Softmax function in Tensorflow not displaying correct answer - python

I was testing out the softmax function from Tensorflow but the answers I got don't appear to be correct.
So in the code below kh is a [5,4] matrix. softmaxkh should be the softmax matrix of kh. However even without doing the calculations, you can tell that the maximum numbers in a particular column or row of kh do not necessarily correspond to the the maximum numbers in softmaxkh.
For example '65' in the middle row of the last column is the highest number in both its column and row however in both its row and column in softmaxkh it does not represent the highest number.
import tensorflow as tf
kh = tf.random_uniform(
shape= [5,4],
maxval=67,
dtype=tf.int32,
seed=None,
name=None
)
sess = tf.InteractiveSession()
kh = tf.cast(kh, tf.float32)
softmaxkh = tf.nn.softmax(kh)
print(sess.run(kh))
Which returns
[[ 55. 49. 48. 30.]
[ 21. 39. 20. 11.]
[ 40. 33. 58. 65.]
[ 55. 19. 12. 24.]
[ 17. 8. 14. 0.]]
and
print(sess.run(softmaxkh))
returns
[[ 1.42468502e-21 9.99663830e-01 8.31249167e-07 3.35349847e-04]
[ 3.53262839e-24 1.56288218e-18 1.00000000e+00 3.13913289e-17]
[ 6.10305051e-06 6.69280719e-03 9.93300676e-01 3.03852971e-07]
[ 2.86251861e-20 2.31952296e-16 8.75651089e-27 1.00000000e+00]
[ 5.74948687e-19 2.61026280e-23 9.99993801e-01 6.14417422e-06]]

That is because a random generator such as random_uniform draws different numbers every time you call it.
You need to store the result in a Variable to reuse random generated values across different graph runs:
import tensorflow as tf
kh = tf.random_uniform(
shape= [5,4],
maxval=67,
dtype=tf.int32,
seed=None,
name=None
)
kh = tf.cast(kh, tf.float32)
kh = tf.Variable(kh)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
softmaxkh = tf.nn.softmax(kh)
# run graph
print(sess.run(kh))
# run graph again
print(sess.run(softmaxkh))
Atlernatively, if those values are used only once but at multiple locations, you could run the graph calling all the desired output at once.
import tensorflow as tf
kh = tf.random_uniform(
shape= [5,4],
maxval=67,
dtype=tf.int32,
seed=None,
name=None
)
kh = tf.cast(kh, tf.float32)
sess = tf.InteractiveSession()
softmaxkh = tf.nn.softmax(kh)
# produces consistent output values
print(sess.run([kh, softmaxkh))
# also produces consistent values, but different from above
print(sess.run([kh, softmaxkh))

Related

Trying to achieve same result with Pytorch and Tensorflow MultiheadAttention

I'm trying to recreate a transformer written in Pytorch and implement it in Tensorflow. The problem is that despite both the documentation for the Pytorch version and Tensorflow version, they still come out pretty differently.
I wrote a little code snippet to show the issue:
import torch
import tensorflow as tf
import numpy as np
class TransformerLayer(tf.Module):
def __init__(self, d_model, nhead, dropout=0):
super(TransformerLayer, self).__init__()
self.self_attn = torch.nn.MultiheadAttention(d_model, nhead, dropout=dropout)
batch_size = 2
seq_length = 5
d_model = 10
src = np.random.uniform(size=(batch_size, seq_length, d_model))
srcTF = tf.convert_to_tensor(src)
srcPT = torch.Tensor(src.reshape((seq_length, batch_size, d_model)))
self_attnTF = tf.keras.layers.MultiHeadAttention(key_dim=10, num_heads=5, dropout=0)
transformer_encoder = TransformerLayer(d_model=10, nhead=5, dropout=0.0)
output, scores = self_attnTF(srcTF, srcTF, srcTF, return_attention_scores=True)
print("Tensorflow Attendtion outputs:", output)
print("Tensorflow (averaged) weights:", tf.math.reduce_mean(scores, 1))
print("Torch Attendtion outputs:", transformer_encoder.self_attn(srcPT,srcPT,srcPT)[0])
print("Torch attention output weights:", transformer_encoder.self_attn(srcPT,srcPT,srcPT)[1])
and the result is:
Tensorflow Attendtion outputs: tf.Tensor(
[[[ 0.02602757 -0.14134401 0.00855263 0.4735083 -0.01851891
-0.20382246 -0.18152176 -0.21076852 0.08623976 -0.33548725]
[ 0.02607442 -0.1403394 0.00814065 0.47415024 -0.01882939
-0.20353754 -0.18291879 -0.21234266 0.08595885 -0.33613583]
[ 0.02524654 -0.14096384 0.00870436 0.47411725 -0.01800703
-0.20486829 -0.18163288 -0.21082559 0.08571021 -0.3362339 ]
[ 0.02518575 -0.14039244 0.0090138 0.47431853 -0.01775141
-0.20391947 -0.18138805 -0.2118245 0.08432849 -0.33521986]
[ 0.02556361 -0.14039293 0.00876258 0.4746476 -0.01891363
-0.20398234 -0.18229616 -0.21147579 0.08555281 -0.33639923]]
[[ 0.07844199 -0.1614371 0.01649148 0.5287745 0.05126739
-0.13851154 -0.09829871 -0.1621251 0.01922669 -0.2428589 ]
[ 0.07844222 -0.16024739 0.01805423 0.52941847 0.04975721
-0.13537636 -0.09829231 -0.16129729 0.01979005 -0.24491176]
[ 0.07800542 -0.160701 0.01677295 0.52902794 0.05082911
-0.13843337 -0.09805533 -0.16165744 0.01928401 -0.24327613]
[ 0.07815789 -0.1600025 0.01757433 0.5291927 0.05032986
-0.1368022 -0.09849522 -0.16172451 0.01929555 -0.24438493]
[ 0.0781548 -0.16028519 0.01764914 0.52846324 0.04941286
-0.13746066 -0.09787872 -0.16141161 0.01994199 -0.2440269 ]]], shape=(2, 5, 10), dtype=float32)
Tensorflow (averaged) weights: tf.Tensor(
[[[0.199085 0.20275716 0.20086522 0.19873264 0.19856 ]
[0.2015336 0.19960018 0.20218948 0.19891861 0.19775811]
[0.19906266 0.20318432 0.20190334 0.19812575 0.19772394]
[0.20074987 0.20104568 0.20269363 0.19744729 0.19806348]
[0.19953248 0.20176074 0.20314851 0.19782843 0.19772986]]
[[0.2010009 0.20053487 0.20004745 0.20092985 0.19748697]
[0.20034568 0.20035927 0.19955876 0.20062163 0.19911464]
[0.19967113 0.2006859 0.20012529 0.20047483 0.19904283]
[0.20132652 0.19996871 0.20019794 0.20008174 0.19842513]
[0.2006393 0.20000939 0.19938737 0.20054278 0.19942114]]], shape=(2, 5, 5), dtype=float32)
Torch Attendtion outputs: tensor([[[ 0.1097, -0.4467, -0.0719, -0.1779, -0.0766, -0.1247, 0.1557,
0.0051, -0.3932, -0.1323],
[ 0.1264, -0.3822, 0.0759, -0.0335, -0.1084, -0.1539, 0.1475,
-0.0272, -0.4235, -0.1744]],
[[ 0.1122, -0.4502, -0.0747, -0.1796, -0.0756, -0.1271, 0.1581,
0.0049, -0.3964, -0.1340],
[ 0.1274, -0.3823, 0.0754, -0.0356, -0.1091, -0.1547, 0.1477,
-0.0272, -0.4252, -0.1752]],
[[ 0.1089, -0.4427, -0.0728, -0.1746, -0.0756, -0.1202, 0.1501,
0.0031, -0.3894, -0.1242],
[ 0.1263, -0.3820, 0.0718, -0.0374, -0.1063, -0.1562, 0.1485,
-0.0271, -0.4233, -0.1761]],
[[ 0.1061, -0.4369, -0.0685, -0.1696, -0.0772, -0.1173, 0.1454,
0.0012, -0.3860, -0.1201],
[ 0.1265, -0.3820, 0.0762, -0.0325, -0.1082, -0.1560, 0.1501,
-0.0271, -0.4249, -0.1779]],
[[ 0.1043, -0.4402, -0.0705, -0.1719, -0.0791, -0.1205, 0.1508,
0.0018, -0.3895, -0.1262],
[ 0.1260, -0.3805, 0.0775, -0.0298, -0.1083, -0.1547, 0.1494,
-0.0276, -0.4242, -0.1768]]], grad_fn=<AddBackward0>)
Torch attention output weights: tensor([[[0.2082, 0.2054, 0.1877, 0.1956, 0.2031],
[0.2100, 0.2079, 0.1841, 0.1943, 0.2037],
[0.2007, 0.1995, 0.1929, 0.1999, 0.2070],
[0.1995, 0.1950, 0.1976, 0.2002, 0.2077],
[0.1989, 0.1969, 0.1970, 0.2024, 0.2048]],
[[0.2095, 0.1902, 0.1987, 0.2027, 0.1989],
[0.2090, 0.1956, 0.1997, 0.2004, 0.1952],
[0.2047, 0.1869, 0.2006, 0.2121, 0.1957],
[0.2073, 0.1953, 0.1982, 0.2014, 0.1978],
[0.2089, 0.2003, 0.1953, 0.1957, 0.1998]]], grad_fn=<DivBackward0>)
The output weights look similar but the base attention outputs are way off. Is there any way to make the Tensorflow model come out more like the Pytorch one? Any help would be greatly appreciated!
In MultiHeadAttention there is also a projection layer, like
Q = W_q # input_query + b_q
K = W_k # input_keys + b_k
V = W_v # input_values + b_v
Matrices W_q, W_k and W_v and biases b_q, b_k, b_v are initialized randomly, so difference in outputs should be expected (even between outputs of two distinct layers in pytorch on same input). After self-attention operation there is one more projection and it's also initialized randomly. Weights can be set manually in tensorflow by calling method set_weights of self_attnTF.
Correspondence between weights in tf.keras.layers.MultiHeadAttention and nn.MultiheadAttention not so clear, as an example: torch shares weights between heads, while tf keeps them unique. So if you are using weights of pretrained model from pytorch and try to put them in tensorflow model (for whatever reason) it'll certainly take more than five minutes.
Results should be the same if after initializing pytorch model and tensorflow model you step through their parameters and assign them identical values.

Calculating jacobians and gradients using tensor flow

I'm trying to solve 2D Darcy equation which is a mixed formulation. Suppose I have a target vector and source vector as follows:
u = [u1,u2,p]
x = [x,y].
grad(u,x) =
[du1/dx, du2/dx, dp/dx;
du1/dy, du2/dy, dp/dy]
I'm not understanding if this is what happens if I do tf.gradients(u,x).
tf.gradients(u,x) doesn't return what you want because
from https://www.tensorflow.org/api_docs/python/tf/gradients,
gradients() adds ops to the graph to output the derivatives of ys with
respect to xs. It returns a list of Tensor of length len(xs) where
each tensor is the sum(dy/dx) for y in ys and for x in xs.
Here is how you can get jacobian.
import tensorflow as tf
x=tf.constant([3.0,4.0])
with tf.GradientTape() as tape:
tape.watch(x)
u1=x[0]**2+x[1]**2
u2=x[0]**2
u3=x[1]**3
u=tf.stack([u1,u2,u3])
J = tape.jacobian(u, x)
print(J)
'''
tf.Tensor(
[[ 6. 8.]
[ 6. 0.]
[ 0. 48.]], shape=(3, 2), dtype=float32)
'''

keras, sparse_categorical_crossentropy label Y dimension and value range

Can someone please explain dimensionality logic for input X and class Y
for sparse_categorical_crossentropy loss function ?
I checked both Keras and tf2 doc and examples, and this post.
Cross Entropy vs Sparce but one point is not clear to me.
Does the Y vector need to be expanded to the same number column as
the number classes models outputs (if I use softmax output), or
Does Keras automatically expand Y?
In my case, I have input images 32x32, and Y is a number between 0 and 10.
So the input is (batch_size, h, w), Y (batch_size, 0....10 integer value)
X = (73257, 32, 32)
Y = (73257, 1)
model.fit(X, Y, epochs=30, validation_split=0.10, batch_size=1, verbose=True)
The model itself just a Sequential bunch of Dense layers and output Softmax.
model = Sequential()
model.add(Dense(32, activation='relu',
input_shape=input_shape,
kernel_initializer='he_uniform',
bias_initializer='ones'))
# bunch of Dense layer and output softmax
model.add(Dense(10, activation='softmax'))
The error is dimensionality.
ValueError: Shape mismatch: The shape of labels (received (1, 1)) should equal the shape of logits except for the last dimension (received (1, 32, 10)).
Thank you.
As mentioned in that post, both categorical cross-entropy (cce) and sparse categorical cross-entropy (scc) have the same loss function just except the format of the true label Y. Simply if Y is an integer, you would use scc whereas if Y is one-hot, you would use cce. So for scc, ground truth Y is mostly 1D whereas in cce, ground truth Y mostly is 2D. For ground truth
- (num_of_samples, n_class_one_hot_encode) <- for cce (2D)
- (num_of_samples, n_class_int) <- for scc (1D)
For example, if we use the cifar10 data set, we can do
import tensorflow as tf
(x_train, y_train), (_, _) = tf.keras.datasets.cifar10.load_data()
# train set / data
x_train = x_train.astype('float32') / 255
sparse = y_train
onehot = y_train
onehot = tf.keras.utils.to_categorical(onehot , num_classes=10)
print(sparse[:5]) # < --- (num_of_samples, n_class_int)
print(onehot[:5]) # < --- (num_of_samples, n_class_one_hot_encode)
[[6]
[9]
[9]
[4]
[1]]
[[0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]]
Now, let's define a simple model and train using the above both and see what happens.
def net():
input = tf.keras.Input(shape=(32, 32, 3))
x = tf.keras.layers.Conv2D(16, 3, activation="relu")(input)
x = tf.keras.layers.MaxPooling2D(3)(x)
x = tf.keras.layers.GlobalMaxPooling2D()(x)
x = tf.keras.layers.Dense(10, activation='softmax')(x)
model = tf.keras.Model(input, x)
return model
Using cce
model = net()
model.compile(
loss = tf.keras.losses.CategoricalCrossentropy(),
metrics = 'accuracy',
optimizer = 'adam')
his = model.train_on_batch(x_train, onehot, return_dict=True)
print(his)
{'loss': 2.376708984375, 'accuracy': 0.09651999920606613}
one_hot_pred = model.predict(x_train)
print(onehot[0])
print(one_hot_pred[0])
print(onehot[0].shape)
print(one_hot_pred[0].shape)
[0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
[0.1516315 0.1151238 0.11732318 0.10644271 0.08946694 0.1398355
0.05046898 0.04249624 0.11813554 0.06907552]
(10,)
(10,)
Now, using scc
model = net()
model.compile(
loss = tf.keras.losses.SparseCategoricalCrossentropy(),
metrics = 'accuracy',
optimizer = 'adam')
his = model.train_on_batch(x_train, sparse, return_dict=True)
print(his)
{'loss': 2.331458806991577, 'accuracy': 0.10066000372171402}
sparse_pred = model.predict(x_train)
print(sparse[0])
print(sparse_pred[0])
print(sparse[0].shape)
print(sparse_pred[0].shape)
[6]
[0.07184976 0.08837385 0.06910037 0.12347631 0.09542189 0.09981853
0.11247937 0.06707954 0.14902702 0.12337337]
(1,)
(10,)
Observe that, gt and pred shape for scc are (1,) and (10,). In this case, the loss computes the logarithm only for output index which ground truth indicates to. For example, the gt here is 6, and from pred the loss will compute only the logarithm of pred[6]. Here are some little more details of it.

how can I calculate the multi-label top k precisions with tensorflow?

My task is to predict the five most probable tags in a sentence. And now I've got unscaled logits from the output(dense connect) layer:
with tf.name_scope("output"):
scores = tf.nn.xw_plus_b(self.h_drop, W,b, name="scores")
predictions = tf.nn.top_k(self.scores, 5) # should be the k highest score
with tf.name_scope("accuracy"):
labels = input_y # its shape is (batch_size, num_classes)
# calculate the top k accuracy
now predictions are just like [3,1,2,50,12] (3,1... are indexes of the highest scores), while labels are in "multi-hot" form: [0,1,0,1,1,0...].
In python, i can simply write
correct_preds = [input_y[i]==1 for i in predictions]
weighted = np.dot(correct_preds, [5,4,3,2,1]) # weighted by rank
recall = sum(correct_preds) /sum(input_y)
precision =sum(correct_preds)/len(correct_preds)
but in tensorflow, what form shoud I use to complete this task?
Solution
I've coded up an example of how to do the calculations. All of the inputs in this example are coded as tf.constant but of course you can substitute your variables.
The main trick is the matrix multiplications. First is input_y reshaped to be 2d times a [1x5] ones matrix called to_top5. The second is correct_preds by the weighted_matrix.
Code
import tensorflow as tf
input_y = tf.constant( [5,2,9,1] , dtype=tf.int32 )
predictions = tf.constant( [[9,3,5,2,1],[8,9,0,6,5],[1,9,3,4,5],[1,2,3,4,5]])
to_top5 = tf.constant( [[1,1,1,1,1]] , dtype=tf.int32 )
input_y_for_top5 = tf.matmul( tf.reshape(input_y,[-1,1]) , to_top5 )
correct_preds = tf.cast( tf.equal( input_y_for_top5 , predictions ) , dtype=tf.float16 )
weighted_matrix = tf.constant( [[5.],[4.],[3.],[2.],[1.]] , dtype=tf.float16 )
weighted = tf.matmul(correct_preds,weighted_matrix)
recall = tf.reduce_sum(correct_preds) / tf.cast( tf.reduce_sum(input_y) , tf.float16)
precision = tf.reduce_sum(correct_preds) / tf.constant(5.0,dtype=tf.float16)
## training
# Run tensorflow and print the result
with tf.Session() as sess:
print "\n\n=============\n\n"
print "\ninput_y_for_top5"
print sess.run(input_y_for_top5)
print "\ncorrect_preds"
print sess.run(correct_preds)
print "\nweighted"
print sess.run(weighted)
print "\nrecall"
print sess.run(recall)
print "\nprecision"
print sess.run(precision)
print "\n\n=============\n\n"
Output
=============
input_y_for_top5
[[5 5 5 5 5]
[2 2 2 2 2]
[9 9 9 9 9]
[1 1 1 1 1]]
correct_preds
[[ 0. 0. 1. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 1. 0. 0. 0.]
[ 1. 0. 0. 0. 0.]]
weighted
[[ 3.]
[ 0.]
[ 4.]
[ 5.]]
recall
0.17651
precision
0.6001
=============
Summary
The above examples shows a batch size of 4.
The first batch has a y_label of 5, which means that the element with an index of 5 is the correct label for the first batch. Furthermore, the prediction for the first batch is [9,3,5,2,1] which means that the prediction function thinks that the 9th element is the most likely, then element 3 is the next most likely and so on.
Let's say we want an example of a batch size of 3, then use the following code
input_y = tf.constant( [5,2,9] , dtype=tf.int32 )
predictions = tf.constant( [[9,3,5,2,1],[8,9,0,6,5],[1,9,3,4,5]])
If we substitute in the above lines to the program we can see that indeed it calculates everything for a batch size of 3 correctly.
inspired by #wontonimo' answer above, I implemented a method using matrix ops and tf.reshape, tf.gather. The label tensor are "multi-hot", e.g. [[0,1,0,1],[1,0,0,1]]. prediction tensor are obtained by tf.nn.top_k, looks like [[3,1],[0,1]]. Here is the code:
top_k_pred = tf.nn.top_k(logits, 5)
tmp1 = tf.reshape(tf.range(batch_size)*num_classes, (-1,1))
idx_incre = top_k_pred[1] + tf.concat([tmp1]*5,1)
correct_preds = tf.gather(tf.reshape(y_label, (-1,), tf.reshape(idx_incre, (-1,)))
correct_preds = tf.reshape(correct_pred, (batch_size, 5))
weighted = correct_preds * [[5],[4],[3],[2],[1]]

Reset weights in Keras layer

I'd like to reset (randomize) the weights of all layers in my Keras (deep learning) model. The reason is that I want to be able to train the model several times with different data splits without having to do the (slow) model recompilation every time.
Inspired by this discussion, I'm trying the following code:
# Reset weights
for layer in KModel.layers:
if hasattr(layer,'init'):
input_dim = layer.input_shape[1]
new_weights = layer.init((input_dim, layer.output_dim),name='{}_W'.format(layer.name))
layer.trainable_weights[0].set_value(new_weights.get_value())
However, it only partly works.
Partly, becuase I've inspected some layer.get_weights() values, and they seem to change. But when I restart the training, the cost values are much lower than the initial cost values on the first run. It's almost like I've succeeded resetting some of the weights, but not all of them.
Save the initial weights right after compiling the model but before training it:
model.save_weights('model.h5')
and then after training, "reset" the model by reloading the initial weights:
model.load_weights('model.h5')
This gives you an apples to apples model to compare different data sets and should be quicker than recompiling the entire model.
Reset all layers by checking for initializers:
def reset_weights(model):
import keras.backend as K
session = K.get_session()
for layer in model.layers:
if hasattr(layer, 'kernel_initializer'):
layer.kernel.initializer.run(session=session)
if hasattr(layer, 'bias_initializer'):
layer.bias.initializer.run(session=session)
Update: kernel_initializer is kernel.initializer now.
If you want to truly re-randomize the weights, and not merely restore the initial weights, you can do the following. The code is slightly different depending on whether you're using TensorFlow or Theano.
from keras.initializers import glorot_uniform # Or your initializer of choice
import keras.backend as K
initial_weights = model.get_weights()
backend_name = K.backend()
if backend_name == 'tensorflow':
k_eval = lambda placeholder: placeholder.eval(session=K.get_session())
elif backend_name == 'theano':
k_eval = lambda placeholder: placeholder.eval()
else:
raise ValueError("Unsupported backend")
new_weights = [k_eval(glorot_uniform()(w.shape)) for w in initial_weights]
model.set_weights(new_weights)
I have found the clone_model function that creates a cloned network with the same architecture but new model weights.
Example of use:
model_cloned = tensorflow.keras.models.clone_model(model_base)
Comparing the weights:
original_weights = model_base.get_weights()
print("Original weights", original_weights)
print("========================================================")
print("========================================================")
print("========================================================")
model_cloned = tensorflow.keras.models.clone_model(model_base)
new_weights = model_cloned.get_weights()
print("New weights", new_weights)
If you execute this code several times, you will notice that the cloned model receives new weights each time.
Tensorflow 2 answer:
for ix, layer in enumerate(model.layers):
if hasattr(model.layers[ix], 'kernel_initializer') and \
hasattr(model.layers[ix], 'bias_initializer'):
weight_initializer = model.layers[ix].kernel_initializer
bias_initializer = model.layers[ix].bias_initializer
old_weights, old_biases = model.layers[ix].get_weights()
model.layers[ix].set_weights([
weight_initializer(shape=old_weights.shape),
bias_initializer(shape=old_biases.shape)])
Original weights:
model.layers[1].get_weights()[0][0]
array([ 0.4450057 , -0.13564804, 0.35884023, 0.41411972, 0.24866664,
0.07641453, 0.45726687, -0.04410008, 0.33194816, -0.1965386 ,
-0.38438258, -0.13263905, -0.23807487, 0.40130925, -0.07339832,
0.20535922], dtype=float32)
New weights:
model.layers[1].get_weights()[0][0]
array([-0.4607593 , -0.13104361, -0.0372932 , -0.34242013, 0.12066692,
-0.39146423, 0.3247317 , 0.2635846 , -0.10496247, -0.40134245,
0.19276887, 0.2652442 , -0.18802321, -0.18488845, 0.0826562 ,
-0.23322225], dtype=float32)
K.get_session().close()
K.set_session(tf.Session())
K.get_session().run(tf.global_variables_initializer())
Try set_weights.
for example:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
import numpy as np
np.random.seed(1234)
from keras.layers import Input
from keras.layers.convolutional import Convolution2D
from keras.models import Model
print("Building Model...")
inp = Input(shape=(1,None,None))
x = Convolution2D(1, 3, 3, border_mode='same', init='normal',bias=False)(inp)
output = Convolution2D(1, 3, 3, border_mode='same', init='normal',bias=False)(x)
model_network = Model(input=inp, output=output)
w = np.asarray([
[[[
[0,0,0],
[0,2,0],
[0,0,0]
]]]
])
for layer_i in range(len(model_network.layers)):
print (model_network.layers[layer_i])
for layer_i in range(1,len(model_network.layers)):
model_network.layers[layer_i].set_weights(w)
input_mat = np.asarray([
[[
[1.,2.,3.,10.],
[4.,5.,6.,11.],
[7.,8.,9.,12.]
]]
])
print("Input:")
print(input_mat)
print("Output:")
print(model_network.predict(input_mat))
w2 = np.asarray([
[[[
[0,0,0],
[0,3,0],
[0,0,0]
]]]
])
for layer_i in range(1,len(model_network.layers)):
model_network.layers[layer_i].set_weights(w2)
print("Output:")
print(model_network.predict(input_mat))
build a model with say, two convolutional layers
print("Building Model...")
inp = Input(shape=(1,None,None))
x = Convolution2D(1, 3, 3, border_mode='same', init='normal',bias=False)(inp)
output = Convolution2D(1, 3, 3, border_mode='same', init='normal',bias=False)(x)
model_network = Model(input=inp, output=output)
then define your weights (i'm using a simple w, but you could use np.random.uniform or anything like that if you want)
w = np.asarray([
[[[
[0,0,0],
[0,2,0],
[0,0,0]
]]]
])
Take a peek at what are the layers inside a model
for layer_i in range(len(model_network.layers)):
print (model_network.layers[layer_i])
Set each weight for each convolutional layer (you'll see that the first layer is actually input and you don't want to change that, that's why the range starts from 1 not zero).
for layer_i in range(1,len(model_network.layers)):
model_network.layers[layer_i].set_weights(w)
Generate some input for your test and predict the output from your model
input_mat = np.asarray([
[[
[1.,2.,3.,10.],
[4.,5.,6.,11.],
[7.,8.,9.,12.]
]]
])
print("Output:")
print(model_network.predict(input_mat))
You could change it again if you want and check again for the output:
w2 = np.asarray([
[[[
[0,0,0],
[0,3,0],
[0,0,0]
]]]
])
for layer_i in range(1,len(model_network.layers)):
model_network.layers[layer_i].set_weights(w2)
print("Output:")
print(model_network.predict(input_mat))
Sample output:
Using Theano backend.
Building Model...
<keras.engine.topology.InputLayer object at 0x7fc0c619fd50>
<keras.layers.convolutional.Convolution2D object at 0x7fc0c6166250>
<keras.layers.convolutional.Convolution2D object at 0x7fc0c6150a10>
Weights after change:
[array([[[[ 0., 0., 0.],
[ 0., 2., 0.],
[ 0., 0., 0.]]]], dtype=float32)]
Input:
[[[[ 1. 2. 3. 10.]
[ 4. 5. 6. 11.]
[ 7. 8. 9. 12.]]]]
Output:
[[[[ 4. 8. 12. 40.]
[ 16. 20. 24. 44.]
[ 28. 32. 36. 48.]]]]
Output:
[[[[ 9. 18. 27. 90.]
[ 36. 45. 54. 99.]
[ 63. 72. 81. 108.]]]]
From your peek at .layers you can see that the first layer is input and the others your convolutional layers.
For tf2 the simplest way to actually reset weights would be:
tf_model.set_weights(
clone_model(tf_model).get_weights()
)
clone_model() as mentioned by #danielsaromo returns new model with trainable params initialized from scratch, we use its weights to reinitialize our model thus no model compilation (knowledge about its loss or optimizer) is needed.
There are two caveats though, first is mentioned in clone_model()'s documentation:
clone_model will not preserve the uniqueness of shared objects within the model (e.g. a single variable attached to two distinct layers will be restored as two separate variables).
Another caveat is that for large models cloning might fail due to memory limit.
To "random" re-initialize weights of a compiled untrained model in TF 2.0 (tf.keras):
weights = [glorot_uniform(seed=random.randint(0, 1000))(w.shape) if w.ndim > 1 else w for w in model.get_weights()]
Note the "if wdim > 1 else w". You don't want to re-initialize the biases (they stay 0 or 1).
use keras.backend.clear_session()

Categories

Resources