Looping multiple elements in independent regression function - python

my code can find the linear regression equation from a searched term in Google Trends. Here is the working code:
from pytrends.request import TrendReq
google_username = "xxx#gmail.com"
google_password = "xxx"
path = ""
keyword = ["stackoverflow"]
pytrend = TrendReq(google_username, google_password, custom_useragent='')
pytrend.build_payload(kw_list=keyword, timeframe='today 5-y', geo='MX')
def regression(x):
df = pytrend.interest_over_time()[x]
df.insert(0, 'x', range(1, 1 + len(df)))
df.columns = ['x', 'y']
x,y = df['x'], df['y']
x_raya = []
cuad = []
x_mean = x.mean()
y_raya = []
y_mean = y.mean()
for xs in x:
x_raya.append(xs - x_mean)
cuad.append(xs**2)
for ys in y:
y_raya.append(ys - y_mean)
mult = [x_raya[i]*y_raya[i] for i in range(len(x_raya))]
b1 = sum(mult)/sum(cuad)
b0 = y_mean-(b1*x_mean)
print("The equation is %s + %s x" % (b0,b1))
regression(keyword)
Out: The equation is 41.1203123741 + 0.010605085267 x
My problem is whenever I try to add more words to our keyword:
from pytrends.request import TrendReq
google_username = "xxx#gmail.com"
google_password = "xxx"
path = ""
keyword = ["stackoverflow", "reddit"]
pytrend = TrendReq(google_username, google_password, custom_useragent='')
pytrend.build_payload(kw_list=keyword, timeframe='today 5-y', geo='MX')
def regression(x):
df = pytrend.interest_over_time()[x]
df.insert(0, 'x', range(1, 1 + len(df)))
df.columns = ['x', 'y']
x,y = df['x'], df['y']
x_raya = []
cuad = []
x_mean = x.mean()
y_raya = []
y_mean = y.mean()
for xs in x:
x_raya.append(xs - x_mean)
cuad.append(xs**2)
for ys in y:
y_raya.append(ys - y_mean)
mult = [x_raya[i]*y_raya[i] for i in range(len(x_raya))]
b1 = sum(mult)/sum(cuad)
b0 = y_mean-(b1*x_mean)
print("The equation is %s + %s x" % (b0,b1))
regression(keyword)
Out: ValueError: Length mismatch: Expected axis has 3 elements, new values have 2 elements
Any suggestions on how to make the code iterate through various elements in a list?

You're asking how to iterate a list?
# Generalize list variable name
keyword_list = ["stackoverflow", "reddit"]
# Skip down to where you call your regression function
...
# And...use a basic iteration
for keyword in keyword_list:
regression(keyword)
Although, without seeing the code for your pytrend.build_payload() code, I don't know if that can accept and handle a list, or if it needs to be part of the iteration. To be safe, what you should probably do is rearrange your code like so:
from pytrends.request import TrendReq
google_username = "xxx#gmail.com"
google_password = "xxx"
path = ""
def regression(x):
df = pytrend.interest_over_time()[x]
df.insert(0, 'x', range(1, 1 + len(df)))
df.columns = ['x', 'y']
x,y = df['x'], df['y']
x_raya = []
cuad = []
x_mean = x.mean()
y_raya = []
y_mean = y.mean()
for xs in x:
x_raya.append(xs - x_mean)
cuad.append(xs**2)
for ys in y:
y_raya.append(ys - y_mean)
mult = [x_raya[i]*y_raya[i] for i in range(len(x_raya))]
b1 = sum(mult)/sum(cuad)
b0 = y_mean-(b1*x_mean)
print("The equation for keyword {} is {} + {} x".format(keyword, b0,b1))
keyword_list = ["stackoverflow", "reddit"]
for keyword in keyword_list:
pytrend = TrendReq(google_username, google_password, custom_useragent='')
pytrend.build_payload(kw_list=keyword, timeframe='today 5-y', geo='MX')
regression(keyword)

Related

Scipy Curve_fit gives a rather weird fit

Dear Python programmers,
I am currently working with curve_fit from scipy inorder to find out what correlation the x and y data have with echouter. However, the curve fit becomes really weird even when I fit a simple lineair formule towards it. I've tried changing the array to a numpy array at the: def func(x, a, b, c): "Fit functie" return a * np.asarray(x) + b part but it still gives me a graph that looks like a 3 year old who scratched with some red pencil.
One thing I do remember is sorting the values of massflows and rms_smote from low to high. Which you can view above the def func(x, a, b, c) bit. Since the curve_fit was giving me a fit. Yet also kinda scratched out as if you're sketching when the values ware unsorted. I don't know if curve_fit considers data differently if it's sorted or not.
If you need any more information, let me know :) Any suggestion is welcome!
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from scipy.stats import linregress
from scipy.optimize import curve_fit
data_15 = pd.read_csv(r"C:\Users\Thomas\Documents\Pythondata\2022-01-15_SMOTERapport.csv", header= 0, sep=';', decimal=',')
data_06 = pd.read_csv(r"C:\Users\Thomas\Documents\Pythondata\2022-02-06_SMOTERapport.csv", header= 0, sep=';', decimal=',')
data_10 = pd.read_csv(r"C:\Users\Thomas\Documents\Pythondata\2022-02-10_SMOTERapport.csv", header= 0, sep=';', decimal=',')
speed_15 = data_15['SPEED_ACT']
speed_06 = data_06['SPEED_ACT']
speed_10 = data_10['SPEED_ACT']
"Data filter 01_15"
filter = [i for i, e in enumerate(speed_15) if e >= 80]
s_15 = pd.DataFrame(data_15)
speed15 = s_15.filter(items = filter, axis=0)
speed15.reset_index(drop=True, inplace=True)
temp15 = speed15['TP_SMOTE']
foutmetingen2 = [i for i, e in enumerate(temp15) if e < 180]
speed15 = speed15.drop(foutmetingen2)
tp_strip15 = speed15['TP_AMBIENT']
tp_target15 = speed15['TP_TARGET']
tp_smote15 = speed15['TP_SMOTE']
v_15 = speed15['SPEED_ACT']
width15 = speed15['STRIP_WIDTH']
thickness15 = speed15['STRIP_THICKNESS']
power15 = speed15['POWER_INVERTER_PRE']
voltage15 = speed15['VOLTAGE_INVERTER_PRE']
"Data filter 02_06"
filter = [i for i, e in enumerate(speed_06) if e >= 80]
s_06 = pd.DataFrame(data_06)
speed06 = s_06.filter(items = filter, axis=0)
speed06.reset_index(drop=True, inplace=True)
temp06 = speed06['TP_SMOTE']
foutmetingen2 = [i for i, e in enumerate(temp06) if e < 180]
speed06 = speed06.drop(foutmetingen2)
tp_strip06 = speed06['TP_AMBIENT']
tp_target06 = speed06['TP_TARGET']
tp_smote06 = speed06['TP_SMOTE']
v_06 = speed06['SPEED_ACT']
width06 = speed06['STRIP_WIDTH']
thickness06 = speed06['STRIP_THICKNESS']
power06 = speed06['POWER_INVERTER_PRE']
voltage06 = speed06['VOLTAGE_INVERTER_PRE']
"Data filter 02_10"
filter = [i for i, e in enumerate(speed_10) if e >= 80]
s_10 = pd.DataFrame(data_10)
speed10 = s_10.filter(items = filter, axis=0)
speed10.reset_index(drop=True, inplace=True)
temp_01 = speed10['TP_SMOTE']
foutmetingen2 = [i for i, e in enumerate(temp_01) if e < 180]
speed10 = speed10.drop(foutmetingen2)
tp_strip10 = speed10['TP_AMBIENT']
tp_target10 = speed10['TP_TARGET']
tp_smote10 = speed10['TP_SMOTE']
v_10 = speed10['SPEED_ACT']
width10 = speed10['STRIP_WIDTH']
thickness10 = speed10['STRIP_THICKNESS']
power10 = speed10['POWER_INVERTER_PRE']
voltage10 = speed10['VOLTAGE_INVERTER_PRE']
"Constanten"
widthmax = 1253
Kra = 0.002033636
Kosc = 0.073086272
Pnominal = 2200
meting_15 = np.arange(0, len(speed15), 1)
meting_06 = np.arange(0, len(speed06), 1)
meting_10 = np.arange(0, len(speed10), 1)
cp = 480
rho = 7850
"---------------------------------------------------------------------"
def temp(power, speed, width, thickness, tp_strip, tp_target, tp_smote,
voltage):
"Berekende temperatuur vergelijken met target temperatuur"
massflow = (speed/60)*width*10**-3*thickness*10**-3*rho
LossesRA = Kra*Pnominal*(width/widthmax)
LossesOSC = Kosc*Pnominal*(voltage/100)**2
Plosses = (LossesRA + LossesOSC)
power_nl = (power/100)*Pnominal - Plosses
temp_c = ((power_nl*1000)/(massflow*cp)) + tp_strip
verschil_t = (temp_c/tp_target)*100-100
verschil_smote = (temp_c/tp_smote)*100-100
return temp_c, verschil_t, verschil_smote, massflow
temp_15 = temp(power15, v_15, width15, thickness15, tp_strip15, tp_target15,
tp_smote15, voltage15)
temp_06 = temp(power06, v_06, width06, thickness06, tp_strip06, tp_target06,
tp_smote06, voltage06)
temp_10 = temp(power10, v_10, width10, thickness10, tp_strip10, tp_target10,
tp_smote10, voltage10)
"---------------------------------------------------------------------"
def rms(Temperatuurberekend, TemperatuurGemeten):
"De Root Mean Square berekenen tussen berekend en gemeten data"
rootmeansquare = (TemperatuurGemeten - Temperatuurberekend)
rootmeansquare_totaal = np.sum(rootmeansquare)
rootmeansquare_gem = rootmeansquare_totaal/len(rootmeansquare)
return rootmeansquare, rootmeansquare_totaal, rootmeansquare_gem
rms_tp_smote15 = (rms(temp_15[0], tp_smote15))
rms_tp_smote06 = (rms(temp_06[0], tp_smote06))
rms_tp_smote10 = (rms(temp_10[0], tp_smote10))
"----------------------------------------------------------------------"
massflows = [np.sum(temp_06[3])/len(temp_06[3]), np.sum(temp_15[3])/
len(temp_15[3]), np.sum(temp_10[3])/len(temp_10[3])]
rms_smote = [rms_tp_smote06[2], rms_tp_smote10[2], rms_tp_smote15[2]]
rms_tp_smote_pre = np.append(rms_tp_smote15[0].tolist(),
rms_tp_smote06[0].tolist())
rms_tp_smote = np.append(rms_tp_smote_pre, rms_tp_smote10[0].tolist())
massflow_pre = np.append(temp_15[3].tolist(), temp_06[3].tolist())
massflow = np.append(massflow_pre, temp_10[3].tolist())
massflow_sort = np.sort(massflow)
rms_tp_smote_sort = [x for _, x in sorted(zip(massflow, rms_tp_smote))]
a,b,r,p, s_a= linregress (massflows,rms_smote)
print('RC: ' ,a ,'\n','std: ', s_a , '\n', 'Offset: ', b)
def func(x, a, b, c):
"Fit functie"
return a * np.asarray(x) + b
popt, pcov = curve_fit(func, massflow_sort, rms_tp_smote_sort)
popt
functie = func(massflow_sort, *popt)
sns.set_theme(style='whitegrid')
fig, axs = plt.subplots(2, figsize=(10, 10))
axs[0].plot(massflows, rms_smote, label='Temp afwijking als f(massflow)')
axs[0].plot ([massflows[0] ,massflows[len (massflows) -1]] ,
[a*massflows [0]+b,a*massflows[len (massflows) -1]+b] ,
label ='trendlijn')
axs[0].set(xlabel='Mass flow ($kg/s$)',
ylabel='Temperatuur afwijking gem ($\u00b0C$)', title='Met Verliezen')
axs[0].legend(loc='upper right')
axs[1].plot(massflow_sort, rms_tp_smote_sort, 'o', label='Temp/Massflow 01-15')
#axs[1].plot(temp_06[3], rms_tp_smote06[0], 'o', label='Temp/Massflow 02-06')
#axs[1].plot(temp_10[3], rms_tp_smote10[0], 'o', label='Temp/Massflow 02-10')
axs[1].plot(massflow, func(massflow_sort, *popt), 'r-',
label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))
axs[1].set(xlabel='Mass flow ($kg/s$)',
ylabel='Temperatuur afwijking gem ($\u00b0C$)')
axs[1].legend(loc='upper right')
print("Gemiddelde verschil temperatuur smote: ", rms_tp_smote15[1])
print("Gemiddelde uitwijking temperatuur smote: ", rms_tp_smote15[2])

Generate synthetic time series data from existing sample data

Are there any good library/tools in python for generating synthetic time series data from existing sample data? For example I have sales data from January-June and would like to generate synthetic time series data samples from July-December )(keeping time series factors intact, like trend, seasonality, etc).
Leaving the question about quality of such data aside, here is a simple approach you can use Gaussian distribution to generate synthetic data based-off a sample. Below is the critical part.
import numpy as np
x # original sample np.array of features
feature_means = np.mean(x, axis=1)
feature_std = np.std(x, axis=1)
random_normal_feature_values = np.random.normal(feature_means, feature_std)
Here is a fully functioning code I used,
def generate_synthetic_data(sample_dataset, window_mean, window_std, fixed_window=None, variance_range =1 , sythesize_ratio = 2, forced_reverse = False):
synthetic_data = pd.DataFrame(columns=sample_dataset.columns)
synthetic_data.insert(len(sample_dataset.columns), "synthesis_seq", [], True)
for k in range(sythesize_ratio):
if len(synthetic_data) >= len(sample_dataset) * sythesize_ratio:
break;
#this loop generates a set that resembles the entire dataset
country_synthetic = pd.DataFrame(columns=synthetic_data.columns)
if fixed_window != None:
input_sequence_len = fixed_window
else:
input_sequence_len = int(np.random.normal(window_mean, window_std))
#population data change
country_data_i = sample_dataset
if len(country_data_i) < input_sequence_len :
continue
feature_length = configuration['feature_length'] #number of features to be randomized
country_data_array = country_data_i.to_numpy()
country_data_array = country_data_array.T[:feature_length]
country_data_array = country_data_array.reshape(feature_length,len(country_data_i))
x = country_data_array[:feature_length].T
reversed = np.random.normal(0,1)>0
if reversed:
x = x[::-1]
sets =0
x_list = []
dict_x = dict()
for i in range(input_sequence_len):
array_len = ((len(x) -i) - ((len(x)-i)%input_sequence_len))+i
if array_len <= 0:
continue
sets = int( array_len/ input_sequence_len)
if sets <= 0:
continue
x_temp = x[i:array_len].T.reshape(sets,feature_length,input_sequence_len)
uniq_keys = np.array([i+(input_sequence_len*k) for k in range(sets)])
x_temp = x_temp.reshape(feature_length,sets,input_sequence_len)
arrays_split = np.hsplit(x_temp,sets)
dict_x.update(dict(zip(uniq_keys, arrays_split)))
temp_x_list = [dict_x[i].T for i in sorted(dict_x.keys())]
temp_x_list = np.array(temp_x_list).squeeze()
feature_means = np.mean(temp_x_list, axis=1)
feature_std = np.std(temp_x_list, axis=1) /variance_range
random_normal_feature_values = np.random.normal(feature_means, feature_std).T
random_normal_feature_values = np.round(random_normal_feature_values,0)
random_normal_feature_values[random_normal_feature_values < 0] = 0
if reversed:
random_normal_feature_values = random_normal_feature_values.T[::-1]
random_normal_feature_values = random_normal_feature_values.T
for i in range(len(random_normal_feature_values)):
country_synthetic[country_synthetic.columns[i]] = random_normal_feature_values[i]
country_synthetic['synthesis_seq'] = k
synthetic_data = synthetic_data.append(country_synthetic, ignore_index=True)
return synthetic_data
for i in range(1):
directory_name = '/synthetic_'+str(i)
mypath = source_path+ '/cleaned'+directory_name
if os.path.exists(mypath) == False:
os.mkdir(mypath)
data = generate_synthetic_data(original_data, window_mean = 0, window_std= 0, fixed_window=2 ,variance_range = 10**i, sythesize_ratio = 1)
synthetic_data.append(data)
#data.to_csv(mypath+'/synthetic_'+str(i)+'_dt31_05_.csv', index=False )
print('synth step : ', i, ' len : ', len(synthetic_data))
Good luck!

Splittig data in python dataframe and getting the array values automatically

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data = pd.read_csv('D:\ history/segment.csv')
data = pd.DataFrame(data)
data = data.sort_values(['Prob_score'], ascending=[False])
one = len(data)
actualpaid_overall = len(data.loc[data['paidstatus'] == 1])
data_split = np.array_split(data, 10)
data1 = data_split[0]
actualpaid_ten = len(data1.loc[data1['paidstatus'] == 1])
percent_ten = actualpaid_ten/actualpaid_overall
data2 = data_split[1]
actualpaid_twenty = len(data2.loc[data2['paidstatus'] == 1])
percent_twenty = (actualpaid_twenty/actualpaid_overall) + percent_ten
data3 = data_split[2]
actualpaid_thirty = len(data3.loc[data3['paidstatus'] == 1])
percent_thirty = (actualpaid_thirty/actualpaid_overall) + percent_twenty
data4 = data_split[3]
actualpaid_forty = len(data4.loc[data4['paidstatus'] == 1])
percent_forty = (actualpaid_forty/actualpaid_overall) + percent_thirty
data5 = data_split[4]
actualpaid_fifty = len(data5.loc[data5['paidstatus'] == 1])
percent_fifty = (actualpaid_fifty/actualpaid_overall) + percent_forty
data6 = data_split[5]
actualpaid_sixty = len(data6.loc[data6['paidstatus'] == 1])
percent_sixty = (actualpaid_sixty/actualpaid_overall) + percent_fifty
data7 = data_split[6]
actualpaid_seventy = len(data7.loc[data7['paidstatus'] == 1])
percent_seventy = (actualpaid_seventy/actualpaid_overall) + percent_sixty
data8 = data_split[7]
actualpaid_eighty = len(data8.loc[data8['paidstatus'] == 1])
percent_eighty = (actualpaid_eighty/actualpaid_overall) + percent_seventy
data9 = data_split[8]
actualpaid_ninenty = len(data9.loc[data9['paidstatus'] == 1])
percent_ninenty = (actualpaid_ninenty/actualpaid_overall) + percent_eighty
data10 = data_split[9]
actualpaid_hundred = len(data10.loc[data10['paidstatus'] == 1])
percent_hundred = (actualpaid_hundred/actualpaid_overall) + percent_ninenty
array_x = [10,20,30,40,50,60,70,80,90,100]
array_y = [ percent_ten, percent_twenty, percent_thirty, percent_forty,percent_fifty, percent_sixty, percent_seventy, percent_eighty, percent_ninenty, percent_hundred]
plt.xlabel(' Base')
plt.ylabel(' percent')
ax = plt.plot(array_x,array_y)
plt.minorticks_on()
plt.grid(which='major', linestyle='-', linewidth=0.5, color='0.1')
plt.grid( which='both', axis = 'both', linewidth=0.5,color='0.75')
The above is my python code i have splitted my dataframe into 10 equal sections and plotted the graph but I'm not satisfied with this i have two concerns:
array_x = [10,20,30,40,50,60,70,80,90,100] in this line of code i have manually taken the x values, is there any possible way to process automatically as i have taken split(data,10) it should show 10 array values
As we can see the whole data1,2,3,4...10 is being repeated again and again is there a solution to write this in a function or loop.
Any help with codes will be appreciated. Thanks
I believe you need list comprehension and for count is possible use simplier way - sum of boolean mask, True values are processes like 1, then convert list to numpy array and use numpy.cumsum:
data = pd.read_csv('D:\ history/segment.csv')
data = data.sort_values('Prob_score', ascending=False)
one = len(data)
actualpaid_overall = (data['paidstatus'] == 1).sum()
data_split = np.array_split(data, 10)
x = [len(x) for x in data_split]
y = [(x['paidstatus'] == 1).sum()/actualpaid_overall for x in data_split]
array_x = np.cumsum(np.array(x))
array_y = np.cumsum(np.array(y))
plt.xlabel(' Base')
plt.ylabel(' percent')
ax = plt.plot(array_x,array_y)
plt.minorticks_on()
plt.grid(which='major', linestyle='-', linewidth=0.5, color='0.1')
plt.grid( which='both', axis = 'both', linewidth=0.5,color='0.75')
Sample:
np.random.seed(2019)
N = 1000
data = pd.DataFrame({'paidstatus':np.random.randint(3, size=N),
'Prob_score':np.random.randint(100, size=N)})
#print (data)
data = data.sort_values(['Prob_score'], ascending=[False])
actualpaid_overall = (data['paidstatus'] == 1).sum()
data_split = np.array_split(data, 10)
x = [len(x) for x in data_split]
y = [(x['paidstatus'] == 1).sum()/actualpaid_overall for x in data_split]
array_x = np.cumsum(np.array(x))
array_y = np.cumsum(np.array(y))
print (array_x)
[ 100 200 300 400 500 600 700 800 900 1000]
print (array_y)
[0.09118541 0.18844985 0.27963526 0.38601824 0.49848024 0.61702128
0.72036474 0.81155015 0.9331307 1. ]

'numpy.ndarray' object is not callable in the Ipython console

I am trying to calculate cpmx, hmx, smpx, tmpx and smvx by doing simple interpolation after loading the data from excel into pandas dataframe.
While calling the function with cpmx=absmatdata(1,0,0,0,44.011,100) I see:
'numpy.ndarray' object is not callable
Any idea how to go about this?
Here is my code:
import numpy as np
import pandas as pd
def absmatdata(a,b,c,d,material,tmp_ref):
material_map = {2.016: 'H2', 28.016: 'N2', 32.000: 'O2', 32.065: 'S',
18.016: 'H2O', 64.065: 'SO2', 12.001: 'C Graphite',
28.011: 'CO', 44.011: 'CO2', 16.043: 'CH4', 30.070: 'C2H6',
44.097: 'C3H8', 58.124: 'C4H10'}
if material in material_map:
df = pd.read_excel('F:\MAschinenbau\Bachelorarbeit\ABSMAT.xlsx',sheet_name=material_map[material])
else:
print('No data for this material available')
df = [list(np.arange(0,1100,100)),list(np.arange(0,11,1)),list(np.arange(0,11,1)),list(np.arange(0,11,1)),list(np.arange(0,11,1))]
tmp = df.values[:,0]
cpm = df.values[:,1]
hm = df.values[:,2]
smp = df.values[:,3]
smv = df.values[:,4]
tn = np.size(df)
tmp0 = tmp_ref
tmpx = a
cpmx = 0
hmx = b
smpx = c
smvx = d
if a==0 and b==0 and c==0 and d==0:
print('All values are zero')
elif a!=0 and b==0 and c==0 and d==0:
print('T interpolation')
for i in range(0,tn-1):
if tmpx > tmp(i) and tmpx <= tmp(i+1):
int_fak = (tmpx-tmp(i))/(tmp(i+1)-tmp(i))
cpmx = cpm(i) + int_fak*(cpm(i+1)-cpm(i))
hmx = hm(i) + int_fak*(hm(i+1)-hm(i))
smpx = smp(i) + int_fak*(smp(i+1)-smp(i))
smvx = smv(i) + int_fak*(smv(i+1)-smv(i))
return tmpx, cpmx, hmx, smpx, smvx
You set df to DataFrame
You set tmp = df.values[:,0]
You have numpy.ndarry at tmp
You have to get its items with [] not with ()
Your loop part
if tmpx > tmp(i) and tmpx <= tmp(i+1):
int_fak = (tmpx-tmp(i))/(tmp(i+1)-tmp(i))
cpmx = cpm(i) + int_fak*(cpm(i+1)-cpm(i))
hmx = hm(i) + int_fak*(hm(i+1)-hm(i))
smpx = smp(i) + int_fak*(smp(i+1)-smp(i))
smvx = smv(i) + int_fak*(smv(i+1)-smv(i))
Should change with
if tmpx > tmp[i] and tmpx <= tmp[i+1]:
int_fak = (tmpx-tmp[i])/(tmp[i+1]-tmp[i])
cpmx = cpm[i] + int_fak*(cpm[i+1]-cpm[i])
hmx = hm[i] + int_fak*(hm[i+1]-hm(i))
smpx = smp[i] + int_fak*(smp[i+1]-smp[i])
smvx = smv[i] + int_fak*(smv[i+1]-smv[i])
Also you need to change your tn to
tn = np.size(df.values[:,0])

ValueError: x and y must have the same first dimension, but have different shapes

import urllib.request
from math import sqrt, fabs, exp
import matplotlib.pyplot as plot
from sklearn.linear_model import enet_path
from sklearn.metrics import roc_auc_score, roc_curve
import numpy
target_url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/sonar/sonar.all-data'
data = urllib.request.urlopen(target_url)
xList = []
for line in data:
#split on comma
row = line.strip().split(",".encode(encoding='utf-8'))
xList.append(row)
xNum = []
labels = []
for row in xList:
lastCol = row.pop()
if lastCol == b'M':
labels.append(1.0)
else:
labels.append(0.0)
attrRow = [float(elt) for elt in row]
xNum.append(attrRow)
nrow = len(xNum)
ncol = len(xNum[1])
alpha = 1.0
xMeans = []
xSD = []
for i in range(ncol):
col = [xNum[j][i] for j in range(nrow)]
mean = sum(col)/nrow
xMeans.append(mean)
colDiff = [(xNum[j][i] - mean) for j in range(nrow)]
sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrow)])
stdDev = sqrt(sumSq/nrow)
xSD.append(stdDev)
xNormalized = []
for i in range(nrow):
rowNormalized = [(xNum[i][j] - xMeans[j])/xSD[j] for j in range(ncol)]
xNormalized.append(rowNormalized)
meanLabel = sum(labels)/nrow
sdLabel = sqrt(sum([(labels[i] - meanLabel) * (labels[i] - meanLabel) for i in range (nrow)])/nrow)
labelNormalized = [(labels[i] - meanLabel)/sdLabel for i in range(nrow)]
nxval = 10
for ixval in range(nxval):
idxTest = [a for a in range (nrow) if a%nxval == ixval]
idxTrain = [a for a in range(nrow) if a%nxval != ixval]
xTrain = numpy.array([xNormalized[r] for r in idxTrain])
xTest = numpy.array([xNormalized[r] for r in idxTest])
labelTrain = numpy.array([labelNormalized[r] for r in idxTrain])
labelTest = numpy.array([labelNormalized[r] for r in idxTest])
alphas, coefs, _ = enet_path(xTrain, labelTrain, l1_ratio = 0.8, fit_intercept=False, return_models=False)
if ixval == 0:
pred = numpy.dot(xTest, coefs)
yOut = labelTest
else:
yTemp = numpy.array(yOut)
yOut = numpy.concatenate((yTemp, labelTest), axis = 0)
predTemp = numpy.array(pred)
pred = numpy.concatenate((predTemp, numpy.dot(xTest, coefs)), axis = 0)
misClassRate = []
_,nPred = pred.shape
for iPred in range(1, nPred):
predList = list(pred[:, iPred])
errCnt = 0.0
for irow in range(nrow):
if (predList[irow] < 0.0) and (yOut[irow] >= 0.0):
errCnt += 1.0
elif (predList[irow] >= 0.0) and (yOut[irow] < 0.0):
errCnt += 1.0
misClassRate.append(errCnt/nrow)
minError = min(misClassRate)
idxMin = misClassRate.index(minError)
plotAlphas = numpy.array(alphas[1:len(alphas)])
misClassRate_np = numpy.array(misClassRate)
plot.figure()
plot.plot(plotAlphas, misClassRate_np, label='Misclassification Error Across Folds', linewidth=2)
plot.axvline(plotAlphas[idxMin], linestyle='--', label='CV Estimate of Best alpha')
plot.legend()
plot.semilogx()
ax = plot.gca()
ax.invert_xaxis()
plot.xlabel('alpha')
plot.ylabel('Misclassification Error')
plot.axis('tight')
plot.show()
When I executed the code above, it returns: ValueError: x and y must have same first dimension, but have shapes (99,) and (1,).
It seems the problem is due to unequal length in x and y.
Then I checked both plotAlphas and misClassRate_np, they show the same length. Also, both of them has been changed to array but still fail to fix the problem. Can't figure out what's happening.

Categories

Resources