Numpy minimum like np.outer() - python

Maybe I'm just being lazy here, but let's say that I have two arrays, of length n and m, and I'd like a pairwise minimum of all of the elements of the two arrays compared against each other. For example:
a = [1,5,3]
b = [2,4]
cross_min(a,b)
= [[1,1],[2,4],[2,3]]
This is similar to the behavior of np.outer(), except that instead of multiplying the two arrays, it computes the minimum of the two elements.
Is there an operation in numpy that does a similar thing?
I know that I can just run np.minimum() along b and stack the results together. I'm wondering if this is a well-known operation that I just don't know the name of.

You can use np.minimum.outer(a, b)

You might turn one of the array into a 2d array, and then make use of the broadcasting rule and np.minimum:
import numpy as np
a = np.array([1,5,3])
b = np.array([2,4])
np.minimum(a[:,None], b)
#array([[1, 1],
# [2, 4],
# [2, 3]])

Related

Summing each element of two arrays

I have two arrays and want to sum each element of both arrays and find the maximum sum.
I have programmed it like this:
sum = []
for element in arrayOne:
sum.append(max([item + element for item in arrayTwo]))
print max(sum)
is there any better way to achieve this?
You can use numpy.
import numpy as np
a = np.array(arrayOne)
b = np.array(arrayTwo)
max = max(a + b)
print(max)
Use itertools.product with max:
from itertools import product
print(max(sum(x) for x in product(arrayOne, arrayTwo)))
Or using map:
print(max(map(sum,product(arrayOne, arrayTwo))))
max_sum = max(map(sum, zip(arrayOne, arrayTwo)))
Upd.
If you need max from sum of all elements in array:
max_sum = max(sum(arrayOne), sum(arrayTwo))
If arrayOne and arrayTwo are nested lists ([[1, 2], [3, 3], [3, 5], [4, 9]]) and you need to find element with max sum:
max_sum = max(map(sum, arrayOne + arrayTwo))
P. S. Next time, please, provide examples of input and output to not let us guess what do you need.
To find a maximum of all pairwise sums of elements of two arrays of lengths n and m respectively one can just
max(arrayOne) + max(arrayTwo)
which would perform at worst in O(max(n, m)) instead of O(n*m) when going over all the combinations.
However, if, for whatever reason, it is necessary to iterate over all the pairs, the solution might be
max(foo(one, two) for one in arrayOne for two in arrayTwo)
Where foo can be any function of two numeric parameters outputting a number (or an object of any class that implements ordering).
By the way, please avoid redefining built-ins like sum in your code.

Check how many numpy array within a numpy array are equal to other numpy arrays within another numpy array of different size

My problem
Suppose I have
a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.array([9,10])])
b = np.array([ np.array([5,6]), np.array([1,2]), np.array([3,192])])
They are two arrays, of different sizes, containing other arrays (the inner arrays have same sizes!)
I want to count how many items of b (i.e. inner arrays) are also in a. Notice that I am not considering their position!
How can I do that?
My Try
count = 0
for bitem in b:
for aitem in a:
if aitem==bitem:
count+=1
Is there a better way? Especially in one line, maybe with some comprehension..
The numpy_indexed package contains efficient (nlogn, generally) and vectorized solutions to these types of problems:
import numpy_indexed as npi
count = len(npi.intersection(a, b))
Note that this is subtly different than your double loop, discarding duplicate entries in a and b for instance. If you want to retain duplicates in b, this would work:
count = npi.in_(b, a).sum()
Duplicate entries in a could also be handled by doing npi.count(a) and factoring in the result of that; but anyway, im just rambling on for illustration purposes since I imagine the distinction probably does not matter to you.
Here is a simple way to do it:
a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.array([9,10])])
b = np.array([ np.array([5,6]), np.array([1,2]), np.array([3,192])])
count = np.count_nonzero(
np.any(np.all(a[:, np.newaxis, :] == b[np.newaxis, :, :], axis=-1), axis=0))
print(count)
>>> 2
You can do what you want in one liner as follows:
count = sum([np.array_equal(x,y) for x,y in product(a,b)])
Explanation
Here's an explanation of what's happening:
Iterate through the two arrays using itertools.product which will create an iterator over the cartesian product of the two arrays.
Compare each two arrays in a tuple (x,y) coming from step 1. using np.array_equal
True is equal to 1 when using sum on a list
Full example:
The final code looks like this:
import numpy as np
from itertools import product
a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.array([9,10])])
b = np.array([ np.array([5,6]), np.array([1,2]), np.array([3,192])])
count = sum([np.array_equal(x,y) for x,y in product(a,b)])
# output: 2
You can convert the rows to dtype = np.void and then use np.in1d as on the resulting 1d arrays
def void_arr(a):
return np.ascontiguousarray(a).view(np.dtype((np.void, a.dtype.itemsize * a.shape[1])))
b[np.in1d(void_arr(b), void_arr(a))]
array([[5, 6],
[1, 2]])
If you just want the number of intersections, it's
np.in1d(void_arr(b), void_arr(a)).sum()
2
Note: if there are repeat items in b or a, then np.in1d(void_arr(b), void_arr(a)).sum() likely won't be equal to np.in1d(void_arr(a), void_arr(b)).sum(). I've reversed the order from my original answer to match your question (i.e. how many elements of b are in a?)
For more information, see the third answer here

Iterate over numpy with index (numpy equivalent of python enumerate)

I'm trying to create a function that will calculate the lattice distance (number of horizontal and vertical steps) between elements in a multi-dimensional numpy array. For this I need to retrieve the actual numbers from the indexes of each element as I iterate through the array. I want to store those values as numbers that I can run through a distance formula.
For the example array A
A=np.array([[1,2,3],[4,5,6],[7,8,9]])
I'd like to create a loop that iterates through each element and for the first element 1 it would retrieve a=0, b=0 since 1 is at A[0,0], then a=0, b=1 for element 2 as it is located at A[0,1], and so on...
My envisioned output is two numbers (corresponding to the two index values for that element) for each element in the array. So in the example above, it would be the two values that I am assigning to be a and b. I only will need to retrieve these two numbers within the loop (rather than save separately as another data object).
Any thoughts on how to do this would be greatly appreciated!
As I've become more familiar with the numpy and pandas ecosystem, it's become clearer to me that iteration is usually outright wrong due to how slow it is in comparison, and writing to use a vectorized operation is best whenever possible. Though the style is not as obvious/Pythonic at first, I've (anecdotally) gained ridiculous speedups with vectorized operations; more than 1000x in a case of swapping out a form like some row iteration .apply(lambda)
#MSeifert's answer much better provides this and will be significantly more performant on a dataset of any real size
More general Answer by #cs95 covering and comparing alternatives to iteration in Pandas
Original Answer
You can iterate through the values in your array with numpy.ndenumerate to get the indices of the values in your array.
Using the documentation above:
A = np.array([[1,2,3],[4,5,6],[7,8,9]])
for index, values in np.ndenumerate(A):
print(index, values) # operate here
You can do it using np.ndenumerate but generally you don't need to iterate over an array.
You can simply create a meshgrid (or open grid) to get all indices at once and you can then process them (vectorized) much faster.
For example
>>> x, y = np.mgrid[slice(A.shape[0]), slice(A.shape[1])]
>>> x
array([[0, 0, 0],
[1, 1, 1],
[2, 2, 2]])
>>> y
array([[0, 1, 2],
[0, 1, 2],
[0, 1, 2]])
and these can be processed like any other array. So if your function that needs the indices can be vectorized you shouldn't do the manual loop!
For example to calculate the lattice distance for each point to a point say (2, 3):
>>> abs(x - 2) + abs(y - 3)
array([[5, 4, 3],
[4, 3, 2],
[3, 2, 1]])
For distances an ogrid would be faster. Just replace np.mgrid with np.ogrid:
>>> x, y = np.ogrid[slice(A.shape[0]), slice(A.shape[1])]
>>> np.hypot(x - 2, y - 3) # cartesian distance this time! :-)
array([[ 3.60555128, 2.82842712, 2.23606798],
[ 3.16227766, 2.23606798, 1.41421356],
[ 3. , 2. , 1. ]])
Another possible solution:
import numpy as np
A=np.array([[1,2,3],[4,5,6],[7,8,9]])
for _, val in np.ndenumerate(A):
ind = np.argwhere(A==val)
print val, ind
In this case you will obtain the array of indexes if value appears in array not once.

Python column addition of numpy arrays with shift

How can i accomplish column addition with shift using python numpy arrays ?
I have two dimensional array and need it's extended copy.
a = array([[0, 2, 4, 6, 8],
[1, 3, 5, 7, 9]])
i want something like (following is in pseudo code, it doesn't work; there is no a.columns in numpy as far as i know):
shift = 3
mult_factor = 0.7
for column in a.columns - shift :
out[column] = a[column] + 0.7 * a[column + shift]
I also know, that i can do the something similar to what i need using indexes. But i seems that is really overkill enumerating three values and using only one (j) :
for (i,j),value in np.ndenumerate(a):
print i,j
I founded, that i could iterate over columns, but not their indexes:
for column in a.T:
print column
Than i though that i can simply do this with something that is similar to xrange, but applying to multidimensional array:
In [225]: for column in np.ndindex(a.shape[1]):
print column
.....:
(0,)
(1,)
(2,)
(3,)
(4,)
So now i only know how to do this with simple xrange and i am not sure, that is the best solution.
out = np.zeros(a.shape)
shift = 2
mult_factor = 0.7
for i in xrange(a.shape[1]-shift):
print a[:, i]
out[:, i] = a[:, i] + mult_factor * a[:, i+shift]
However it will be not so fast in Python as it maybe can be.
Can you give me an advice how it will be in performance and maybe there is more faster way to accomplish column addition of numpy arrays with shift ?
out = a[:, :-shift] + mult_factor * a[:, shift:]
I think this is what you're looking for. It's a vectorized form of your loop, operating on large slices of a instead of column by column.
I'm not positive I completely understand what the computed quantity should be, but here are two things that seem germane to what you are asking:
If you have a 2D array, called a that you wish to convert to a list of 1D arrays which are the columns of a you can do this
cols = [c for c in a.T]
It looks like what you want can be accomplished with matrix multiplication if I am not mistaken. You could make a banded matrix in numpy using numpy.diag or, since you would have the same values along each band 1, mult_factor, or 0, you could use scipy.linalg.toeplitz
m,n = a.shape
band = np.eye(1,n)
band[0,shift] = mult_factor
T = scipy.linalg.toeplitz(np.eye(1,m),band)
out = np.inner(a,T)
For large matrices, it might make sense to use a sparse matrix for T if you only want to add two or a few columns of a.

Pythonic way to get the first AND the last element of the sequence

What is the easiest and cleanest way to get the first AND the last elements of a sequence? E.g., I have a sequence [1, 2, 3, 4, 5], and I'd like to get [1, 5] via some kind of slicing magic. What I have come up with so far is:
l = len(s)
result = s[0:l:l-1]
I actually need this for a bit more complex task. I have a 3D numpy array, which is cubic (i.e. is of size NxNxN, where N may vary). I'd like an easy and fast way to get a 2x2x2 array containing the values from the vertices of the source array. The example above is an oversimplified, 1D version of my task.
Use this:
result = [s[0], s[-1]]
Since you're using a numpy array, you may want to use fancy indexing:
a = np.arange(27)
indices = [0, -1]
b = a[indices] # array([0, 26])
For the 3d case:
vertices = [(0,0,0),(0,0,-1),(0,-1,0),(0,-1,-1),(-1,-1,-1),(-1,-1,0),(-1,0,0),(-1,0,-1)]
indices = list(zip(*vertices)) #Can store this for later use.
a = np.arange(27).reshape((3,3,3)) #dummy array for testing. Can be any shape size :)
vertex_values = a[indices].reshape((2,2,2))
I first write down all the vertices (although I am willing to bet there is a clever way to do it using itertools which would let you scale this up to N dimensions ...). The order you specify the vertices is the order they will be in the output array. Then I "transpose" the list of vertices (using zip) so that all the x indices are together and all the y indices are together, etc. (that's how numpy likes it). At this point, you can save that index array and use it to index your array whenever you want the corners of your box. You can easily reshape the result into a 2x2x2 array (although the order I have it is probably not the order you want).
This would give you a list of the first and last element in your sequence:
result = [s[0], s[-1]]
Alternatively, this would give you a tuple
result = s[0], s[-1]
With the particular case of a (N,N,N) ndarray X that you mention, would the following work for you?
s = slice(0,N,N-1)
X[s,s,s]
Example
>>> N = 3
>>> X = np.arange(N*N*N).reshape(N,N,N)
>>> s = slice(0,N,N-1)
>>> print X[s,s,s]
[[[ 0 2]
[ 6 8]]
[[18 20]
[24 26]]]
>>> from operator import itemgetter
>>> first_and_last = itemgetter(0, -1)
>>> first_and_last([1, 2, 3, 4, 5])
(1, 5)
Why do you want to use a slice? Getting each element with
result = [s[0], s[-1]]
is better and more readable.
If you really need to use the slice, then your solution is the simplest working one that I can think of.
This also works for the 3D case you've mentioned.

Categories

Resources