicians we need a narrower range, so we divide those variables in bins. And indeed this gave us more insight. Nonetheless, we are seeing that some contiguous intervals appear in our results pretty close.
Continuing from the example above, bin(64-78) and bin(79-88), appear one after the other and no other bin from the age variable appears. So we think that the best approach, in this case, is to find the best optimal cutpoint at which the age starts to become a risk factor for stroke.
Then I came across this document (https://www.mayo.edu/research/documents/biostat-79pdf/doc-10027230) which explains in SAS how to find those cutpoints. I am not experienced enough to program this myself, so I want to know how could I achieve to find these cutpoints in python?
Do please restrict to that language, I have already seen R, SAS, even SPSS examples but none in python. There must be some way to do this in Python.
It's very difficult to determine without seeing the data but there are a few ways of doing it. One way is doing a logistic regression in your data which will give you a probability distribution from the binary class, you can then use the Receiver Operating Characteristic (ROC) to determine the optimal threshold depending on how important it is to you to prioritize true positive rate over the absence of false-positives.
You can find an article about this here

Why are finite differences of static input variables used to calculate the Jacobian? (OpenMDAO 2.4)

I have been using the SLSQP algorithm to run some MDO problems with ExplicitComponents only. Each component has a runtime of around 10 seconds and 60-100 input variables. Most of the input variables are static input variables that will remain constant during the entire optimization. The static input variables originate from an IndepVarComp. The ExplicitComponents are black boxes, so no information is available on the partials.
I noticed that when the Jacobian is calculated in the compute_totals(), the components are linearized with respect to all their input values. In the compute_approximations() a finite difference is calculated over all the input values, including the static input values. So, my question is: why is a finite difference calculation performed over these static input variables? As the values remain constant, I’m not sure why this information would be useful?
Furthermore, if I understand it correctly, the components are linearized to get the sub-Jacobians, which are then used to calculate the total Jacobian. However, is it possible to directly calculate a finite-difference over the entire group instead of linearizing each component? With the runtimes of my components and amount of input variables, it will take a long time to perform the linearization of each component. However, the optimization problem has only 3 design variables. So, if I could perform three finite difference calculations over the entire MDA to calculate the total Jacobian, the total runtime will decrease significantly.
To answer your questions in reverse order:
1) Can you FD over the entire model instead of each individual component? Yes!
You can set up FD over any group in your model, including the top-level group. Then the FD is taken across that group rather than across each component in it.
We call that computing a semi-total derivative, because in general you can select a sub-group in your model, in which case the FD is approximating a total-derivative across that group but that total-derivative is still effectively a partial-derivative for the overall model. hence semi-total derivative.
2) Why is a finite difference calculation performed over these static input variables?
In theory, you're correct that you don't really need partial derivatives of the inputs that can't change. As of OpenMDAO 2.4, we don't handle that situation automatically though, and we don't have plans to add that in the near future. However, the framework is only taking FD across the partials you tell it to. It sounds like you are declaring your partials like this:
self.declare_partials(of=['*'], wrt=['*'], method='fd')
So you're specifically asking the framework to compute all those partials. Instead, you could specify in the wrt argument only the inputs you know are actually changing. Of course, this is mathematically incorrect because there is a derivative wrt to the static-inputs. If someone later on connects something to those inputs and tries and optimization, they would get a wrong answer. But as long as your careful, you can specifically ask for only the partials you wanted from any component and simple leave the non-changing inputs as effectively 0.

clustering in python without number of clusters or threshold

Is it possible to do clustering without providing any input apart from the data? The clustering method/algorithm should decide from the data on how many logical groups the data can be divided, even it doesn't require me to input the threshold eucledian distance on which the clusters are built, this also needs to be learned from the data.
Could you please suggest me what is closest solution for my problem?
Why not code your algorithm to create a list of clusters ranging from size 1 to n (which could be defined in a config file so that you can avoid hard coding and just fix it once).
Once that is done, compute the clusters of size 1 to n. Choose the value which gives you the smallest Mean Square Error.
This would require some additional work by your machine to determine the optimal number of logical groups the data can be divided (bounded between 1 and n).
Clustering is an explorative technique.
This means it must always be able to produce different results, as desired by the user. Having many parameters is a feature. It means the method can be adapted easily to very different data, and to user preferences.
There will never be a generally useful parameter-free technique. At best, some parameters will have default values or heuristics (such as Euclidean distance, such as standardizing the input prior to clusterings such as the gap statistic for choosing k) that may give a reasonable first try in 80% of cases. But after that first try, you'll need to understand the data, and try other parameters to learn more about your data.
Methods that claim to be "parameter free" usually just have some hidden parameters set so it works on the few toy example it was demonstrated on.

Utilising Genetic algorithm to overcome different size datasets in model

SO I realise the question I am asking here is large and complex.
A potential solution to variences in sizes of
In all of my searching through statistical forums and posts I haven't come across a scientifically sound method of taking into account the type of data that I am encountering,
but I have thought up a (novel?) potential solutions to account perfectly (in my mind) for large and small datasets within the same model.
The proposed method involves using a genetic algorithm to alter two numbers defining a relationship between the size of the dataset making up an implied strike rate and the
percentage of the implied strike to be used, with the target of the model to maximise the homology of the number 1 in two columns of the following csv. (ultra simplified
but hopefully demonstrates the principle)
Example data
Date,PupilName,Unique class,Achieved rank,x,y,x/y,Average xy
12/12/2012,PupilName1,UniqueClass1,1,3000,9610,0.312174818,0.08527
12/12/2012,PupilName2,UniqueClass1,2,300,961,0.312174818,0.08527
12/12/2012,PupilName3,UniqueClass1,3,1,3,0.333333333,0.08527
13/12/2012,PupilName1,UniqueClass2,1,2,3,0.666666667,0.08527
13/12/2012,PupilName2,UniqueClass2,2,0,1,0,0.08527
13/12/2012,PupilName3,UniqueClass2,3,0,5,0,0.08527
13/12/2012,PupilName4,UniqueClass2,4,0,2,0,0.08527
13/12/2012,PupilName5,UniqueClass2,5,0,17,0,0.08527
14/12/2012,PupilName1,UniqueClass3,1,1,2,0.5,0.08527
14/12/2012,PupilName2,UniqueClass3,2,0,1,0,0.08527
14/12/2012,PupilName3,UniqueClass3,3,0,5,0,0.08527
14/12/2012,PupilName4,UniqueClass3,4,0,6,0,0.08527
14/12/2012,PupilName5,UniqueClass3,5,0,12,0,0.08527
15/12/2012,PupilName1,UniqueClass4,1,0,0,0,0.08527
15/12/2012,PupilName2,UniqueClass4,2,1,25,0.04,0.08527
15/12/2012,PupilName3,UniqueClass4,3,1,29,0.034482759,0.08527
15/12/2012,PupilName4,UniqueClass4,4,1,38,0.026315789,0.08527
16/12/2012,PupilName1,UniqueClass5,1,12,24,0.5,0.08527
16/12/2012,PupilName2,UniqueClass5,2,1,2,0.5,0.08527
16/12/2012,PupilName3,UniqueClass5,3,13,59,0.220338983,0.08527
16/12/2012,PupilName4,UniqueClass5,4,28,359,0.077994429,0.08527
16/12/2012,PupilName5,UniqueClass5,5,0,0,0,0.08527
17/12/2012,PupilName1,UniqueClass6,1,0,0,0,0.08527
17/12/2012,PupilName2,UniqueClass6,2,2,200,0.01,0.08527
17/12/2012,PupilName3,UniqueClass6,3,2,254,0.007874016,0.08527
17/12/2012,PupilName4,UniqueClass6,4,2,278,0.007194245,0.08527
17/12/2012,PupilName5,UniqueClass6,5,1,279,0.003584229,0.08527
So I have created a tiny model dataset, which contains some good examples of where my current methods fall short and how I feel a genetic algorithm can be used to fix this. If we look in the dataset above it contains 6 unique classes the ultimate objective of the algorithm is to create as high as possible correspondence between a rank of an adjusted x/y and the achieved rank in column 3 (zero based referencing.) In uniqueclass1 we have two identical x/y values, now these are comparatively large x/y values if you compare with the average (note the average isn't calculated from this dataset) but it would be common sense to expect that the 3000/9610 is more significant and therefore more likely to have an achieved rank of 1 than the 300/961. So what I want to do is make an adjusted x/y to overcome these differences in dataset sizes using a logarithmic growth relationship defined by the equation:
adjusted xy = ((1-exp(-y*α)) * x/y)) + ((1-(1-exp(-y*α)))*Average xy)
Where α is the only dynamic number
If I can explain my logic a little and open myself up to (hopefully) constructive criticsm. This graph below shows is an exponential growth relationship between size of the data set and the % of x/y contributing to the adjusted x/y. Essentially what the above equation says is as the dataset gets larger the percentage of the original x/y used in the adjusted x/y gets larger. Whatever percentage is left is made up by the average xy. Could hypothetically be 75% x/y and 25% average xy for 300/961 and 95%/5% for 3000/9610 creating an adjusted x/y which clearly demonstrates
For help with understanding the lowering of α would produce the following relationship where by a larger dataset would be requred to achieve the same "% of xy contributed"
Conversly increasing α would produce the following relationship where by a smaller dataset would be requred to achieve the same "% of xy contributed"
So I have explained my logic. I am also open to code snippets to help me overcome the problem. I have plans to make a multitude of genetic/evolutionary algorithms in the future and could really use a working example to pick apart and play with in order to help my understanding of how to utilise such abilities of python. If additional detail is required or further clarification about the problem or methods please do ask, I really want to be able to solve this problem and future problems of this nature.
So after much discussion about the methods available to overcome the problem presented here I have come to the conclusion that he best method would be a genetic algorithm to iterate α in order to maximise the homology/correspondance between a rank of an adjusted x/y and the achieved rank in column 3. It would be greatly greatly appreciated if anyone be able to help in that department?
So to clarify, this post is no longer a discussion about methodology
I am hoping someone can help me produce a genetic algorithm to maximise the homology between the results of the equation
adjusted xy = ((1-exp(-y*α)) * x/y)) + ((1-(1-exp(-y*α)))*Average xy)
Where adjusted xy applies to each row of the csv. Maximising homology could be achieved by minimising the difference between the rank of the adjusted xy (where the rank is by each Unique class only) and Achieved rank.
Minimising this value would maximise the homology and essentially solve the problem presented to me of different size datasets. If any more information is required please ask, I check this post about 20 times a day at the moment so should reply rather promptly. Many thanks SMNALLY.
The problem you are facing sounds to me like "Bias Variance Dilemna" from a general point of view. In a nutshell, a more precise model favours variance (sensitivity to change in a single training set), a more general model favours bias (model works for many training sets)
May I suggest not to focus on GA but look at Instance Base Learning and advanced regression techniques. The Andrew moore page at CMU is a good entry point.
And particularly those slides.
[EDIT]
After a second reading, here is my second understanding:
You have a set of example data with two related attributes X and Y.
You do not want X/Y to dominate when Y is small, (considered as less representative).
As a consequence you want to "weigth" the examples with a adapted value adjusted_xy .
You want adjusted_xy to be related to a third attribute R (rank). Related such as,per class, adjusted_xy is sorted like R.
To do so you suggest to put it as an optimization problem, searching for PARAMS of a given function F(X,Y,PARAMS)= adjusted_xy .
With the constraint that D=Distance( achieved rank for this class, rank of adjusted_xy for this class ) is minimal.
Your question, at least for me, is in the field of attribute selection/attribute adaptation. (I guess the data set will later be used for supervised learning ).
One problem that I see in your approach (if well understood) is that, at the end, rank will be highly related to adjusted_xy which will bring therefore no interesting supplementary information.
Once this said, I think you surely know how GA works . You have to
define the content of the chromosome : this appears to be your alpha parameter.
define an appropriate fitness function
The fitness function for one individual can be a sum of distances over all examples of the dataset.
As you are dealing with real values , other metaheuristics such as Evolution Strategies (ES) or Simulated Anealing may be more adapted than GA.
As solving optimization problems is cpu intensive, you might eventually consider C or Java instead of Python. (as fitness at least will be interpreted and thus cost a lot).
Alternatively I would look at using Y as a weight to some supervised learning algorithm (if supervised learning is the target).
Let's start by the problem: You consider the fact that some features lead to some of your classes a 'strike'. You are taking a subset of your data and try to establish a rule for the strikes. You do establish one but then you notice that the accuracy of your rule depends on the volume of the dataset that was used to establish the 'strike' rate anyway. You are also commenting on the effect of some samples in biasing your 'strike' estimate.
The immediate answer is that it looks like you have a lot of variation in your data, therefore you will in one way or another need to collect more to account for that variation. (That is, variation that is inherent to the problem).
The fact that in some cases the numbers end up in 'unusable cases' could also be down to outliers. That is, measurements that are 'out of bounds' for a number of reasons and which you would have to find a way to either exclude them or re-adjust them. But this depends a lot on the context of the problem.
'Strike rates' on their own will not help but they are perhaps a step towards the right direction. In any case, you can not compare strike rates if they are coming from samples of different sizes as you have found out too. If your problem is purely to determine the size of your sample so that your results conform to some specific accuracy then i would recommend that you have a look at Statistical Power and how does the sample size affects it. But still, to determine the sample size you need to know a bit more about your data, which brings us back to point #1 about the inherent variation.
Therefore, my attempt to an answer is this: If i have understood your question correctly, you are dealing with a classification problem in which you seek to assign a number of items (patients) to a number of classes (types of cancer) on the evidence of some features (existence of genetic markers, or frequency of their appearance or any other quantity anyway) about these items. But, some features might not exist for all items or, there is a core group of features but there might be some more that do not appear all the time. The question now is, which classifier do you use to achieve this? Logistic regression was mentioned previously and has not helped. Therefore, what i would suggest is going for a Naive Bayesian Classifier. The classifier can be trained with the datasets you have used to derive the 'strike rates' which will provide the a-priori probabilities. When the classifier is 'running' it will be using the features of new data to construct a likelihood that the patient who provided this data should be assigned to each class.
Perhaps the more common example for such a classifier is the spam-email detectors where the likelihood that an email is spam is judged on the existence of specific words in the email (and a suitable training dataset that provides a good starting point of course).
Now, in terms of trying this out practically (and since your post is tagged with python related tags :) ), i would like to recommend Weka. Weka contains a lot of related functionality including bootstrapping that could potentially help you with those differences in the size of the datasets. Although Weka is Java, bindings exist for it in Python too. I would definitely give it a go, the Weka package, book and community are very helpful.
No. Don't use a genetic algorithm.
The bigger the search space of models and parameters, the better your chances of finding a good fit for your data points. But the less this fit will mean. Especially since for some groups your sample sizes are small and therefore the measurements have a high random component to them. This is why, somewhat counterintuitively, it is often actually harder to find a good model for your data after collecting it than before.
You have taken the question to the programmer's lair. This is not the place for it. We solve puzzles.
This is not a puzzle to find the best line through the dots. You are searching for a model that makes sense and brings understanding on the subject matter. A genetic algorithm is very creative at line-through-dot drawing but will bring you little understanding.
Take the problem back where it belongs and ask the statisticians instead.
For a good model should be based on theory behind the data. It'll have to match the points on the right side of the graph, where (if I understand you right) most of the samples are. It'll be able to explain in hard probabilities how likely the deviations on the left are and tell you if they are significant or not.
If you do want to do some programming, I'd suggest you take the simplest linear model, add some random noise, and do a couple simulation runs for a population like your subjects. See if the data looks like the data you're looking at or if it generally 'looks' different, in which case there really is something nonlinear (and possibly interesting) going on on the left.
I once tackled a similar problem (as similar as problems like this ever are), in which there were many classes and high variance in features per data point. I personally used a Random Forest classifier (which I wrote in Java). Since your data is highly variant, and therefore hard to model, you could create multiple forests from different random samples of your large dataset and put a control layer on top to classify data against all the forests, then take the best score. I don't write python, but i found this link
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
which may give you something to play with.
Following Occam's razor, you must select a simpler model for small dataset and may want to switch to a more complex model as your dataset grows.
There are no [good] statistical tests that show you if a given model, in isolation, is a good predictor of your data. Or rather, a test may tell you that given model fitness is N, but you can never tell what the acceptable value of N is.
Thus, build several models and pick one with better tradeoff of predictive power and simplicity using Akaike information criterion. It has useful properties and not too hard to understand. :)
There are other tests of course, but AIC should get you started.
For a simple test, check out p-value

Categories

Resources