I'm doing different text classification experiments. Now I need to calculate the AUC-ROC for each task. For the binary classifications, I already made it work with this code:
scaler = StandardScaler(with_mean=False)
enc = LabelEncoder()
y = enc.fit_transform(labels)
feat_sel = SelectKBest(mutual_info_classif, k=200)
clf = linear_model.LogisticRegression()
pipe = Pipeline([('vectorizer', DictVectorizer()),
('scaler', StandardScaler(with_mean=False)),
('mutual_info', feat_sel),
('logistregress', clf)])
y_pred = model_selection.cross_val_predict(pipe, instances, y, cv=10)
# instances is a list of dictionaries
#visualisation ROC-AUC
fpr, tpr, thresholds = roc_curve(y, y_pred)
auc = auc(fpr, tpr)
print('auc =', auc)
plt.figure()
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b',
label='AUC = %0.2f'% auc)
plt.legend(loc='lower right')
plt.plot([0,1],[0,1],'r--')
plt.xlim([-0.1,1.2])
plt.ylim([-0.1,1.2])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
But now I need to do it for the multiclass classification task. I read somewhere that I need to binarize the labels, but I really don't get how to calculate ROC for multiclass classification. Tips?
As people mentioned in comments you have to convert your problem into binary by using OneVsAll approach, so you'll have n_class number of ROC curves.
A simple example:
from sklearn.metrics import roc_curve, auc
from sklearn import datasets
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import LinearSVC
from sklearn.preprocessing import label_binarize
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
iris = datasets.load_iris()
X, y = iris.data, iris.target
y = label_binarize(y, classes=[0,1,2])
n_classes = 3
# shuffle and split training and test sets
X_train, X_test, y_train, y_test =\
train_test_split(X, y, test_size=0.33, random_state=0)
# classifier
clf = OneVsRestClassifier(LinearSVC(random_state=0))
y_score = clf.fit(X_train, y_train).decision_function(X_test)
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Plot of a ROC curve for a specific class
for i in range(n_classes):
plt.figure()
plt.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f)' % roc_auc[i])
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
This works for me and is nice if you want them on the same plot. It is similar to
#omdv's answer but maybe a little more succinct.
def plot_multiclass_roc(clf, X_test, y_test, n_classes, figsize=(17, 6)):
y_score = clf.decision_function(X_test)
# structures
fpr = dict()
tpr = dict()
roc_auc = dict()
# calculate dummies once
y_test_dummies = pd.get_dummies(y_test, drop_first=False).values
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test_dummies[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# roc for each class
fig, ax = plt.subplots(figsize=figsize)
ax.plot([0, 1], [0, 1], 'k--')
ax.set_xlim([0.0, 1.0])
ax.set_ylim([0.0, 1.05])
ax.set_xlabel('False Positive Rate')
ax.set_ylabel('True Positive Rate')
ax.set_title('Receiver operating characteristic example')
for i in range(n_classes):
ax.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f) for label %i' % (roc_auc[i], i))
ax.legend(loc="best")
ax.grid(alpha=.4)
sns.despine()
plt.show()
plot_multiclass_roc(full_pipeline, X_test, y_test, n_classes=16, figsize=(16, 10))
To plot the multi-class ROC use label_binarize function and the following code. Adjust and change the code depending on your application.
Example using Iris data:
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.metrics import roc_curve, auc
from sklearn.multiclass import OneVsRestClassifier
from itertools import cycle
iris = datasets.load_iris()
X = iris.data
y = iris.target
# Binarize the output
y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0)
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,
random_state=0))
y_score = classifier.fit(X_train, y_train).decision_function(X_test)
fpr = dict()
tpr = dict()
roc_auc = dict()
lw=2
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
colors = cycle(['blue', 'red', 'green'])
for i, color in zip(range(n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=2,
label='ROC curve of class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([-0.05, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic for multi-class data')
plt.legend(loc="lower right")
plt.show()
In this example, you can print the y_score.
print(y_score)
array([[-3.58459897, -0.3117717 , 1.78242707],
[-2.15411929, 1.11394949, -2.393737 ],
[ 1.89199335, -3.89592195, -6.29685764],
.
.
.
Try this method.It worked for me also very simple to use
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from matplotlib import pyplot
from itertools import cycle
from sklearn.preprocessing import label_binarize
from sklearn.metrics import roc_curve, auc
from sklearn.preprocessing import OneHotEncoder
#One-hot encoder
y_valid=y_test.values.reshape(-1,1)
ypred=pred_final.reshape(-1,1)
y_valid = pd.DataFrame(y_test)
ypred=pd.DataFrame(pred_final)
onehotencoder = OneHotEncoder()
y_valid= onehotencoder.fit_transform(y_valid).toarray()
ypred = onehotencoder.fit_transform(ypred).toarray()
n_classes = ypred.shape[1]
# Plotting and estimation of FPR, TPR
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_valid[:, i], ypred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
colors = cycle(['blue', 'green', 'red','darkorange','olive','purple','navy'])
for i, color in zip(range(n_classes), colors):
pyplot.plot(fpr[i], tpr[i], color=color, lw=1.5, label='ROC curve of class {0}
(area = {1:0.2f})' ''.format(i+1, roc_auc[i]))
pyplot.plot([0, 1], [0, 1], 'k--', lw=1.5)
pyplot.xlim([-0.05, 1.0])
pyplot.ylim([0.0, 1.05])
pyplot.xlabel('False Positive Rate',fontsize=12, fontweight='bold')
pyplot.ylabel('True Positive Rate',fontsize=12, fontweight='bold')
pyplot.tick_params(labelsize=12)
pyplot.legend(loc="lower right")
ax = pyplot.axes()
pyplot.show()
Related
I am trying to generate the ROC Curve of my multiclass SVM model. The model's decision function shape is one vs rest. I tried following the solution in this stackoverflow link, but it generates a "KeyError: 'key of type tuple not found and not a MultiIndex'" error.
Here's my code as of the moment:
Categories = ['Anger', 'AngrilyDisgusted', 'AngrilySurprised', 'Disgust',
'DisgustedlySurprised', 'Fear', 'FearfullyAngry', 'FearfullySurprised',
'HappilyDisgusted', 'HappilySurprised', 'Happiness', 'Neutral',
'SadlyAngry', 'SadlyDisgusted', 'SadlyFearful', 'SadlySurprised',
'Sadness', 'Surprise']
flat_data_arr=[]
target_arr=[]
desc = LocalBinaryPatterns(24, 8)
datadir='TrainingGrayScaled_26k_OG/'
for i in Categories:
print(f'loading... category : {i}')
path=os.path.join(datadir,i)
for img in os.listdir(path):
img_array=imread(os.path.join(path,img))
img_resized=resize(img_array,(128,64))
fd, hog_image = hog(img_resized, orientations=9, pixels_per_cell=(8,8),cells_per_block=(2,2),visualize=True,multichannel=False)
hist = desc.describe(img_resized)
feat = np.hstack([fd,hist])
flat_data_arr.append(feat)
target_arr.append(Categories.index(i))
print(f'loaded category:{i} successfully')
flat_data=np.array(flat_data_arr)
target=np.array(target_arr)
df=pd.DataFrame(flat_data)
df['Target']=target
x=df.iloc[:,:-1]
y=df.iloc[:,-1]
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.20,random_state=77,stratify=y)
model = svm.SVC(kernel='rbf', gamma=0.001, C=10, decision_function_shape='ovr', probability=True).fit(x_train, y_train)
y_pred=model.predict(x_test)
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(len(Categories)):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], model[:, i]) #The error occurs in this part of the code
roc_auc[i] = auc(fpr[i], tpr[i])
# Plot of a ROC curve for a specific class
for i in range(n_classes):
plt.figure()
plt.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f)' % roc_auc[i])
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
The dataset that I am using is an image dataset and I extracted the features of it using HOG and LBP Algorithms.
I am trying to apply the idea of sklearn ROC extension to multiclass to my dataset. My per-class ROC curve looks find of a straight line each, unline the sklearn's example showing curve's fluctuating.
I give an MWE below to show what I mean:
# all imports
import numpy as np
import matplotlib.pyplot as plt
from itertools import cycle
from sklearn import svm, datasets
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
# dummy dataset
X, y = make_classification(10000, n_classes=5, n_informative=10, weights=[.04, .4, .12, .5, .04])
train, test, ytrain, ytest = train_test_split(X, y, test_size=.3, random_state=42)
# random forest model
model = RandomForestClassifier()
model.fit(train, ytrain)
yhat = model.predict(test)
The following function then plots the ROC curve:
def plot_roc_curve(y_test, y_pred):
n_classes = len(np.unique(y_test))
y_test = label_binarize(y_test, classes=np.arange(n_classes))
y_pred = label_binarize(y_pred, classes=np.arange(n_classes))
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_pred.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= n_classes
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
# Plot all ROC curves
#plt.figure(figsize=(10,5))
plt.figure(dpi=600)
lw = 2
plt.plot(fpr["micro"], tpr["micro"],
label="micro-average ROC curve (area = {0:0.2f})".format(roc_auc["micro"]),
color="deeppink", linestyle=":", linewidth=4,)
plt.plot(fpr["macro"], tpr["macro"],
label="macro-average ROC curve (area = {0:0.2f})".format(roc_auc["macro"]),
color="navy", linestyle=":", linewidth=4,)
colors = cycle(["aqua", "darkorange", "darkgreen", "yellow", "blue"])
for i, color in zip(range(n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label="ROC curve of class {0} (area = {1:0.2f})".format(i, roc_auc[i]),)
plt.plot([0, 1], [0, 1], "k--", lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Receiver Operating Characteristic (ROC) curve")
plt.legend()
Output:
plot_roc_curve(ytest, yhat)
Kind of straight line bending once. I would like to see the model performance at different thresholds, not just one, a figure similar to sklearn's illustration for 3-classes shown below:
Point is that you're using predict() rather than predict_proba()/decision_function() to define your y_hat. This means - considering that the threshold vector is defined by the number of distinct values in y_hat (see here for reference), that you'll have few thresholds per class only on which tpr and fpr are computed (which in turn implies that your curves are evaluated at few points only).
Indeed, consider what the doc says to pass to y_scores in roc_curve(), either prob estimates or decision values. In the example from sklearn, decision values are used to compute the scores. Given that you're considering a RandomForestClassifier(), considering probability estimates in your y_hat should be the way to go.
What's the point then of label-binarizing the output? The standard definition for ROC is in terms of binary classification. To pass to a multiclass problem, you have to convert your problem into binary by using OneVsAll approach, so that you'll have n_class number of ROC curves. (Observe, indeed, that as SVC() handles multiclass problems in a OvO fashion by default, in the example they had to force to use OvA by applying OneVsRestClassifier constructor; with a RandomForestClassifier you don't have such problem as that's inherently multiclass, see here for reference). In these terms, once you switch to predict_proba() you'll see there's no much sense in label binarizing predictions.
# all imports
import numpy as np
import matplotlib.pyplot as plt
from itertools import cycle
from sklearn import svm, datasets
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
# dummy dataset
X, y = make_classification(10000, n_classes=5, n_informative=10, weights=[.04, .4, .12, .5, .04])
train, test, ytrain, ytest = train_test_split(X, y, test_size=.3, random_state=42)
# random forest model
model = RandomForestClassifier()
model.fit(train, ytrain)
yhat = model.predict_proba(test)
def plot_roc_curve(y_test, y_pred):
n_classes = len(np.unique(y_test))
y_test = label_binarize(y_test, classes=np.arange(n_classes))
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
thresholds = dict()
for i in range(n_classes):
fpr[i], tpr[i], thresholds[i] = roc_curve(y_test[:, i], y_pred[:, i], drop_intermediate=False)
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_pred.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= n_classes
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
# Plot all ROC curves
#plt.figure(figsize=(10,5))
plt.figure(dpi=600)
lw = 2
plt.plot(fpr["micro"], tpr["micro"],
label="micro-average ROC curve (area = {0:0.2f})".format(roc_auc["micro"]),
color="deeppink", linestyle=":", linewidth=4,)
plt.plot(fpr["macro"], tpr["macro"],
label="macro-average ROC curve (area = {0:0.2f})".format(roc_auc["macro"]),
color="navy", linestyle=":", linewidth=4,)
colors = cycle(["aqua", "darkorange", "darkgreen", "yellow", "blue"])
for i, color in zip(range(n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label="ROC curve of class {0} (area = {1:0.2f})".format(i, roc_auc[i]),)
plt.plot([0, 1], [0, 1], "k--", lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Receiver Operating Characteristic (ROC) curve")
plt.legend()
Eventually, consider that roc_curve() has also a drop_intermediate parameter meant for dropping suboptimal thresholds (it might be useful to know).
Just to update on #amiola answer: I had an issue with non-monotonic classes which lead to very strange fuzzy results. In this case a little modification to the function above will work very well:
classes = sorted(list(y_test['label'].unique()))
Use this in the label_binarize line:
y_test = label_binarize(y_test, classes=classes)
And then when you need a range in the function, just use:
range(len(classes))
Thanks to #dx2-66 for the answer. You can check for more details here.
I am currently using python to train a random forest model. I initially tried to compute the ROC curve representations as follows:
import scikitplot as skplt
from sklearn.metrics import RocCurveDisplay
import sklearn
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
model2_bert = RandomForestClassifier(bootstrap=False, max_depth=None, max_features='auto', min_samples_leaf=5, min_samples_split=5, n_estimators=50)
rf1 = model2_bert.fit(X_train, y_train)
y_hat = rf1.predict(X_test)
ax = plt.gca()
rfc_disp = RocCurveDisplay.from_estimator(rf1, X_test, y_test, ax=ax)
plt.show()
This gives me the figure :
As I was getting some AUC=1 for some specifications, I decided to try to calculate this in other ways.
fpr, tpr, thresholds = metrics.roc_curve(y_test, y_hat)
roc_auc = metrics.auc(fpr, tpr)
roc_auc
# method I: plt
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label='AUC = %0.2f' % roc_auc)
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
And the third method :
y_prob = rf.predict_proba(X_test)
rf1 = model2_bert.fit(X_train, y_train)
skplt.metrics.plot_roc_curve(y_test, y_prob)
metrics.plot_roc_curve(rf1, X_test, y_test)
plt.show()
It seems like the last two coincide and are based on the calculated AUC. What is wrong with the first graph, then?
PS: This is the confusion matris so AUC=0.97 seems to high for me. I even got AUC=1 in the first figure for some specifications...
I think the problem is that y_hat = rf1.predict(X_test) is returning binary classification output (0 and 1). For the ROC AUC you need a probability or score.
Instead, you should use predict_proba:
y_prob = rf1.predict_proba(X_test)
fpr, tpr, thresholds = metrics.roc_curve(y_test, y_prob )
....
<rest of your code>
I want to plot a ROC curve of a classifier using leave-one-out cross validation.
It seems that a similar question has been asked here but without any answer.
In another question here is was stated:
In order to obtain a meaningful ROC AUC with LeaveOneOut, you need to
calculate probability estimates for each fold (each consisting of just
one observation), then calculate the ROC AUC on the set of all these
probability estimates.
Additionally, in the official scikit-learn website there is a similar example but using KFold cross validation (https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html#sphx-glr-auto-examples-model-selection-plot-roc-crossval-py).
So for the leave-one-out cross validation case, I am thinking of gathering all the probability prediction on the test sets (one sample at the time) and after having the predicted probabilities for all my folds, to compute and plot the ROC curve.
Does this seems okay? I do not see any other way to achieve my goal.
Here is my code:
from sklearn.svm import SVC
import numpy as np, matplotlib.pyplot as plt, pandas as pd
from sklearn.model_selection import cross_val_score,cross_val_predict, KFold, LeaveOneOut, StratifiedKFold
from sklearn.metrics import roc_curve, auc
from sklearn import datasets
# Import some data to play with
iris = datasets.load_iris()
X_svc = iris.data
y = iris.target
X_svc, y = X_svc[y != 2], y[y != 2]
clf = SVC(kernel='linear', class_weight='balanced', probability=True, random_state=0)
kf = LeaveOneOut()
all_y = []
all_probs=[]
for train, test in kf.split(X_svc, y):
all_y.append(y[test])
all_probs.append(clf.fit(X_svc[train], y[train]).predict_proba(X_svc[test])[:,1])
all_y = np.array(all_y)
all_probs = np.array(all_probs)
fpr, tpr, thresholds = roc_curve(all_y,all_probs)
roc_auc = auc(fpr, tpr)
plt.figure(1, figsize=(12,6))
plt.plot(fpr, tpr, lw=2, alpha=0.5, label='LOOCV ROC (AUC = %0.2f)' % (roc_auc))
plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='k', label='Chance level', alpha=.8)
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.grid()
plt.show()
I believe the code is correct and the splitting too. I've added a few lines for validation purposes of both the implementation and the results:
from sklearn.model_selection import cross_val_score,cross_val_predict, KFold, LeaveOneOut, StratifiedKFold
from sklearn.metrics import roc_curve, auc
from sklearn import datasets
# Import some data to play with
iris = datasets.load_iris()
X_svc = iris.data
y = iris.target
X_svc, y = X_svc[y != 2], y[y != 2]
clf = SVC(kernel='linear', class_weight='balanced', probability=True, random_state=0)
kf = LeaveOneOut()
if kf.get_n_splits(X_svc) == len(X_svc):
print("They are the same length, splitting correct")
else:
print("Something is wrong")
all_y = []
all_probs=[]
for train, test in kf.split(X_svc, y):
all_y.append(y[test])
all_probs.append(clf.fit(X_svc[train], y[train]).predict_proba(X_svc[test])[:,1])
all_y = np.array(all_y)
all_probs = np.array(all_probs)
#print(all_y) #For validation
#print(all_probs) #For validation
fpr, tpr, thresholds = roc_curve(all_y,all_probs)
print(fpr, tpr, thresholds) #For validation
roc_auc = auc(fpr, tpr)
plt.figure(1, figsize=(12,6))
plt.plot(fpr, tpr, lw=2, alpha=0.5, label='LOOCV ROC (AUC = %0.2f)' % (roc_auc))
plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='k', label='Chance level', alpha=.8)
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.grid()
plt.show()
The If line is meant to only make sure that the splitting is made n times, where n is the number of observations for the given dataset. This is because as the documentation states, LeaveOneOut works the same as Kfold(n_splits=n) and LeaveOneOut(p=1).
Also when printing the predicted proba values they were good, making sense of the curve. Congratz on your 1.00AUC!
I want to evaluate my classification models with a ROC curve. I'm struggling with computing a multiclass ROC Curve for a cross-validated data set. There is no division in train and test set, because of the cross-validation.
Underneath, you can see the code I already tried.
scaler = StandardScaler(with_mean=False)
enc = LabelEncoder()
y = enc.fit_transform(labels)
vec = DictVectorizer()
feat_sel = SelectKBest(mutual_info_classif, k=200)
n_classes = 3
# Pipeline for computing of ROC curves
clf = OneVsRestClassifier(LogisticRegression(solver='newton-cg', multi_class='multinomial'))
clf = clf.label_binarizer_
pipe = Pipeline([('vectorizer', vec),
('scaler', scaler),
('Logreg', clf),
('mutual_info',feat_sel)])
y_pred = model_selection.cross_val_predict(pipe, instances, y, cv=10)
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y[:, i], y_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Plot of a ROC curve for a specific class
for i in range(n_classes):
plt.figure()
plt.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f)' % roc_auc[i])
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
I thought I could binarize my y_pred by using the attribute label_binarizer_ for the OneVsRestclassifier as mentioned here: sklearn.multiclass.OneVsRestclassifier.
However, I get the following error: AttributeError: 'OneVsRestClassifier' object has no attribute 'label_binarizer_'. I don't get this error, because the documentation tells me that it is an
attribute from this classifier.
when I add instances = DataFrame(instances) and clf.fit(instances, y), I get the error: ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
. Instances is a list of feature vector dictionaries. I tried adding instances = np.array(instances) instead, but this gives me this error: TypeError: float() argument must be a string or a number, not 'dict'
What am I doing wrong?
You can use label_binarizer this way and get the desired plot as output.
Example using Iris data:
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.metrics import roc_curve, auc
from sklearn.multiclass import OneVsRestClassifier
from sklearn.model_selection import cross_val_predict
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
iris = datasets.load_iris()
X = iris.data
y = iris.target
# Binarize the output
y_bin = label_binarize(y, classes=[0, 1, 2])
n_classes = y_bin.shape[1]
pipe= Pipeline([('scaler', StandardScaler()), ('clf', LogisticRegression())])
# or
#clf = OneVsRestClassifier(LogisticRegression())
#pipe= Pipeline([('scaler', StandardScaler()), ('clf', clf)])
y_score = cross_val_predict(pipe, X, y, cv=10 ,method='predict_proba')
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_bin[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
colors = cycle(['blue', 'red', 'green'])
for i, color in zip(range(n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label='ROC curve of class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([-0.05, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic for multi-class data')
plt.legend(loc="lower right")
plt.show()