What are noisy samples in Scikit's DBSCAN clustering algorithm? - python

If I apply Scikit's DBSCAN (http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html) on a similarity matrix, I get a series of labels back. Some of these labels are -1. The documentation calls them noisy samples.
What are these? Do they all belong to a single cluster, or do they each belong to their own cluster since they're noisy?
Thank you

These are not exactly part of a cluster. They are simply points that do not belong to any clusters and can be "ignored" to some extent.
Remember, DBSCAN stands for "Density-Based Spatial Clustering of Applications with Noise." DBSCAN checks to make sure a point has enough neighbors within a specified range to classify the points into the clusters.
But what happens to the points that do not meet the criteria for falling into any of the main clusters? What if a point does not have enough neighbors within the specified radius to be considered part of a cluster? These are the points that are given the cluster label of -1 and are considered noise.
So what?
Well, if you are analyzing data points and you are only interested in the general clusters, you lower the size of the data and cut out the noise. Or, if you are using cluster analysis to classify data, in some cases it is possible to discard the noise as outliers.
In anomaly detection, points that do not fit into any category are also significant, as they can represent a problem or rare event.

Related

explanation of sklearn optics plot

I am currently learning how to use OPTICS in sklearn. I am inputting a numpy array of (205,22). I am able to get plots out of it, but I do not understand how I am getting a 2d plot out of multiple dimensions and how I am supposed to read it. I more or less understand the reachability plot, but the rest of it makes no sense to me. Can someone please explain what is happening. Is the function just simplifying the data to two dimensions somehow? Thank you
From the sklearn user guide:
The reachability distances generated by OPTICS allow for variable density extraction of clusters within a single data set. As shown in the above plot, combining reachability distances and data set ordering_ produces a reachability plot, where point density is represented on the Y-axis, and points are ordered such that nearby points are adjacent. ‘Cutting’ the reachability plot at a single value produces DBSCAN like results; all points above the ‘cut’ are classified as noise, and each time that there is a break when reading from left to right signifies a new cluster.
the other three plots are a visual representation of the actual clusters found by three different algorithms.
as you can see in the OPTICS Clustering plot there are two high density clusters (blue and cyan) the gray crosses acording to the reachability plot are classify as noise because of the low xi value
in the DBSCAN clustering with eps = 0.5 everithing is considered noise since the epsilon value is to low and the algorithm can not found any density points.
Now it is obvious that in the third plot the algorithm found just a single cluster because of the adjustment of the epsilon value and everything above the 2.0 line is considered noise.
please refer to the user guide:

How to reconstruct an image after clustering with hdbscan?

I am trying to reconstruct a brain tumor image after clustering using hdbscan.
However, hdbscan does not have cluster centers unlike kmeans so I am a bit confused on how to obtain the clustered image. I have tried obtaining the ref cluster center by matching the (65536,3) array with the hdbscan labels i.e. r and storing them after getting the mean cluster points for each cluster in crs.
I am unsure if this is the best way to proceed to reconstruct an image that is, get some mean centers based on clusters and reconstruct the image using the mean centers plus labels.
crs = np.zeros((dbnumber_of_clusters, 3))
for i in range(0, dbnumber_of_clusters):
dbcluster_points = mriarr[r == i]
dbcluster_mean = np.mean(dbcluster_points, axis=0)
crs[i, :] = dbcluster_mean
HDBSCAN is not designed to "reconstruct" data. So there may not be an elegant way.
Using the mean of each cluster is an obvious choice wrt. simulating what k-mrans does, but such a point may lie outside the actual cluster if a cluster is not convex. So it may be appropriate to choose the most dense point instead.
Furthermore, the clustering is supposed to be hierarchical, so when computing a cluster representative, you should also take the data of nested clusters into account...
Last but not least, it can produce a "noise cluster". That is not actually a cluster, but simply all the unclustered data. Computing a single representative object of such points is not meaningful. Instead, you probably want to treat these points as each point bring it's own cluster.

How to apply clustering algorithms to a volume surface?

I’m trying to compare some OpenFOAM CFD simulations that reproduce the flow through an almost spherical object(the object is a reconstruction, with an irregular shape), searching for the one with the smallest cluster of wall shear stress. So, I want to know if there is a way of running a clustering algorithm on this irregular surface, like K Means, EM or other unsupervised algorithm. In other words, I would like to numerically compare the colormap plotted in slightly different shapes, taking the area and the mean value of the clusters as parameters to do this comparison, for example. Someone has ever handled a similar situation?
I've already tried to project this object to a plane or a sphere, but the distortion was greater than expected, and this became no longer an option.

How to improve HOG detector with linear SVM performance for car detection?

So, I want to detect cars from a driver recorder recorded video. I've read a lot and do research quite a lot but still not quite getting it. I do think of using a HOG descriptor with linear SVM. But in what way it can still be improver to make it easier to be implement and more robust since this will be kind of a research for me?
I am thinkin of combining another technique/algorithm with the HOG but still kind of lost. I am quite new in this.
Any help is greatly appreciated. I am also open to other better ideas.
HOG (histogram of oriented gradients) is merely a certain type of feature vector that can be computed from your data. You compute the gradient vector at each pixel in your image and then you divide up the possible angles into a discrete number of bins. Within a given image sub-region, you add the total magnitude of the gradient pointing in a given direction as the entry for the relevant angular bin containing that direction.
This leaves you with a vector that has a length equal to the number of bins you've chosen for dividing up the range of angles and acts as an unnormalized histogram.
If you want to compute other image features for the same sub-region, such as the sum of the pixels, some measurement of sharp angles or lines, aspects of the color distribution, or so forth, you can compute as many or as few as you would like, arrange them into a long vector as well, and simply concatenate that feature vector with the HOG vector.
You may also want to repeat the computation of the HOG vector for several different scale levels to help capture some scale variability, concatenating each scale-specific HOG vector onto the overall feature vector. There are other feature concepts like SIFT and others, which are created to automatically account for scale invariance.
You may need to do some normalization or scaling, which you can read about in any standard SVM guide. The standard LIBSVM guide is a great place to start.
You will have to be careful to organize your feature vector correctly since you will likely have a very large number of components to the feature vector, and you have to ensure they are always calculated and placed into the same ordering and undergo exactly the same scaling or normalization treatments.

Clustering points in 3D plane

Suppose we have 1000 random data points in a cube (as shown in the following image). The distribution of points in X and Y directions are uniform but not in Z direction. As we get deeper, the data points are denser. Is there any straightforward way in python to cluster these data points such that:
each cluster has equal size
each cluster consists of local points, i.e., each cluster consists of points being close to each other.
I have already tried K-means clustering from Scipy package but it did not give me a good result and the points of each cluster were very widespread rather than being concentrated.
Try using Scikit-Learn's implementation. They initialize their clusters using a technique known as "K-Means++" which picks the first means probabilistically to get an optimal starting distribution. This creates a higher probability of a good result.
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Categories

Resources