Prime number calculator produces no output (python) - python

I am trying to find the 10001st prime using a basic logic:
1) Identify if a number is prime
2) Add it to a list if prime
3) Print the 10001st term in the list
Here is my code:
primelist=[]
import math
i=2
while True:
for x in range(2, int(math.sqrt(i))):
if i % x == 0:
continue
else:
primelist.append(i)
if len(primelist)== 10001:
break
print(primelist[-1])
Is the logic or code fundamentally wrong or inefficient?
What can I do to ameliorate/ make it work?
EDIT
I have incremented i (i+=1) and used all() to check if everything was indivisible, in response to comments
primelist=[2]
import math
i=3
while True:
for x in range(2, int(i**(1/2))):
if all(i%x!=0 for x in range(2, int(math.sqrt(i)))):
primelist.append(i)
i+=1
if len(primelist)== 10001:
break
print(primelist[-1])

Keep the algorithm/code structure the same (no optimization done), so we can easily share several language points, please see inline comments:
primelist=[]
import math
i=2
while True:
#changed to sqrt + 1, the second parameter of range is not inclusive,
#by adding 1, we make sure sqrt itself is included
for x in range(2, int(math.sqrt(i) + 1)):
if i % x == 0:
#you want break not continue, continue will try
#next possible factor, since you already figured out that this
#is not a prime, no need to keep trying
#continue
break
#a for/else block, many python users never encountered this python
#syntax. The else block is only triggered, if the for loop is naturally
#completed without running into the break statement
else:
#a little debugging, to visually confirm we generated all primes
print("adding {}".format(i))
primelist.append(i)
if len(primelist)== 11:
break
#advance to the next number, this is important,
#otherwise i will always be 2
i += 1
print(primelist[-1])
If you would like to optimize the algorithm, search online for "prime sieve".

This one should work if you want to stay with your algorithm:
import math
def is_prime(n):
for x in range(2, int(math.sqrt(n)) + 1):
if n % x == 0:
return False
return True
primelist = []
i = 2
while True:
if is_prime(i) is True:
primelist.append(i)
i += 1
if len(primelist) == 10001:
break
print(primelist[-1])

Here's a version of your code that's a bit faster, and which doesn't use much RAM. We really don't need to build a list of the primes we find. We don't use the numbers in that list to find more primes, and we're really only interested in its length. So instead of building a list we merely keep count of the primes we find.
# Include 2 in the count
count = 1
i = 3
while True:
if all(i % x for x in range(3, int(i ** 0.5) + 1, 2)):
count += 1
if count == 10001:
break
i += 2
print(i)
FWIW, here's a faster solution that uses sieving. We estimate the required size of the sieve using the prime number theorem. Wikipedia gives these bounds for p(n), the n'th prime number, which is valid for n >= 6:
log(n) + log(log(n)) - 1 < p(n) / n < log(n) + log(log(n))
We use the upper bound as the highest number in the sieve. For n < 6 we use a hard-coded list.
To save space, this sieve only holds odd numbers, so we treat the case of p(1) == 2 as a special case.
#!/usr/bin/env python3
''' Use a sieve of Eratosthenes to find nth prime
Written by PM 2Ring 2017.05.01
Sieve code derived from primes1 by Robert William Hanks
See http://stackoverflow.com/a/3035188/4014959
'''
from math import log
from sys import argv
def main():
num = int(argv[1]) if len(argv) > 1 else 10001
if num == 1:
# Handle 2 as a special case
print(1, 2)
return
elif num < 6:
# Use a pre-built table for (3, 5, 7, 11)
primes = [1, 1, 1, 1, 0, 1]
else:
# Compute upper bound from Prime number theorem
x = log(num)
hi = int(num * (x + log(x)))
print('upper bound', hi)
# Create a boolean list of odd primes in range(hi)
primes = [True] * (hi//2)
for i in range(3, 1 + int(hi**0.5), 2):
if primes[i//2]:
primes[i*i//2::i] = [False] * ((hi - i*i - 1) // (2*i) + 1)
# Count the primes until we get the nth one
k = 0
for i, b in enumerate(primes):
if b:
k += 1
if k == num:
break
print(num, 2*i+1)
if __name__ == "__main__":
main()
This code finds p(10001) = 104743 in under 0.15 seconds on my old single core 32 bit 2GHz machine running Python 3.6.0. It finds p(500000) = 7368787 in about 2.2 seconds.

Related

How to get N prime numbers instead of prime numbers until user input in Python

I have a working code to find prime numbers. Code asks for user to select a number and returns the prime numbers untill user input. However I am trying to reutrn the user input as N.
def calculate_n_prime():
n_numbers = int(input("How many prime numbers would you like to see? "))
for num in range(2, n_numbers):
if num > 1:
for i in range(2, num):
if (num % i) == 0:
break
else:
print(num, end="-")
if __name__ == "__main__":
calculate_n_prime()
Current code returns = [2,3,5,7]
I want a code that returns = [2,3,5,7,11,13,17,19,23,29]
Note - I understand the range function is an issue since it iterates until that number. However without it my code wont work and I didnt really know how to explain my issue. I originally thought the question I was given was to ask for two inputs (first and last #) and return all prime numbers inbetween. Now I am trying to correct my code for the question at hand (Get N prime #'s)
The size of the n-th largest prime pn is < n * (log(n) + log(log(n)) (for n >= 6), which implies pn <= int(n * (log(n) + log(log(n))). Since this is an upper bound we must keep track of the number of primes we've generated and stop when we've reached n. Here is short python function based on yours illustrating this. It also has an improved upper bound for the inner loop. There are numerous other improvements that are possible.
The upper bound formula only works for n >= 6. You can special-case n < 6 by using [2, 3, 5, 7, 11][:n-1] to get the correct list of primes.
from math import log, sqrt
def calculate_n_prime2(n: int):
"""Only works for n >= 6"""
upper_bound = int(n * (log(n) + log(log(n))))
count = 0
for num in range(2, upper_bound + 1):
for i in range(2, int(sqrt(num)) + 1):
if num % i == 0:
break
else:
count += 1
print(num, end="-")
if count == n:
return

python code is not running.I am calculating prime factors of a number (project euler problem - 3)

I am trying to calculate prime factors of a number in python python 3.8.2 32bit (when i pass 35 in code its output should be 7,and so on).But for some reason the program does not return any answer (when i click run the cmd does not output anything).But when i run this javascript, the exact same code works there. (Previously i had an array(list) to which i would append prime factors and at last i would pop the last element which worked for smaller numbers , but for really large numbers i would get a Memory error,so i converted it to use only one variable which will be updated for every while loop). What is going on here ??
My code is :
import math
# Computes only prime factors of n
def compute(n):
arr = 0
# Checks if n is divisible by 2, and if it is divisible,returns 2 because there will be no any other
# prime factor.
if n % 2 == 0:
return 2
# Now that 2 is eliminated we only check for odd numbers upto (square root of n)+1
for i in range(1, round(math.sqrt(n)) + 1, 2):
while n % i == 0:
arr = n/i
n /= i
return str(arr)
print(compute(81))
I am a newbie in python so plz tell me if i have made any silly mistakes.
Ty.
For numbers that are not divisible by 2, your code runs into an infinite loop at
while n%i == 0
For numbers that are divisible by 2, your function returns 2. The execution of the return statement exits the function.
Even if you change the while in while n%i == 0 to if n% == 0 the function will not work.
You will have to restructure your code.
An easy fix would be to check for all factors of a number till n/2 + 1 and return the factors (in a list) that are prime (which can be checked using a separate isprime function.
def isprime(n):
for x in range(2,n//2+1):
if n%x==0:
return False
return True
def compute(n):
arr = []
for i in range(2, n//2+1):
if n % i == 0:
if isprime(i):
arr.append(i)
return arr
If you want all prime factors (which i guess) you shouldn't return values before you have all prime factors in a list for example.
And with this programm you only check once for a 2. But 4 has 2*2. Put it in a loop.
So this code saves all prime factors in a list:
from math import sqrt, ceil
def get_prime_factors(n):
prime_factors = []
while n > 1:
for i in range (2, ceil(sqrt(n))+1):
if n % i == 0:
possible_prime_number = i
while True:
for j in range(2, possible_prime_number//2-1):
if possible_prime_number % j == 0:
possible_prime_number //= j
break
prime_factors.append(possible_prime_number)
n //= possible_prime_number
break
return prime_factors
if you only want the highest one replace return prime_factors with return max(prime_factors)
OK. I think counting upto 600 billion is ridiculous(considering that i am on a 32 bit system). So here is the final code that i am setteling on which gives answer in acceptable time upto 99 million, without using any array and only 1 for loop.
from math import ceil
# Computes only prime factors of n
def compute(n):
arr = 0
# Checks if n is divisible by 2, and if it is divisible,sets arr =2
if n % 2 == 0:
arr = 2
# Now that 2 is eliminated we only check for odd numbers upto (square root of n)+1
for i in range(1, ceil(n/2) + 1, 2):
if n % i == 0:
arr = i
n //= i
return str(arr)
print(compute(999999999))
P.S.:- If you see any possible improvement in my code plz tell me.

Project Euler #7 Python

I'm having trouble with my code. The question is:
"By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 10 001st prime number?"
This is what it looks like:
div = 10001
i = 2
count = 0
prime = 0
now = []
while count < div:
for x in range (2,i+1):
if len(now) ==2:
break
elif i%x == 0:
now.append(x)
if len(now)==1:
prime = i
count += 1
now = []
i+=1
print(prime)
I have tried div up to 1000 and it seems to work fine(for div 1000 I receive 7919). However, when I try div = 10001 I get nothing, not even errors. If someone would help me out I would really appreciate it.
Thank you.
# 7 10001st prime
import itertools
def is_prime(n):
for i in range(2, n//2 + 1):
if n % i == 0:
return False
else:
continue
return True
p = 0
for x in itertools.count(1):
if is_prime(x):
if p == 10001:
print(x)
break
p += 1
Try this code:
prime_list = lambda x:[i for i in xrange(2, x+1) if all([i%x for x in xrange(2, int(i**0.5+1))])][10000]
print prime_list(120000)
Lambda in Python defines an anonymous function and xrange is similar to range, defining a range of integer numbers. The code uses list comprehension and goes through the numbers twice up to the square root of the final number (thus i**0.5). Each number gets eliminated if it is a multiple of the number that's in the range count. You are left with a list of prime numbers in order. So, you just have to print out the number with the right index.
With just some simple modifications (and simplifications) to your code, you can compute the number you're looking for in 1/3 of a second. First, we only check up to the square root as #Hashman suggests. Next, we only test and divide by odd numbers, dealing with 2 as a special case up front. Finally, we toss the whole now array length logic and simply take advantage of Python's break logic:
limit = 10001
i = 3
count = 1
prime = 2
while count < limit:
for x in range(3, int(i ** 0.5) + 1, 2):
if i % x == 0:
break
else: # no break
prime = i
count += 1
i += 2
print(prime)
As before, this gives us 7919 for a limit of 1000 and it gives us 104743 for a limit of 10001. But this still is not as fast as a sieve.
m=0
n=None
s=1
while s<=10001:
for i in range(1,m):
if m%i==0:n=i
if n==1:print(m,'is prime',s);s+=1
m+=1

Beginner looking for advice/help on this code (Python) [duplicate]

I was having issues in printing a series of prime numbers from one to hundred. I can't figure our what's wrong with my code.
Here's what I wrote; it prints all the odd numbers instead of primes:
for num in range(1, 101):
for i in range(2, num):
if num % i == 0:
break
else:
print(num)
break
You need to check all numbers from 2 to n-1 (to sqrt(n) actually, but ok, let it be n).
If n is divisible by any of the numbers, it is not prime. If a number is prime, print it.
for num in range(2,101):
prime = True
for i in range(2,num):
if (num%i==0):
prime = False
if prime:
print (num)
You can write the same much shorter and more pythonic:
for num in range(2,101):
if all(num%i!=0 for i in range(2,num)):
print (num)
As I've said already, it would be better to check divisors not from 2 to n-1, but from 2 to sqrt(n):
import math
for num in range(2,101):
if all(num%i!=0 for i in range(2,int(math.sqrt(num))+1)):
print (num)
For small numbers like 101 it doesn't matter, but for 10**8 the difference will be really big.
You can improve it a little more by incrementing the range you check by 2, and thereby only checking odd numbers. Like so:
import math
print 2
for num in range(3,101,2):
if all(num%i!=0 for i in range(2,int(math.sqrt(num))+1)):
print (num)
Edited:
As in the first loop odd numbers are selected, in the second loop no
need to check with even numbers, so 'i' value can be start with 3 and
skipped by 2.
import math
print 2
for num in range(3,101,2):
if all(num%i!=0 for i in range(3,int(math.sqrt(num))+1, 2)):
print (num)
I'm a proponent of not assuming the best solution and testing it. Below are some modifications I did to create simple classes of examples by both #igor-chubin and #user448810. First off let me say it's all great information, thank you guys. But I have to acknowledge #user448810 for his clever solution, which turns out to be the fastest by far (of those I tested). So kudos to you, sir! In all examples I use a values of 1 million (1,000,000) as n.
Please feel free to try the code out.
Good luck!
Method 1 as described by Igor Chubin:
def primes_method1(n):
out = list()
for num in range(1, n+1):
prime = True
for i in range(2, num):
if (num % i == 0):
prime = False
if prime:
out.append(num)
return out
Benchmark: Over 272+ seconds
Method 2 as described by Igor Chubin:
def primes_method2(n):
out = list()
for num in range(1, n+1):
if all(num % i != 0 for i in range(2, num)):
out.append(num)
return out
Benchmark: 73.3420000076 seconds
Method 3 as described by Igor Chubin:
def primes_method3(n):
out = list()
for num in range(1, n+1):
if all(num % i != 0 for i in range(2, int(num**.5 ) + 1)):
out.append(num)
return out
Benchmark: 11.3580000401 seconds
Method 4 as described by Igor Chubin:
def primes_method4(n):
out = list()
out.append(2)
for num in range(3, n+1, 2):
if all(num % i != 0 for i in range(2, int(num**.5 ) + 1)):
out.append(num)
return out
Benchmark: 8.7009999752 seconds
Method 5 as described by user448810 (which I thought was quite clever):
def primes_method5(n):
out = list()
sieve = [True] * (n+1)
for p in range(2, n+1):
if (sieve[p]):
out.append(p)
for i in range(p, n+1, p):
sieve[i] = False
return out
Benchmark: 1.12000012398 seconds
Notes: Solution 5 listed above (as proposed by user448810) turned out to be the fastest and honestly quiet creative and clever. I love it. Thanks guys!!
EDIT: Oh, and by the way, I didn't feel there was any need to import the math library for the square root of a value as the equivalent is just (n**.5). Otherwise I didn't edit much other then make the values get stored in and output array to be returned by the class. Also, it would probably be a bit more efficient to store the results to a file than verbose and could save a lot on memory if it was just one at a time but would cost a little bit more time due to disk writes. I think there is always room for improvement though. So hopefully the code makes sense guys.
2021 EDIT: I know it's been a really long time but I was going back through my Stackoverflow after linking it to my Codewars account and saw my recently accumulated points, which which was linked to this post. Something I read in the original poster caught my eye for #user448810, so I decided to do a slight modification mentioned in the original post by filtering out odd values before appending the output array. The results was much better performance for both the optimization as well as latest version of Python 3.8 with a result of 0.723 seconds (prior code) vs 0.504 seconds using 1,000,000 for n.
def primes_method5(n):
out = list()
sieve = [True] * (n+1)
for p in range(2, n+1):
if (sieve[p] and sieve[p]%2==1):
out.append(p)
for i in range(p, n+1, p):
sieve[i] = False
return out
Nearly five years later, I might know a bit more but I still just love Python, and it's kind of crazy to think it's been that long. The post honestly feels like it was made a short time ago and at the time I had only been using python about a year I think. And it still seems relevant. Crazy. Good times.
Instead of trial division, a better approach, invented by the Greek mathematician Eratosthenes over two thousand years ago, is to sieve by repeatedly casting out multiples of primes.
Begin by making a list of all numbers from 2 to the maximum desired prime n. Then repeatedly take the smallest uncrossed number and cross out all of its multiples; the numbers that remain uncrossed are prime.
For example, consider the numbers less than 30. Initially, 2 is identified as prime, then 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 and 30 are crossed out. Next 3 is identified as prime, then 6, 9, 12, 15, 18, 21, 24, 27 and 30 are crossed out. The next prime is 5, so 10, 15, 20, 25 and 30 are crossed out. And so on. The numbers that remain are prime: 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29.
def primes(n):
sieve = [True] * (n+1)
for p in range(2, n+1):
if (sieve[p]):
print p
for i in range(p, n+1, p):
sieve[i] = False
An optimized version of the sieve handles 2 separately and sieves only odd numbers. Also, since all composites less than the square of the current prime are crossed out by smaller primes, the inner loop can start at p^2 instead of p and the outer loop can stop at the square root of n. I'll leave the optimized version for you to work on.
break ends the loop that it is currently in. So, you are only ever checking if it divisible by 2, giving you all odd numbers.
for num in range(2,101):
for i in range(2,num):
if (num%i==0):
break
else:
print(num)
that being said, there are much better ways to find primes in python than this.
for num in range(2,101):
if is_prime(num):
print(num)
def is_prime(n):
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return False
return True
The best way to solve the above problem would be to use the "Miller Rabin Primality Test" algorithm. It uses a probabilistic approach to find if a number is prime or not. And it is by-far the most efficient algorithm I've come across for the same.
The python implementation of the same is demonstrated below:
def miller_rabin(n, k):
# Implementation uses the Miller-Rabin Primality Test
# The optimal number of rounds for this test is 40
# See http://stackoverflow.com/questions/6325576/how-many-iterations-of-rabin-miller-should-i-use-for-cryptographic-safe-primes
# for justification
# If number is even, it's a composite number
if n == 2:
return True
if n % 2 == 0:
return False
r, s = 0, n - 1
while s % 2 == 0:
r += 1
s //= 2
for _ in xrange(k):
a = random.randrange(2, n - 1)
x = pow(a, s, n)
if x == 1 or x == n - 1:
continue
for _ in xrange(r - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
Igor Chubin's answer can be improved. When testing if X is prime, the algorithm doesn't have to check every number up to the square root of X, it only has to check the prime numbers up to the sqrt(X). Thus, it can be more efficient if it refers to the list of prime numbers as it is creating it. The function below outputs a list of all primes under b, which is convenient as a list for several reasons (e.g. when you want to know the number of primes < b). By only checking the primes, it saves time at higher numbers (compare at around 10,000; the difference is stark).
from math import sqrt
def lp(b)
primes = [2]
for c in range(3,b):
e = round(sqrt(c)) + 1
for d in primes:
if d <= e and c%d == 0:
break
else:
primes.extend([c])
return primes
My way of listing primes to an entry number without too much hassle is using the property that you can get any number that is not a prime with the summation of primes.
Therefore, if you divide the entry number with all primes below it, and it is not evenly divisible by any of them, you know that you have a prime.
Of course there are still faster ways of getting the primes, but this one already performs quite well, especially because you are not dividing the entry number by any number, but quite only the primes all the way to that number.
With this code I managed on my computer to list all primes up to 100 000 in less than 4 seconds.
import time as t
start = t.clock()
primes = [2,3,5,7]
for num in xrange(3,100000,2):
if all(num%x != 0 for x in primes):
primes.append(num)
print primes
print t.clock() - start
print sum(primes)
A Python Program function module that returns the 1'st N prime numbers:
def get_primes(count):
"""
Return the 1st count prime integers.
"""
result = []
x=2
while len(result) in range(count):
i=2
flag=0
for i in range(2,x):
if x%i == 0:
flag+=1
break
i=i+1
if flag == 0:
result.append(x)
x+=1
pass
return result
A simpler and more efficient way of solving this is storing all prime numbers found previously and checking if the next number is a multiple of any of the smaller primes.
n = 1000
primes = [2]
for i in range(3, n, 2):
if not any(i % prime == 0 for prime in primes):
primes.append(i)
print(primes)
Note that any is a short circuit function, in other words, it will break the loop as soon as a truthy value is found.
we can make a list of prime numbers using sympy library
import sympy
lower=int(input("lower value:")) #let it be 30
upper=int(input("upper value:")) #let it be 60
l=list(sympy.primerange(lower,upper+1)) #[31,37,41,43,47,53,59]
print(l)
Here's a simple and intuitive version of checking whether it's a prime in a RECURSIVE function! :) (I did it as a homework assignment for an MIT class)
In python it runs very fast until 1900. IF you try more than 1900, you'll get an interesting error :) (Would u like to check how many numbers your computer can manage?)
def is_prime(n, div=2):
if div> n/2.0: return True
if n% div == 0:
return False
else:
div+=1
return is_prime(n,div)
#The program:
until = 1000
for i in range(until):
if is_prime(i):
print i
Of course... if you like recursive functions, this small code can be upgraded with a dictionary to seriously increase its performance, and avoid that funny error.
Here's a simple Level 1 upgrade with a MEMORY integration:
import datetime
def is_prime(n, div=2):
global primelist
if div> n/2.0: return True
if div < primelist[0]:
div = primelist[0]
for x in primelist:
if x ==0 or x==1: continue
if n % x == 0:
return False
if n% div == 0:
return False
else:
div+=1
return is_prime(n,div)
now = datetime.datetime.now()
print 'time and date:',now
until = 100000
primelist=[]
for i in range(until):
if is_prime(i):
primelist.insert(0,i)
print "There are", len(primelist),"prime numbers, until", until
print primelist[0:100], "..."
finish = datetime.datetime.now()
print "It took your computer", finish - now , " to calculate it"
Here are the resuls, where I printed the last 100 prime numbers found.
time and date: 2013-10-15 13:32:11.674448
There are 9594 prime numbers, until 100000
[99991, 99989, 99971, 99961, 99929, 99923, 99907, 99901, 99881, 99877, 99871, 99859, 99839, 99833, 99829, 99823, 99817, 99809, 99793, 99787, 99767, 99761, 99733, 99721, 99719, 99713, 99709, 99707, 99689, 99679, 99667, 99661, 99643, 99623, 99611, 99607, 99581, 99577, 99571, 99563, 99559, 99551, 99529, 99527, 99523, 99497, 99487, 99469, 99439, 99431, 99409, 99401, 99397, 99391, 99377, 99371, 99367, 99349, 99347, 99317, 99289, 99277, 99259, 99257, 99251, 99241, 99233, 99223, 99191, 99181, 99173, 99149, 99139, 99137, 99133, 99131, 99119, 99109, 99103, 99089, 99083, 99079, 99053, 99041, 99023, 99017, 99013, 98999, 98993, 98981, 98963, 98953, 98947, 98939, 98929, 98927, 98911, 98909, 98899, 98897] ...
It took your computer 0:00:40.871083 to calculate it
So It took 40 seconds for my i7 laptop to calculate it. :)
# computes first n prime numbers
def primes(n=1):
from math import sqrt
count = 1
plist = [2]
c = 3
if n <= 0 :
return "Error : integer n not >= 0"
while (count <= n - 1): # n - 1 since 2 is already in plist
pivot = int(sqrt(c))
for i in plist:
if i > pivot : # check for primae factors 'till sqrt c
count+= 1
plist.append(c)
break
elif c % i == 0 :
break # not prime, no need to iterate anymore
else :
continue
c += 2 # skipping even numbers
return plist
You are terminating the loop too early. After you have tested all possibilities in the body of the for loop, and not breaking, then the number is prime. As one is not prime you have to start at 2:
for num in xrange(2, 101):
for i in range(2,num):
if not num % i:
break
else:
print num
In a faster solution you only try to divide by primes that are smaller or equal to the root of the number you are testing. This can be achieved by remembering all primes you have already found. Additionally, you only have to test odd numbers (except 2). You can put the resulting algorithm into a generator so you can use it for storing primes in a container or simply printing them out:
def primes(limit):
if limit > 1:
primes_found = [(2, 4)]
yield 2
for n in xrange(3, limit + 1, 2):
for p, ps in primes_found:
if ps > n:
primes_found.append((n, n * n))
yield n
break
else:
if not n % p:
break
for i in primes(101):
print i
As you can see there is no need to calculate the square root, it is faster to store the square for each prime number and compare each divisor with this number.
How about this? Reading all the suggestions I used this:
prime=[2]+[num for num in xrange(3,m+1,2) if all(num%i!=0 for i in range(2,int(math.sqrt(num))+1))]
Prime numbers up to 1000000
root#nfs:/pywork# time python prime.py
78498
real 0m6.600s
user 0m6.532s
sys 0m0.036s
Adding to the accepted answer, further optimization can be achieved by using a list to store primes and printing them after generation.
import math
Primes_Upto = 101
Primes = [2]
for num in range(3,Primes_Upto,2):
if all(num%i!=0 for i in Primes):
Primes.append(num)
for i in Primes:
print i
Here is the simplest logic for beginners to get prime numbers:
p=[]
for n in range(2,50):
for k in range(2,50):
if n%k ==0 and n !=k:
break
else:
for t in p:
if n%t ==0:
break
else:
p.append(n)
print p
n = int(input())
is_prime = lambda n: all( n%i != 0 for i in range(2, int(n**.5)+1) )
def Prime_series(n):
for i in range(2,n):
if is_prime(i) == True:
print(i,end = " ")
else:
pass
Prime_series(n)
Here is a simplified answer using lambda function.
def function(number):
for j in range(2, number+1):
if all(j % i != 0 for i in range(2, j)):
print(j)
function(13)
for i in range(1, 100):
for j in range(2, i):
if i % j == 0:
break
else:
print(i)
Print n prime numbers using python:
num = input('get the value:')
for i in range(2,num+1):
count = 0
for j in range(2,i):
if i%j != 0:
count += 1
if count == i-2:
print i,
def prime_number(a):
yes=[]
for i in range (2,100):
if (i==2 or i==3 or i==5 or i==7) or (i%2!=0 and i%3!=0 and i%5!=0 and i%7!=0 and i%(i**(float(0.5)))!=0):
yes=yes+[i]
print (yes)
min=int(input("min:"))
max=int(input("max:"))
for num in range(min,max):
for x in range(2,num):
if(num%x==0 and num!=1):
break
else:
print(num,"is prime")
break
This is a sample program I wrote to check if a number is prime or not.
def is_prime(x):
y=0
if x<=1:
return False
elif x == 2:
return True
elif x%2==0:
return False
else:
root = int(x**.5)+2
for i in xrange (2,root):
if x%i==0:
return False
y=1
if y==0:
return True
n = int(raw_input('Enter the integer range to find prime no :'))
p = 2
while p<n:
i = p
cnt = 0
while i>1:
if p%i == 0:
cnt+=1
i-=1
if cnt == 1:
print "%s is Prime Number"%p
else:
print "%s is Not Prime Number"%p
p+=1
Using filter function.
l=range(1,101)
for i in range(2,10): # for i in range(x,y), here y should be around or <= sqrt(101)
l = filter(lambda x: x==i or x%i, l)
print l
for num in range(1,101):
prime = True
for i in range(2,num/2):
if (num%i==0):
prime = False
if prime:
print num
f=0
sum=0
for i in range(1,101):
for j in range(1,i+1):
if(i%j==0):
f=f+1
if(f==2):
sum=sum+i
print i
f=0
print sum
The fastest & best implementation of omitting primes:
def PrimeRanges2(a, b):
arr = range(a, b+1)
up = int(math.sqrt(b)) + 1
for d in range(2, up):
arr = omit_multi(arr, d)
Here is a different approach that trades space for faster search time. This may be fastest so.
import math
def primes(n):
if n < 2:
return []
numbers = [0]*(n+1)
primes = [2]
# Mark all odd numbers as maybe prime, leave evens marked composite.
for i in xrange(3, n+1, 2):
numbers[i] = 1
sqn = int(math.sqrt(n))
# Starting with 3, look at each odd number.
for i in xrange(3, len(numbers), 2):
# Skip if composite.
if numbers[i] == 0:
continue
# Number is prime. Would have been marked as composite if there were
# any smaller prime factors already examined.
primes.append(i)
if i > sqn:
# All remaining odd numbers not marked composite must be prime.
primes.extend([i for i in xrange(i+2, len(numbers), 2)
if numbers[i]])
break
# Mark all multiples of the prime as composite. Check odd multiples.
for r in xrange(i*i, len(numbers), i*2):
numbers[r] = 0
return primes
n = 1000000
p = primes(n)
print "Found", len(p), "primes <=", n
Adding my own version, just to show some itertools tricks v2.7:
import itertools
def Primes():
primes = []
a = 2
while True:
if all(itertools.imap(lambda p : a % p, primes)):
yield a
primes.append(a)
a += 1
# Print the first 100 primes
for _, p in itertools.izip(xrange(100), Primes()):
print p

Can this be made more pythonic?

I came across this (really) simple program a while ago. It just outputs the first x primes. I'm embarrassed to ask, is there any way to make it more "pythonic" ie condense it while making it (more) readable? Switching functions is fine; I'm only interested in readability.
Thanks
from math import sqrt
def isprime(n):
if n ==2:
return True
if n % 2 ==0 : # evens
return False
max = int(sqrt(n))+1 #only need to search up to sqrt n
i=3
while i <= max: # range starts with 3 and for odd i
if n % i == 0:
return False
i+=2
return True
reqprimes = int(input('how many primes: '))
primessofar = 0
currentnumber = 2
while primessofar < reqprimes:
result = isprime(currentnumber)
if result:
primessofar+=1
print currentnumber
#print '\n'
currentnumber += 1
Your algorithm itself may be implemented pythonically, but it's often useful to re-write algorithms in a functional way - You might end up with a completely different but more readable solution at all (which is even more pythonic).
def primes(upper):
n = 2; found = []
while n < upper:
# If a number is not divisble through all preceding primes, it's prime
if all(n % div != 0 for div in found):
yield n
found.append( n )
n += 1
Usage:
for pr in primes(1000):
print pr
Or, with Alasdair's comment taken into account, a more efficient version:
from math import sqrt
from itertools import takewhile
def primes(upper):
n = 2; foundPrimes = []
while n < upper:
sqrtN = int(sqrt(n))
# If a number n is not divisble through all preceding primes up to sqrt(n), it's prime
if all(n % div != 0 for div in takewhile(lambda div: div <= sqrtN, foundPrimes)):
yield n
foundPrimes.append(n)
n += 1
The given code is not very efficient. Alternative solution (just as inefficient):†
>>> from math import sqrt
>>> def is_prime(n):
... return all(n % d for d in range(2, int(sqrt(n)) + 1))
...
>>> def primes_up_to(n):
... return filter(is_prime, range(2, n))
...
>>> list(primes_up_to(20))
[2, 3, 5, 7, 11, 13, 17, 19]
This code uses all, range, int, math.sqrt, filter and list. It is not completely identical to your code, as it prints primes up to a certain number, not exactly n primes. For that, you can do:
>>> from itertools import count, islice
>>> def n_primes(n):
... return islice(filter(is_prime, count(2)), n)
...
>>> list(n_primes(10))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
That introduces another two functions, namely itertools.count and itertools.islice. (That last piece of code works only in Python 3.x; in Python 2.x, use itertools.ifilter instead of filter.)
†: A more efficient method is to use the Sieve of Eratosthenes.
A few minor things from the style guide.
Uses four spaces, not two. (Personally I prefer tabs, but that's not the Pythonic way.)
Fewer blank lines.
Consistent whitespace: n ==2: => n == 2:
Use underscores in your variables names: currentnumber => current_number
Firstly, you should not assign max to a variable as it is an inbuilt function used to find the maximum value from an iterable. Also, that entire section of code can instead be written as
for i in xrange(3, int(sqrt(n))+1, 2):
if n%i==0: return False
Also, instead of defining a new variable result and putting the value returned by isprime into it, you can just directly do
if isprime(currentnumber):
I recently found Project Euler solutions in functional python and it has some really nice examples of working with primes like this. Number 7 is pretty close to your problem:
def isprime(n):
"""Return True if n is a prime number"""
if n < 3:
return (n == 2)
elif n % 2 == 0:
return False
elif any(((n % x) == 0) for x in xrange(3, int(sqrt(n))+1, 2)):
return False
return True
def primes(start=2):
"""Generate prime numbers from 'start'"""
return ifilter(isprime, count(start))
Usually you don't use while loops for simple things like this. You rather create a range object and get the elements from there. So you could rewrite the first loop to this for example:
for i in range( 3, int( sqrt( n ) ) + 1, 2 ):
if n % i == 0:
return False
And it would be a lot better if you would cache your prime numbers and only check the previous prime numbers when checking a new number. You can save a lot time by that (and easily calculate larger prime numbers this way). Here is some code I wrote before to get all prime numbers up to n easily:
def primeNumbers ( end ):
primes = []
primes.append( 2 )
for i in range( 3, end, 2 ):
isPrime = True
for j in primes:
if i % j == 0:
isPrime = False
break
if isPrime:
primes.append( i )
return primes
print primeNumbers( 20 )
Translated from the brilliant guys at stacktrace.it (Daniele Varrazzo, specifically), this version takes advantage of a binary min-heap to solve this problem:
from heapq import heappush, heapreplace
def yield_primes():
"""Endless prime number generator."""
# Yield 2, so we don't have to handle the empty heap special case
yield 2
# Heap of (non-prime, prime factor) tuples.
todel = [ (4, 2) ]
n = 3
while True:
if todel[0][0] != n:
# This number is not on the head of the heap: prime!
yield n
heappush(todel, (n*n, n)) # add to heap
else:
# Not prime: add to heap
while todel[0][0] == n:
p = todel[0][1]
heapreplace(todel, (n+p, p))
# heapreplace pops the minimum value then pushes:
# heap size is unchanged
n += 1
This code isn't mine and I don't understand it fully (but the explaination is here :) ), so I'm marking this answer as community wiki.
You can make it more pythonic with sieve algorithm (all primes small than 100):
def primes(n):
sieved = set()
for i in range(2, n):
if not(i in sieved):
for j in range(i + i, n, i):
sieved.add(j)
return set(range(2, n)) - sieved
print primes(100)
A very small trick will turn it to your goal.

Categories

Resources