I need to plot a graphic showing 2 variables, with a second order ODE with RK4, so far i've done this
from numpy import arange
from pylab import plot,xlabel,ylabel,show
Qger = 400
K = 20
T1 = 150
T2 = 60
N = 1000
h = (T2-T1)/N
rpoints = arange(6.0,8.0,h)
xpoints = []
x = 423
def df(s,t):
dTdt = -Qger*t/(2*K) + 172.8/t
return dTdt
for r in rpoints:
xpoints.append(x)
k1 = h*df(x,r)
k2 = h*df(x+0.5*k1,r+0.5*h)
k3 = h*df(x+0.5*k2,r+0.5*h)
k4 = h*df(x+k3,r+h)
x += (k1+2*k2+2*k3+k4)/6
pylab.plot(rpoints,xpoints)
pylab.xlabel("Raio")
pylab.ylabel("Temperatura")
pylab.show
But that's a RK4 for a first order ODE, because i didn't know and integrated by
hand, but i can't do that and neither use scipy, so can anyone explain to me how to integrate this function or use RK4 with a second order ODE. The function is below.
This is the function, only T and r are variables, the rest is 0
You should be able to put the above in a "semi-discrete" form, thats to say dT/dt in terms of only partial derivatives with respect r. If you can then find a numerical or otherwise approximation to the terms equivalent to dT/dt, i.e. the RHS of dT/dt= df(r,...) then explicit RK4 can be applicable.
In this approach, your time stepping method (RK4), is only applied to your first order derivative of temperature with respect to time.
Related
I have a mathematical model of differential equations that begins as linear and then uses correctional coefficients after reaching a certain value (1).
Currently, I solve the linear function independently, find out where the array goes from less than 1 to greater than 1, and then use that value from the array as the new initial condition. I also correct the time scale.
def vttmodel_linear(m,t,tm,tv,M_max):
n = 1/(7*tm)
dMdt = n
return dMdt
M_0 = 0
M_max = 1 + 7*((RH_crit-RH)/(RH_crit-100)) - 2*np.square((RH_crit-RH)/(RH_crit-100))
print(M_max)
# tm = days
# M = weeks so 7*tm
t = np.arange(0,104+1)
tm = np.exp(-0.68*np.log(T) - 13.9*np.log(RH) + 0.14*W - 0.33*SQ + 66.02)
tv = np.exp(-0.74*np.log(T) - 12.72*np.log(RH) + 0.06*W + 61.50)
m = odient(vttmodel_linear, M_0, t, args=(tm,tv,M_max))
M_0 = m[(np.where(m>1)[0][0])-1]
t = np.where(m>1)[0]
Then I use the new initial condition, M_0 and the updated time scale to solve the non-linear portion of the model.
def vttmodel(M,t,tm,tv,M_max):
n = 1/(7*tm)
k1 = 2/((tv/tm)-1)
k2 = np.max([1-np.exp(2.3*(M-M_max)), 0])
dMdt = n*k1*k2
return dMdt
M = odient(vttmodel, M_0, t, args=(tm,tv,M_max))
I then splice the arrays m and M at the location I found earlier and graph the result.
I would like to find a simplified way to do this. I have tried using If statements within the odient function and also a While loop when calling the two functions, but have not had any luck interrupting the odient function. Suggestions would be helpful. Thank you.
I am currently trying to write some python code to solve an arbitrary system of first order ODEs, using a general explicit Runge-Kutta method defined by the values alpha, gamma (both vectors of dimension m) and beta (lower triangular matrix of dimension m x m) of the Butcher table which are passed in by the user. My code appears to work for single ODEs, having tested it on a few different examples, but I'm struggling to generalise my code to vector valued ODEs (i.e. systems).
In particular, I try to solve a Van der Pol oscillator ODE (reduced to a first order system) using Heun's method defined by the Butcher Tableau values given in my code, but I receive the errors
"RuntimeWarning: overflow encountered in double_scalars f = lambda t,u: np.array(... etc)" and
"RuntimeWarning: invalid value encountered in add kvec[i] = f(t+alpha[i]*h,y+h*sum)"
followed by my solution vector that is clearly blowing up. Note that the commented out code below is one of the examples of single ODEs that I tried and is solved correctly. Could anyone please help? Here is my code:
import numpy as np
def rk(t,y,h,f,alpha,beta,gamma):
'''Runga Kutta iteration'''
return y + h*phi(t,y,h,f,alpha,beta,gamma)
def phi(t,y,h,f,alpha,beta,gamma):
'''Phi function for the Runga Kutta iteration'''
m = len(alpha)
count = np.zeros(len(f(t,y)))
kvec = k(t,y,h,f,alpha,beta,gamma)
for i in range(1,m+1):
count = count + gamma[i-1]*kvec[i-1]
return count
def k(t,y,h,f,alpha,beta,gamma):
'''returning a vector containing each step k_{i} in the m step Runga Kutta method'''
m = len(alpha)
kvec = np.zeros((m,len(f(t,y))))
kvec[0] = f(t,y)
for i in range(1,m):
sum = np.zeros(len(f(t,y)))
for l in range(1,i+1):
sum = sum + beta[i][l-1]*kvec[l-1]
kvec[i] = f(t+alpha[i]*h,y+h*sum)
return kvec
def timeLoop(y0,N,f,alpha,beta,gamma,h,rk):
'''function that loops through time using the RK method'''
t = np.zeros([N+1])
y = np.zeros([N+1,len(y0)])
y[0] = y0
t[0] = 0
for i in range(1,N+1):
y[i] = rk(t[i-1],y[i-1], h, f,alpha,beta,gamma)
t[i] = t[i-1]+h
return t,y
#################################################################
'''f = lambda t,y: (c-y)**2
Y = lambda t: np.array([(1+t*c*(c-1))/(1+t*(c-1))])
h0 = 1
c = 1.5
T = 10
alpha = np.array([0,1])
gamma = np.array([0.5,0.5])
beta = np.array([[0,0],[1,0]])
eff_rk = compute(h0,Y(0),T,f,alpha,beta,gamma,rk, Y,11)'''
#constants
mu = 100
T = 1000
h = 0.01
N = int(T/h)
#initial conditions
y0 = 0.02
d0 = 0
init = np.array([y0,d0])
#Butcher Tableau for Heun's method
alpha = np.array([0,1])
gamma = np.array([0.5,0.5])
beta = np.array([[0,0],[1,0]])
#rhs of the ode system
f = lambda t,u: np.array([u[1],mu*(1-u[0]**2)*u[1]-u[0]])
#solving the system
time, sol = timeLoop(init,N,f,alpha,beta,gamma,h,rk)
print(sol)
Your step size is not small enough. The Van der Pol oscillator with mu=100 is a fast-slow system with very sharp turns at the switching of the modes, so rather stiff. With explicit methods this requires small step sizes, the smallest sensible step size is 1e-5 to 1e-6. You get a solution on the limit cycle already for h=0.001, with resulting velocities up to 150.
You can reduce some of that stiffness by using a different velocity/impulse variable. In the equation
x'' - mu*(1-x^2)*x' + x = 0
you can combine the first two terms into a derivative,
mu*v = x' - mu*(1-x^2/3)*x
so that
x' = mu*(v+(1-x^2/3)*x)
v' = -x/mu
The second equation is now uniformly slow close to the limit cycle, while the first has long relatively straight jumps when v leaves the cubic v=x^3/3-x.
This integrates nicely with the original h=0.01, keeping the solution inside the box [-3,3]x[-2,2], even if it shows some strange oscillations that are not present for smaller step sizes and the exact solution.
I need an ODE-solver for a stiff problem similar to MATLAB ode15s.
For my problem I need to check how many steps (calculations) is needed for different initial values and compare this to my own ODE-solver.
I tried using
solver = scipy.integrate.ode(f)
solver.set_integrator('vode', method='bdf', order=15, nsteps=3000)
solver.set_initial_value(u0, t0)
And then integrating with:
i = 0
while solver.successful() and solver.t<tf:
solver.integrate(tf, step=True)
i += 1
print(i)
Where tf is the end of my time interval.
The function used is defined as:
def func(self, t, u):
u1 = u[1]
u2 = mu * (1-numpy.dot(u[0], u[0]))*u[1] - u[0]
return numpy.array([u1, u2])
Which with the initial value u0 = [ 2, 0] is a stiff problem.
This means that the number of steps should not depend on my constant mu.
But it does.
I think the odeint-method can solve this as a stiff problem - but then I have to send in the whole t-vector and therefore need to set the amount of steps that is done and this ruins the point of my assignment.
Is there anyway to use odeint with adaptive stepsize between two t0 and tf?
Or can you see anything I miss in the use of the vode-integrator?
I'm seeing something similar; with the 'vode' solver, changing methods between 'adams' and 'bdf' doesn't change the number of steps by very much. (By the way, there is no point in using order=15; the maximum order of the 'bdf' method of the 'vode' solver is 5 (and the maximum order of the 'adams' solver is 12). If you leave the argument out, it should use the maximum by default.)
odeint is a wrapper of LSODA. ode also provides a wrapper of LSODA:
change 'vode' to 'lsoda'. Unfortunately the 'lsoda' solver ignores
the step=True argument of the integrate method.
The 'lsoda' solver does much better than 'vode' with method='bdf'.
You can get an upper bound on
the number of steps that were used by initializing tvals = [],
and in func, do tvals.append(t). When the solver completes, set
tvals = np.unique(tvals). The length of tvals tells you the
number of time values at which your function was evaluated.
This is not exactly what you want, but it does show a huge difference
between using the 'lsoda' solver and the 'vode' solver with
method 'bdf'. The number of steps used by the 'lsoda' solver is
on the same order as you quoted for matlab in your comment. (I used mu=10000, tf = 10.)
Update: It turns out that, at least for a stiff problem, it make a huge difference for the 'vode' solver if you provide a function to compute the Jacobian matrix.
The script below runs the 'vode' solver with both methods, and it
runs the 'lsoda' solver. In each case, it runs the solver with and without the Jacobian function. Here's the output it generates:
vode adams jac=None len(tvals) = 517992
vode adams jac=jac len(tvals) = 195
vode bdf jac=None len(tvals) = 516284
vode bdf jac=jac len(tvals) = 55
lsoda jac=None len(tvals) = 49
lsoda jac=jac len(tvals) = 49
The script:
from __future__ import print_function
import numpy as np
from scipy.integrate import ode
def func(t, u, mu):
tvals.append(t)
u1 = u[1]
u2 = mu*(1 - u[0]*u[0])*u[1] - u[0]
return np.array([u1, u2])
def jac(t, u, mu):
j = np.empty((2, 2))
j[0, 0] = 0.0
j[0, 1] = 1.0
j[1, 0] = -mu*2*u[0]*u[1] - 1
j[1, 1] = mu*(1 - u[0]*u[0])
return j
mu = 10000.0
u0 = [2, 0]
t0 = 0.0
tf = 10
for name, kwargs in [('vode', dict(method='adams')),
('vode', dict(method='bdf')),
('lsoda', {})]:
for j in [None, jac]:
solver = ode(func, jac=j)
solver.set_integrator(name, atol=1e-8, rtol=1e-6, **kwargs)
solver.set_f_params(mu)
solver.set_jac_params(mu)
solver.set_initial_value(u0, t0)
tvals = []
i = 0
while solver.successful() and solver.t < tf:
solver.integrate(tf, step=True)
i += 1
print("%-6s %-8s jac=%-5s " %
(name, kwargs.get('method', ''), j.func_name if j else None),
end='')
tvals = np.unique(tvals)
print("len(tvals) =", len(tvals))
I have two programs, one that can take in N coupled ODEs and one that uses 2 coupled ODEs. In the case that I input the 2 same ODEs into both codes, with the same time span, I get different answers. I know the correct answer, so I can deduce that my N many program is wrong.
Here is the code for the 2 equation dedicated one:
# solve the coupled system dy/dt = f(y, t)
def f(y, t):
"""Returns the collections of first-order
coupled differential equations"""
#v11i = y[0]
#v22i = y[1]
#v12i = y[2]
print y[0]
# the model equations
f0 = dHs(tRel,vij)[0].subs(v12,y[2])
f1 = dHs(tRel,vij)[3].subs(v12,y[2])
f2 = dHs(tRel,vij)[1].expand().subs([(v11,y[0]),(v22,y[1]),(v12,y[2])])
return [f0, f1, f2]
# Initial conditions for graphing
v110 = 6
v220 = 6
v120 = 4
y0 = [v110, v220, v120] # initial condition vector
sMesh = np.linspace(0, 1, 10e3) # time grid
# Solve the DE's
soln = odeint(f, y0, sMesh)
and here is the N equation dedicated one:
def f(y, t):
"""Returns the derivative of H_s with initial
values plugged in"""
# the model equations
print y[0]
for i in range (0,len(dh)):
for j in range (0,len(y)):
dh[i] = dh[i].subs(v[j],y[j])
dhArray = []
for i in range(0,len(dh)):
dhArray.append(dh[i])
return dhArray
sMesh = np.linspace(0, 1, 10e3) # time grid
dh = dHsFunction(t, V_s).expand()
soln = odeint(f, v0, sMesh)
where dHs(tRel,vij) = dHsFunction(t,V_s) i.e. the exact same ODEs. Similarly y0 and v0 are the exact same. But when I print y[0] in the N many case, I get an output of:
6.0
5.99999765602
5.99999531204
5.97655553477
5.95311575749
5.92967598021
5.69527820744
5.46088043467
5.2264826619
2.88250493418
0.53852720647
-1.80545052124
-25.2452277984
-48.6850050755
-72.1247823527
-306.522555124
as opposed to the 2 dedicated case of:
6.0
5.99999765602
5.99999765602
5.99999531205
5.99999531205
5.98848712729
5.98848712125
5.97702879748
5.97702878476
5.96562028875
5.96562027486
5.91961750442
5.91961733611
5.93039037809
5.93039029335
5.89564277275
5.89564273736
5.86137647436
5.86137638807
5.82758984835
etc.
where the second result is the correct one and graphs the proper graphs.
Please let me know if more code is needed or anything else. Thanks.
Your second version for f modifies the value of the global variable dh.
On the first call, you substitute in values in it, and these same values are then used in all subsequent calls.
Avoid that by using e.g. dh_tmp = list(dh) inside the function.
I have a second order differential equation that I want to solve it in python. The problem is that for one of the variables I don't have the initial condition in 0 but only the value at infinity. Can one tell me what parameters I should provide for scipy.integrate.odeint ? Can it be solved?
Equation:
Theta needs to be found in terms of time. Its first derivative is equal to zero at t=0. theta is not known at t=0 but it goes to zero at sufficiently large time. all the rest is known. As an approximate I can be set to zero, thus removing the second order derivative which should make the problem easier.
This is far from being a full answer, but is posted here on the OP's request.
The method I described in the comment is what is known as a shooting method, that allows converting a boundary value problem into an initial value problem. For convenience, I am going to rename your function theta as y. To solve your equation numerically, you would first turn it into a first order system, using two auxiliary function, z1 = y and z2 = y', and so your current equation
I y'' + g y' + k y = f(y, t)
would be rewitten as the system
z1' = z2
z2' = f(z1, t) - g z2 - k z1
and your boundary conditions are
z1(inf) = 0
z2(0) = 0
So first we set up the function to compute the derivative of your new vectorial function:
def deriv(z, t) :
return np.array([z[1],
f(z[0], t) - g * z[1] - k * z[0]])
If we had a condition z1[0] = a we could solve this numerically between t = 0 and t = 1000, and get the value of y at the last time as something like
def y_at_inf(a) :
return scipy.integrate.odeint(deriv, np.array([a, 0]),
np.linspace(0, 1000, 10000))[0][-1, 0]
So now all we need to know is what value of a makes y = 0 at t = 1000, our poor man's infinity, with
a = scipy.optimize.root(y_at_inf, [1])