Python irregular x,y data to contour plot on original domain - python

I have file containing points under the columns "x-cord", "y-cord", "value". These are irregularly spaced. I am trying to make a contour plot of "value" and overlay this over the original domain. I gave up trying to do this in both pgfplots and matlab and thought I would give python a go. An answer in any of these scripts would be fine. The python script is as follows
import numpy as np
from scipy.interpolate import griddata
import matplotlib.pyplot as plt
import numpy.ma as ma
from numpy.random import uniform, seed
from scipy.spatial import ConvexHull
#
# Loading data
filename = "strain.dat"
coordinates = []
x_c = []
y_c = []
z_c = []
xyz = open(filename)
title = xyz.readline()
for line in xyz:
x,y,z = line.split()
coordinates.append([float(x), float(y), float(z)])
x_c.append([float(x)])
y_c.append([float(y)])
z_c.append([float(z)])
xyz.close()
#
# Rehaping and translating data
x_c=np.ravel(np.array(x_c))
y_c=np.ravel(np.array(y_c))
z_c=np.ravel(np.array(z_c))
x_c = x_c-100.0
y_c = y_c-100.0
#
# Checking the convex hull
points=np.column_stack((x_c,y_c))
hull = ConvexHull(points);
plt.plot(points[hull.vertices,0], points[hull.vertices,1], 'r--', lw=2)
plt.scatter(x_c, y_c, marker='o', s=5, zorder=10)
#
# Mapping the irregular data onto a regular grid and plotting
xic = np.linspace(min(x_c), max(x_c), 1000)
yic = np.linspace(min(y_c), max(y_c), 1000)
zic = griddata((x_c, y_c), z_c, (xic[None,:], yic[:,None]))
CS = plt.contour(xic,yic,zic,15,linewidths=0.5,colors='k')
CS = plt.contourf(xic,yic,zic,15,cmap=plt.cm.summer)
plt.colorbar() # draw colorbar
#
#plt.scatter(x_c, y_c, marker='o', s=5, zorder=10)
plt.axis('equal')
plt.savefig('foo.pdf', bbox_inches='tight')
plt.show()
and the output looks like
The problem is that griddata uses a convex hull and this convex hull exceeds the edges of the irregular data. Is there any way to set the values of the griddata points which are outside the edges of the boundary of the original points to zero?
Edit
In the end I threw in the towel and reverted back to Matlab. I'll have to export the data to pgfplots to get a nice plot. The code I came up with was
x = strain.x;
y = strain.y;
z = strain.eps;
% Get the alpha shape (couldn't do this in python easily)
shp = alphaShape(x,y,.001);
% Get the boundary nodes
[bi, xy] = boundaryFacets(shp);
no_grid = 500;
xb=xy(:,1);
yb=xy(:,2);
[X,Y] = ndgrid(linspace(min(x),max(x),no_grid),linspace(min(y),max(y),no_grid));
Z = griddata(x,y,z,X,Y,'v4');
% Got through the regular grid and set the values which are outside the boundary of the original domain to Nans
for j = 1:no_grid
[in,on] = inpolygon(X(:,j),Y(:,j),xb,yb);
Z(~in,j) = NaN;
end
contourf(X,Y,Z,10),axis equal
colorbar
hold on
plot(xb,yb)
axis equal
hold off
Here is the resulting image.
If someone can do something similar in Python I'll happily accept the answer.

I had to plot interpolated data on a complex geometry (see the blue points on figure) P(x,z) (z is the horizontal coordinate). I used mask operations and it worked well. Without mask, the whole square (x=0..1 ; z=0..17.28) is covered by contourf.
## limiting values for geometry
xmax1=0.408
zmin1=6.
xmax2=0.064
zmin2=13.12
xmin=0.
xmax=1.
zmin=0.
zmax=17.28
# Grid for points
x1 = np.arange(xmin,xmax+dx,dx)
z1 = np.arange(zmin,zmax+dz,dz)
zi2,xi2 = np.meshgrid(z1,x1)
mask = (((zi2 > zmin2) & (xi2 > xmax2)) | ((zi2 > zmin1) & (zi2 <= zmin2) & (xi2 > xmax1)))
zim=np.ma.masked_array(zi2,mask)
xim=np.ma.masked_array(xi2,mask)
# Grid for P values
# npz=z coordinates of data, npx is the x coordinates and npp is P values
grid_p = scipy.interpolate.griddata((npz, npx), npp, (zim,xim),method='nearest')
pm=np.ma.masked_array(grid_p,mask)
# plot
plt.contour(zim, xim, pm, 25, linewidths=0.5, colors='k',corner_mask=False)
plt.contourf(zim, xim, pm, 25,vmax=grid_p.max(), vmin=grid_p.min(),corner_mask=False)
plt.colorbar()
# Scatter plot to check
plt.scatter(npz,npr, marker='x', s=2)
plt.show()
enter image description here

Related

Matplotlib Contour/Contourf in Cartopy singularity at North Pole/ dateline

I am trying to produce heatmaps showing atmospheric attenuation values for a RF link to a satellite above the North Pole, but I have issues with the interpolation done by the Matplotlib contour/contourf functions.
The linear interpolation done by the contourf function does not work well around the N.Pole, as I suspect it does not know to interpolate between values which go from (-180 deg to +180 deg) - i.e. cross the dateline, or cross the pole.
Any suggestions on a different approach to generate the heatmap, to avoid this horrible hole at the centre?!
Code below to generate plot.
import cartopy.crs as ccrs
import cartopy.feature
plt.figure(figsize=(10,10))
# Initialise Cartopy Axes.
proj=ccrs.LambertAzimuthalEqualArea(central_longitude=0, central_latitude=90)
ax = plt.axes(projection = proj)
ax.set_extent([-180,180,45,90], ccrs.PlateCarree())
ax.add_feature(cartopy.feature.LAND)
ax.add_feature(cartopy.feature.OCEAN)
ax.add_feature(cartopy.feature.COASTLINE)
ax.add_feature(cartopy.feature.BORDERS, linestyle=':')
ax.gridlines(ls=":",color="grey",lw=0.5)
x0,x1 = attenuation_df.lon.min(), attenuation_df.lon.max()
y0,y1 = attenuation_df.lat.min(), attenuation_df.lat.max()
x,y = np.linspace(x0,x1,1000), np.linspace(y0,y1,1000)
X,Y = np.meshgrid(x,y)
Z = scipy.interpolate.griddata(
attenuation_df[["lon","lat"]],
attenuation_df["attenuation"],
(X,Y),
method="linear",
)
plt.contourf(X,Y,Z,transform=ccrs.PlateCarree(),alpha=0.5)
plt.colorbar(shrink=0.5)
plt.title("Attenuation")
plt.show()
Attenuation_df is a Pandas Dataframe which contains an attenuation value at approximately 3500 sample points, which are equally spaced around the globe. Here is the location of the sample points:
Here is the header of attenuation_df:
lon
lat
attenuation
0
-30.8538
48.8813
0.860307
1
-29.0448
49.5026
0.783662
2
-27.2358
50.1317
0.720165
3
-32.6628
48.2676
0.947662
4
37.4226
46.0322
0.27495
The link to the csv of attenuation_df is here: https://pastebin.com/NYA1jFgt
A solution is to reproject your data to a different coordinate system, my suggestion is to use a Polar Stereographic system. However, the large "hole" centered at the North Pole is not coming from the coordinate system in use but to the presence of some nans in your dataset, so you first have to remove those values.
Here a working solution:
from pyproj import Proj
# Define a pyproj function to reproject data
def coordinate_conv(x, y, inverse = True):
p = Proj('+proj=stere +lat_0=90 +lat_ts=70 +lon_0=-45 +k=1 +x_0=0 +y_0=0 +a=6378273 +b=6356889.449 +units=m +no_defs')
return p(x, y, inverse = inverse)
# Drop null values
attenuation_df.dropna(how = 'any', inplace = True)
# Reproject data
rpjx, rpjy = coordinate_conv(attenuation_df.lon, attenuation_df.lat, False)
rpj_cord = pd.DataFrame({'x': rpjx, 'y': rpjy})
# Interpoolate data
x,y = np.linspace(rpjx.min(),rpjx.max(),1000), np.linspace(rpjy.min(),rpjy.max(),1000)
X,Y = np.meshgrid(x,y)
Z = interpolate.griddata(
rpj_cord,
attenuation_df["attenuation"],
(X,Y),
method="linear",
)
# Figure
plt.figure(figsize=(10,10))
# Initialise Cartopy Axes.
proj=ccrs.LambertAzimuthalEqualArea(central_longitude=0, central_latitude=90)
ax = plt.axes(projection = proj)
ax.set_extent([-180,180,45,90], ccrs.PlateCarree())
ax.add_feature(cartopy.feature.LAND)
ax.add_feature(cartopy.feature.OCEAN)
ax.add_feature(cartopy.feature.COASTLINE)
ax.add_feature(cartopy.feature.BORDERS, linestyle=':')
ax.gridlines(ls=":",color="grey",lw=0.5)
kw = dict(central_latitude=90, central_longitude=-45, true_scale_latitude=70)
plt.contourf(X,Y,Z, transform=ccrs.Stereographic(**kw),alpha=0.5)
plt.colorbar(shrink=0.5)
plt.title("Attenuation")
And this is the output figure:

Plotting a particular set of contour line at desired point or location

I want a contour plot showing contour levels corresponding to a particular set of x,y. I tried increasing the number of contour lines but it doesn't give the contour line near the required point.
I want to get a contour line to suppose around (0.1,0.1) but am not able to do so, I tried increasing the number of contours but matplotlib doesn't plot it near the required point nor do I know the level of contour near that point.
khmax = np.arange(0,0.5,0.001)
Ncmax = np.arange(0,0.5,0.001)
[X, Y] = np.meshgrid(Ncmax,khmax)
fig, ax = plt.subplots()
contour = plt.contour(X,Y,VgN,50)
ax.set_title('magnitude of VgN/c')
ax.set_xlabel('Ncmax')
ax.set_ylabel('khmax')
ax.clabel(contour, inline= True, inline_spacing = -1,fmt = '%1.8f',fontsize=8)
plt.show()
It is not the complete code. Any kind of help or hint is highly appreciated.
You could use a not evenly spaced number of levels for the contour:
VgN_min = VgN.min()
VgN_max = VgN.max()
number_of_contours = 21
power = 2
levels = np.linspace(VgN_min**(1/power), VgN_max**(1/power), number_of_contours)**power
Then you can use this parameter to plot the contour:
fig, ax = plt.subplots()
contour = plt.contour(X,Y,VgN, levels = levels)
ax.set_title('magnitude of VgN/c')
ax.set_xlabel('Ncmax')
ax.set_ylabel('khmax')
ax.clabel(contour, inline= True, inline_spacing = -1,fmt = '%1.8f',fontsize=8)
plt.show()
You can tune the power value in order to change the skewness of the contour levels according to your needs:
power = 1
power = 3
Complete Code
import numpy as np
from matplotlib import pyplot as plt
khmax = np.arange(0,0.5,0.001)
Ncmax = np.arange(0,0.5,0.001)
[X, Y] = np.meshgrid(Ncmax,khmax)
VgN = X*Y
VgN_min = VgN.min()
VgN_max = VgN.max()
number_of_contours = 21
power = 3
levels = np.linspace(VgN_min**(1/power), VgN_max**(1/power), number_of_contours)**power
fig, ax = plt.subplots()
contour = plt.contour(X,Y,VgN, levels = levels)
ax.set_title('magnitude of VgN/c')
ax.set_xlabel('Ncmax')
ax.set_ylabel('khmax')
ax.clabel(contour, inline= True, inline_spacing = -1,fmt = '%1.8f',fontsize=8)
plt.show()
Note
In your code you didn't reported the expression of VgN, so I supposed it to be something like VgN = X*Y in the code above and so the above images represent this equation. Change it according to your expression of VgN.

How to use geopandas to plot latitude and longitude on a more detailed map with by using basemaps?

I am trying to plot some latitude and longitudes on the map of delhi which I am able to do by using a shape file in python3.8 using geopandas
Here is the link for the shape file:
https://drive.google.com/file/d/1CEScjlcsKFCgdlME21buexHxjCbkb3WE/view?usp=sharing
Following is my code to plot points on the map:
lo=[list of longitudes]
la=[list of latitudes]
delhi_map = gpd.read_file(r'C:\Users\Desktop\Delhi_Wards.shp')
fig,ax = plt.subplots(figsize = (15,15))
delhi_map.plot(ax = ax)
geometry = [Point(xy) for xy in zip(lo,la)]
geo_df = gpd.GeoDataFrame(geometry = geometry)
print(geo_df)
g = geo_df.plot(ax = ax, markersize = 20, color = 'red',marker = '*',label = 'Delhi')
plt.show()
Following is the result:
Now this map is not very clear and anyone will not be able to recognise the places marked so i tried to use basemap for a more detailed map through the following code:
df = gpd.read_file(r'C:\Users\Jojo\Desktop\Delhi_Wards.shp')
new_df = df.to_crs(epsg=3857)
print(df.crs)
print(new_df.crs)
ax = new_df.plot()
ctx.add_basemap(ax)
plt.show()
And following is the result:
I am getting the basemap but my shapefile is overlapping it. Can i get a map to plot my latitudes and longitudes where the map is much more detailed with names of places or roads or anything similar to it like in google maps or even something like the map which is being overlapped by the blue shapefile map?
Is it possible to plot on a map like this??
https://www.researchgate.net/profile/P_Jops/publication/324715366/figure/fig3/AS:618748771835906#1524532611545/Map-of-Delhi-reproduced-from-Google-Maps-12.png
use zorder parameter to adjust the layers' orders (lower zorder means lower layer), and alpha to the polygon. anyway, I guess, you're plotting df twice, that's why it's overlapping.
here's my script and the result
import geopandas as gpd
import matplotlib.pyplot as plt
import contextily as ctx
from shapely.geometry import Point
long =[77.2885437011719, 77.231931, 77.198767, 77.2750396728516]
lat = [28.6877899169922, 28.663863, 28.648287, 28.5429172515869]
geometry = [Point(xy) for xy in zip(long,lat)]
wardlink = "New Folder/wards delimited.shp"
ward = gpd.read_file(wardlink, bbox=None, mask=None, rows=None)
geo_df = gpd.GeoDataFrame(geometry = geometry)
ward.crs = {'init':"epsg:4326"}
geo_df.crs = {'init':"epsg:4326"}
# plot the polygon
ax = ward.plot(alpha=0.35, color='#d66058', zorder=1)
# plot the boundary only (without fill), just uncomment
#ax = gpd.GeoSeries(ward.to_crs(epsg=3857)['geometry'].unary_union).boundary.plot(ax=ax, alpha=0.5, color="#ed2518",zorder=2)
ax = gpd.GeoSeries(ward['geometry'].unary_union).boundary.plot(ax=ax, alpha=0.5, color="#ed2518",zorder=2)
# plot the marker
ax = geo_df.plot(ax = ax, markersize = 20, color = 'red',marker = '*',label = 'Delhi', zorder=3)
ctx.add_basemap(ax, crs=geo_df.crs.to_string(), source=ctx.providers.OpenStreetMap.Mapnik)
plt.show()
I don't know about google maps being in the contextily, I don't think it's available. alternatively, you can use OpenStreetMap base map which shows quite the same toponym, or any other basemap you can explore. use `source` keyword in the argument, for example, `ctx.add_basemap(ax, source=ctx.providers.OpenStreetMap.Mapnik)` . here's how to check the available providers and the map each providers provides:
>>> ctx.providers.keys()
dict_keys(['OpenStreetMap', 'OpenSeaMap', 'OpenPtMap', 'OpenTopoMap', 'OpenRailwayMap', 'OpenFireMap', 'SafeCast', 'Thunderforest', 'OpenMapSurfer', 'Hydda', 'MapBox', 'Stamen', 'Esri', 'OpenWeatherMap', 'HERE', 'FreeMapSK', 'MtbMap', 'CartoDB', 'HikeBike', 'BasemapAT', 'nlmaps', 'NASAGIBS', 'NLS', 'JusticeMap', 'Wikimedia', 'GeoportailFrance', 'OneMapSG'])
>>> ctx.providers.OpenStreetMap.keys()
dict_keys(['Mapnik', 'DE', 'CH', 'France', 'HOT', 'BZH'])
I don't know geopandas. The idea I'm suggesting uses only basic python and matplotlib. I hope you can adapt it to your needs.
The background is the following map. I figured out the GPS coordinates of its corners using google-maps.
The code follows the three points of my remark. Note that the use of imread and imshow reverses the y coordinate. This is why the function coordinatesOnFigur looks non-symmetrical in x and y.
Running the code yields the map with a red bullet near Montijo (there is a small test at the end).
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import patches
from matplotlib.widgets import Button
NE = (-8.9551, 38.8799)
SE = (-8.9551, 38.6149)
SW = (-9.4068, 38.6149)
NW = (-9.4068, 38.8799)
fig = plt.figure(figsize=(8, 6))
axes = fig.add_subplot(1,1,1, aspect='equal')
img_array = plt.imread("lisbon_2.jpg")
axes.imshow(img_array)
xmax = axes.get_xlim()[1]
ymin = axes.get_ylim()[0] # the y coordinates are reversed, ymax=0
# print(axes.get_xlim(), xmax)
# print(axes.get_ylim(), ymin)
def coordinatesOnFigure(long, lat, SW=SW, NE=NE, xmax=xmax, ymin=ymin):
px = xmax/(NE[0]-SW[0])
qx = -SW[0]*xmax/(NE[0]-SW[0])
py = -ymin/(NE[1]-SW[1])
qy = NE[1]*ymin/(NE[1]-SW[1])
return px*long + qx, py*lat + qy
# plotting a red bullet that corresponds to a GPS location on the map
x, y = coordinatesOnFigure(-9, 38.7)
print("test: on -9, 38.7 we get", x, y)
axes.scatter(x, y, s=40, c='red', alpha=0.9)
plt.show()

Defining a 2D object and using its area as Boolean

I have defined two space dimesions ( x and z ) and I was able to manually "draw" an object to use it as a boolen for solving an equation. I defined it as it follows:
A = np.zeros((nz,nx))
object = np.ones_like(A)
object[ int(5/dz):int(10/dz) , int(5/dx):int(10/dz) ] = 2
object = object == 2
By doing that I can define an square 5x10 in z dimesion and 5x10 in x dimesion , and apply the algorythim which understands this as an area , I think. But when it comes to draw complex areas it ends up being hard doing it by little squares and rectangles.
So I want to automatize an area generation by mouse clicking and I want to be able to use this area as a boolean.
I was able to draw a polygon using:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Polygon
fig, ax = plt.subplots()
object = np.array(plt.ginput(n=-100,mouse_stop=2))
p = Polygon(object, alpha=0.5)
plt.gca().add_artist(p)
plt.draw()
plt.show()
But this outputs z and x coordinates of the vertices, and I tried to use it as boleean but I could'nt write it so that python uderstands it as the area defined by those points.
Is this problem easy to solve?
If you just want to calculate the area of a general polygon, you can use for example the Shapely python package like this:
import numpy as np
import matplotlib.pyplot as plt
from shapely.ops import Polygon
from matplotlib.patches import Polygon as PltPolygon
# Get the coordinate input
canvas_size = np.array([1, 1])
canvas_lim = np.array([[0, canvas_size[0]], [0, canvas_size[1]]])
fig, ax = plt.subplots()
plt.xlim(canvas_lim[0])
plt.ylim(canvas_lim[1])
ax.set_aspect("equal")
coordinates = np.array(plt.ginput(n=-100, mouse_stop=2))
# Use shapely.ops.Polygon to calculate the area
poly = Polygon(coordinates)
area = poly.area
print("The area is {} units^2".format(area))
# Draw the polygon
p = PltPolygon(coordinates, alpha=0.5)
ax.add_artist(p)
plt.show()
If you definitely need the mask, here's one way to rasterize it using numpy and matplotlib.path. For details see the comments in the code:
import numpy as np
import matplotlib.path as mpltPath
import matplotlib.pyplot as plt
# Define the limits of our polygon
canvas_desired_size = np.array([110, 100])
# The pixel size with which we calculate (number of points to consider)
# The higher this number, the more we have to calculate, but the
# closer the approximation will be
pixel_size = 0.1
# Cacluate the actual size of the canvas
num_pxiels = np.ceil(canvas_desired_size / pixel_size).astype(int)
canvas_actual_size = num_pxiels * pixel_size
# Let's create a grid where each pixel's value is it's position in our 2d image
x_coords = np.linspace(
start=0,
stop=canvas_actual_size[0],
endpoint=False,
num=canvas_desired_size[0] / pixel_size,
)
y_coords = np.linspace(
start=0,
stop=canvas_actual_size[1],
endpoint=False,
num=canvas_desired_size[1] / pixel_size,
)
# Since it makes more sense to check if the middle of the pixel is in the
# polygion, we shift everything with half pixel size
pixel_offset = pixel_size / 2
x_centers = x_coords + pixel_offset
y_centers = y_coords + pixel_offset
xx, yy = np.meshgrid(x_centers, y_centers, indexing="ij")
# Flatten our xx and yy matrixes to an N * 2 array, which contains
# every point in our grid
pixel_centers = np.array(
list(zip(xx.flatten(), yy.flatten())), dtype=np.dtype("float64")
)
# Now prompt for the imput shape
canvas_lim = np.array([[0, canvas_actual_size[0]], [0, canvas_actual_size[1]]])
fig, ax = plt.subplots()
plt.xlim(canvas_lim[0])
plt.ylim(canvas_lim[1])
ax.set_aspect("equal")
shape_points = np.array(plt.ginput(n=-100, mouse_stop=2))
# Create a Path object
shape = mpltPath.Path(shape_points)
# Use Path.contains_points to calculate if each point is
# within our shape
shape_contains = shape.contains_points(pixel_centers)
# Reshape the result to be a matrix again
mask = np.reshape(shape_contains, num_pxiels)
# Calculate area
print(
"The shape area is roughly {} units^2".format(
np.sum(shape_contains) * pixel_size ** 2
)
)
# Show the rasterized shape to confirm it looks correct
plt.imshow(np.transpose(mask), aspect="equal", origin="lower")
plt.xlim([0, num_pxiels[0]])
plt.ylim([0, num_pxiels[1]])
plt.show()
Alternatively, a simpler solution would be using your plot as an image and thresholding it to get a boolean mask. There should be plent of examples of how to do this on google.

matplotlib - clip image using line(s)

Is it possible to clip an image generated by imshow() to the area under a line/multiple lines? I think Clip an image using several patches in matplotlib may have the solution, but I'm not sure how to apply it here.
I just want the coloring (from imshow()) under the lines in this plot:
Here is my plotting code:
from __future__ import division
from matplotlib.pyplot import *
from numpy import *
# wavelength array
lambd = logspace(-3.8, -7.2, 1000)
# temperatures
T_earth = 300
T_sun = 6000
# planck's law constants
h = 6.626069e-34
c = 2.997925e8
k = 1.380648e-23
# compute power using planck's law
power_earth = 2*h*c**2/lambd**5 * 1/(exp(h*c/(lambd*k*T_earth)) - 1)
power_sun = 2*h*c**2/lambd**5 * 1/(exp(h*c/(lambd*k*T_sun)) - 1)
# set up color array based on "spectrum" colormap
colors = zeros((1000,1000))
colors[:,:1000-764] = 0.03
for x,i in enumerate(range(701,765)):
colors[:,1000-i] = 1-x/(765-701)
colors[:,1000-701:] = 0.98
figure(1,(4,3),dpi=100)
# plot normalized planck's law graphs
semilogx(lambd, power_earth/max(power_earth), 'b-', lw=4, zorder=5); hold(True)
semilogx(lambd, power_sun/max(power_sun), 'r-', lw=4, zorder=5); hold(True)
# remove ticks (for now)
yticks([]); xticks([])
# set axis to contain lines nicely
axis([min(lambd), max(lambd), 0, 1.1])
# plot colors, shift extent to match graph
imshow(colors, cmap="spectral", extent=[min(lambd), max(lambd), 0, 1.1])
# reverse x-axis (longer wavelengths to the left)
ax = gca(); ax.set_xlim(ax.get_xlim()[::-1])
tight_layout()
show()
What you can do in this case is using the area under the curve as a Patch to apply set_clip_path. All you have to do is call fill_between and extract the corresponding path, like this:
semilogx(lambd, power_earth/max(power_earth), 'b-', lw=4, zorder=5)
# Area under the curve
fillb_earth = fill_between(lambd, power_earth/max(power_earth), color='none', lw=0)
# Get the path
path_earth, = fillb_earth.get_paths()
# Create a Patch
mask_earth = PathPatch(path_earth, fc='none')
# Add it to the current axes
gca().add_patch(mask_earth)
# Add the image
im_earth = imshow(colors, cmap="spectral", extent=[min(lambd), max(lambd), 0, 1.1])
# Clip the image with the Patch
im_earth.set_clip_path(mask_earth)
And then repeat the same lines for the Sun. Here is the result.

Categories

Resources