my program shows unexpected token error. why? - python

the program needs to return true if the factors of n other than n sum up to n. i need to use the function name during runtime. when i input
factors(45)
it shows that there is an unexpexted token error. please check what is wrong with the program.
def factors(n):#unexpected token error
factorlist = []
for i in range(1,n):
if n%i == 0:
factorlist = factorlist + [i]
return(factorlist)
def perfect(n):
if sum(factorlist) == n:
return(True)
else :
return(False)

You do not call factors(n) into the perfect(n) function. So, you have to use
factorlist = factors(n) into the perfect(n) function.
and then try this way :
def factors(n):
factorlist = []
for i in range(1, n):
if n % i == 0:
factorlist = factorlist + [i]
return (factorlist)
def perfect(n):
factorlist = factors(n) # use this line
if sum(factorlist) == n:
return (True)
else:
return (False)
print(perfect(45)) # Ouput : False

Try :
def factors(n):
factorlist = []
for i in range(1,n):
if n%i == 0:
factorlist = factorlist + [i]
print factorlist
return factorlist
def perfect(n):
factorlist = factors(n)
if sum(factorlist) == n:
return True
else :
return False
n = int(raw_input('Enter the number: '))
print(perfect(n))
Output:

Related

Recursive Sudoku solver not solving anything

I was working on a Sudoku solver, and when I ran it, it just didn't work- the function f returned a none type. After debugging, I found out the code didn't solve some of the squares. I don't know why this happened, but I suspect the loop checking all the numbers possible in a square stops after finding one possible number and doesn't check the rest too. Can you please pinpoint me the problem in my code? Thanks.
Note: for empty spaces in the Sudoku, enter 0.
# enter the Sudoku as a two-dimensional array (a[i][j])
def square_check(array, loc_x, loc_y, val):
added_x = loc_x - (loc_x % 3)
added_y = loc_y - (loc_y % 3)
for i in range(3):
for j in range(3):
if i+added_y != loc_y or j+added_x != loc_x:
if array[i+added_y][j+added_x] == val:
return False
return True
def line_check(array, loc_x, loc_y, val):
for i in range(9):
if i != loc_x:
if array[loc_y][i] == val:
return False
return True
def col_check(array, loc_x, loc_y, val):
for i in range(9):
if i != loc_y:
if array[i][loc_x] == val:
return False
return True
def f(array):
flag = True
mark = True
for i in range(0, 9):
for j in range(0, 9):
if array[i][j] == 0:
flag = False
if flag:
return array
for i in range(0, 9):
for j in range(0, 9):
if array[i][j] == 0:
for num in range(1, 10):
if square_check(array, j, i, num):
if col_check(array, j, i, num):
if line_check(array, j, i, num):
new_array = array.copy()
new_array[i][j] = num
mark = False
f(new_array)
if mark:
break
def to_str(array):
for i in range(len(array)):
print(array[i])
print("")
to_str(f(sudoku))

Fastest way to find prime in intervals

I tried searching StackOverflow and some other sources to find the fastest way to get a prime number within some interval but I didn't find any efficient way, so here is my code:
def prime(lower,upper):
prime_num = []
for num in range(lower, upper + 1):
# all prime numbers are greater than 1
if num > 1:
for i in range(2, num):
if (num % i) == 0:
break
else:
prime_num.append(num)
return prime_num
Can I make this more efficient?
I tried finding my answer in Fastest way to find prime number but I didn't find prime numbers in intervals.
I wrote an equation based prime finder using MillerRabin, it's not as fast as a next_prime finder that sieves, but it can create large primes and you get the equation it used to do it. Here is an example. Following that is the code:
In [5]: random_powers_of_2_prime_finder(1700)
Out[5]: 'pow_mod_p2(27667926810353357467837030512965232809390030031226210665153053230366733641224969190749433786036367429621811172950201894317760707656743515868441833458231399831181835090133016121983538940390210139495308488162621251038899539040754356082290519897317296011451440743372490592978807226034368488897495284627000283052473128881567140583900869955672587100845212926471955871127908735971483320243645947895142869961737653915035227117609878654364103786076604155505752302208115738401922695154233285466309546195881192879100630465, 2**1700-1, 2**1700) = 39813813626508820802866840332930483915032503127272745949035409006826553224524022617054655998698265075307606470641844262425466307284799062400415723706121978318083341480570093257346685775812379517688088750320304825524129104843315625728552273405257012724890746036676690819264523213918417013254746343166475026521678315406258681897811019418959153156539529686266438553210337341886173951710073382062000738529177807356144889399957163774682298839265163964939160419147731528735814055956971057054406988006642001090729179713'
or use to get the answer directly:
In [6]: random_powers_of_2_prime_finder(1700, withstats=False)
Out[6]: 4294700745548823167814331026002277003506280507463037204789057278997393231742311262730598677178338843033513290622514923311878829768955491790776416394211091580729947152858233850115018443160652214481910152534141980349815095067950295723412327595876094583434338271661005996561619688026571936782640346943257209115949079332605276629723961466102207851395372367417030036395877110498443231648303290010952093560918409759519145163112934517372716658602133001390012193450373443470282242835941058763834226551786349290424923951
The code:
import random
import math
def primes_sieve2(limit):
a = [True] * limit
a[0] = a[1] = False
for (i, isprime) in enumerate(a):
if isprime:
yield i
for n in range(i*i, limit, i):
a[n] = False
def ltrailing(N):
return len(str(bin(N))) - len(str(bin(N)).rstrip('0'))
def pow_mod_p2(x, y, z):
"4-5 times faster than pow for powers of 2"
number = 1
while y:
if y & 1:
number = modular_powerxz(number * x, z)
y >>= 1
x = modular_powerxz(x * x, z)
return number
def modular_powerxz(num, z, bitlength=1, offset=0):
xpowers = 1<<(z.bit_length()-bitlength)
if ((num+1) & (xpowers-1)) == 0:
return ( num & ( xpowers -bitlength)) + 2
elif offset == -1:
return ( num & ( xpowers -bitlength)) + 1
elif offset == 0:
return ( num & ( xpowers -bitlength))
elif offset == 1:
return ( num & ( xpowers -bitlength)) - 1
elif offset == 2:
return ( num & ( xpowers -bitlength)) - 2
def MillerRabin(N, primetest, iterx, powx, withstats=False):
primetest = pow(primetest, powx, N)
if withstats == True:
print("first: ",primetest)
if primetest == 1 or primetest == N - 1:
return True
else:
for x in range(0, iterx-1):
primetest = pow(primetest, 2, N)
if withstats == True:
print("else: ", primetest)
if primetest == N - 1: return True
if primetest == 1: return False
return False
PRIMES=list(primes_sieve2(1000000))
def mr_isprime(N, withstats=False):
if N == 2:
return True
if N % 2 == 0:
return False
if N < 2:
return False
if N in PRIMES:
return True
for xx in PRIMES:
if N % xx == 0:
return False
iterx = ltrailing(N - 1)
k = pow_mod_p2(N, (1<<N.bit_length())-1, 1<<N.bit_length()) - 1
t = N >> iterx
tests = [k+1, k+2, k, k-2, k-1]
for primetest in tests:
if primetest >= N:
primetest %= N
if primetest >= 2:
if MillerRabin(N, primetest, iterx, t, withstats) == False:
return False
return True
def lars_last_modulus_powers_of_two(hm):
return math.gcd(hm, 1<<hm.bit_length())
def random_powers_of_2_prime_finder(powersnumber, primeanswer=False, withstats=True):
while True:
randnum = random.randrange((1<<(powersnumber-1))-1, (1<<powersnumber)-1,2)
while lars_last_modulus_powers_of_two(randnum) == 2 and mr_isprime(randnum//2) == False:
randnum = random.randrange((1<<(powersnumber-1))-1, (1<<powersnumber)-1,2)
answer = randnum//2
# This option makes the finding of a prime much longer, i would suggest not using it as
# the whole point is a prime answer.
if primeanswer == True:
if mr_isprime(answer) == False:
continue
powers2find = pow_mod_p2(answer, (1<<powersnumber)-1, 1<<powersnumber)
if mr_isprime(powers2find) == True:
break
else:
continue
if withstats == False:
return powers2find
elif withstats == True:
return f"pow_mod_p2({answer}, 2**{powersnumber}-1, 2**{powersnumber}) = {powers2find}"
return powers2find
def nextprime(N):
N+=2
while not mr_isprime(N):
N+=2
return N
def get_primes(lower, upper):
lower = lower|1
upper = upper|1
vv = []
if mr_isprime(lower):
vv.append(lower)
else:
vv=[nextprime(lower)]
while vv[-1] < upper:
vv.append(nextprime(vv[-1]))
return vv
Here is an example like yours:
In [1538]: cc = get_primes(1009732533765201, 1009732533767201)
In [1539]: print(cc)
[1009732533765251, 1009732533765281, 1009732533765289, 1009732533765301, 1009732533765341, 1009732533765379, 1009732533765481, 1009732533765493, 1009732533765509, 1009732533765521, 1009732533765539, 1009732533765547, 1009732533765559, 1009732533765589, 1009732533765623, 1009732533765749, 1009732533765751, 1009732533765757, 1009732533765773, 1009732533765821, 1009732533765859, 1009732533765889, 1009732533765899, 1009732533765929, 1009732533765947, 1009732533766063, 1009732533766069, 1009732533766079, 1009732533766093, 1009732533766109, 1009732533766189, 1009732533766211, 1009732533766249, 1009732533766283, 1009732533766337, 1009732533766343, 1009732533766421, 1009732533766427, 1009732533766457, 1009732533766531, 1009732533766631, 1009732533766643, 1009732533766667, 1009732533766703, 1009732533766727, 1009732533766751, 1009732533766763, 1009732533766807, 1009732533766811, 1009732533766829, 1009732533766843, 1009732533766877, 1009732533766909, 1009732533766933, 1009732533766937, 1009732533766973, 1009732533767029, 1009732533767039, 1009732533767093, 1009732533767101, 1009732533767147, 1009732533767159, 1009732533767161, 1009732533767183, 1009732533767197, 1009732533767233]
Yes. In general, use:
Sieve of Eratosthenes
Miller-Rabin Primality Test
Other options include trying a compiled language, like C++, but I think that isn't what you're looking for, since you've asked about Python.
Yes, you can make it more efficient. As has been mentioned, for very large numbers use Miller-Rabin. For smaller ranges use the Sieve of Eratosthenes. However, apart from that, your prime checker code is very inefficient.
2 is the only even prime number, which can save you doing half the work you do.
You only need to check up to the square root of the number you are testing. In any pair of factors: f and n/f, one is guaranteed to be less then or equal to the square root of the number being tested. Once you find a factor then the number is composite.
My Python is not good, so this is in pseudocode:
isPrime(num)
// Negatives, 0, 1 are not prime.
if (num < 2) return false
// Even numbers: 2 is the only even prime.
if (num % 2 == 0) return (num == 2)
// Odd numbers have only odd factors.
limit <- 1 + sqrt(num)
for (i <- 3 to limit step 2)
if (num % i == 0) return false
// No factors found so num is prime
return true
end isPrime

A python function that finds a number's largest divisor excluding itself

When I write this code:
n = int(input('num: '))
for i in range(2, n):
if n%i == 0:
a = i
print(a)
It works without a problem.
But this creates a problem. It says
local variable a referenced before assignment
def largestDivisor(n):
for i in range(2, n):
if n%i == 0:
a = i
return a
How can I fix it?
If you call like largestDivisor(2) you won't go in the for so not in the if and you'll never define a, define it at the beginning :
def largestDivisor(n):
a = 1
for i in range(2, n):
if n % i == 0:
a = i
return a
def largestDivisor(n):
a = 1
for i in range(2,n):
if n%i==0:
a=i
return a
If the condition "n % i == 0" is never True the variable "a" will not exist, therefore you must initialize it before the loop.
def largestDivisor(n):
a = 1
for i in range(2, n):
if n%i == 0:
a = i
return a

'None' is printed when I want 'True' for input 5

In this primality test program, 'None' is printed when I input a prime, instead of 'True'. How can I get it to print 'True'?.
def main():
import math
def check_n(n):
n_s = int(math.sqrt(n))
for i in range(2, n_s):
if (n_s % i) == 0:
return False
break
else:
return True
def msg():
n = int(input('Enter a number, I will return True if it is a prime'))
return n
print(check_n(msg()))
main()
You need to change int(math.sqrt(n)) to int(math.sqrt(n)+1), because range runs until n_s-1. So if the input is 5, range(2,int(math.sqrt(5))) is just range(2,2), which is empty.
In addition, you need to take the return True outside of the for loop, otherwise your code may stop in a too early stage. You also don't need the break statement after return False (the function will never arrive to that line, as it will return False if it enters to that if statement).
Finally, change if (n_s % i) == 0: to if (n % i) == 0:, as you need to check if n is divisible by i (and not its square root).
Here is a more clean version:
import math
def check_n(n):
n_s = int(math.sqrt(n)+1)
for i in range(2, n_s):
if (n % i) == 0:
return False
return True
def msg():
n = int(input('Enter a number, I will return True if it is a prime'))
return n
print(check_n(msg()))
First: Your break statement is redundant.
Second: For values such as 3 the for loop is never executing because value
n_s is less than 2 and since the for loop isn't executing the
python is returning the default value None(which is returned when
no value is specified).
Hence your check_n(n) function has to be
def check_n(n):
n_s = int(math.sqrt(n))
for i in range(2, n_s + 1):
if (n_s % i) == 0:
return False
return True
one liner :
check_n = lambda n : sum([i for i in range(2, int(math.sqrt(n)+1)) if n % i == 0]) == 0
don't overcomplicate things ..
Your range is (2,2) or None when you choose anything less than 9.
So to solve your first problem: add 2 to n_s (for input 3)
You also have a problem with your logic.
Your for loop should be checking that n mod i is 0, not n_s.
This should work:
def main():
import math
def check_n(n):
n_s = int(math.sqrt(n)+1)
for i in range(2, n_s):
if (n % i) == 0:
return False
return True
def msg():
n = int(input('Enter a number, I will return True if it is a prime'))
return n
print(check_n(msg()))
main()

SPOJ Prime Generator

I guess this isn't the best question in the world, but I can't seem to figure why on earth this code:
def isprime(num):
if num < 2:
return False
if num == 2:
return True
if num % 2 == 0:
return False
for divisor in range(3, int(num ** 0.5) + 1, 2):
if num % divisor == 0:
return False
return True
def case(mini, maxi):
for i in range(mini, maxi + 1):
if isprime(i):
print(i)
test = [line.split() for line in input().split("\n")[1:]]
for line in test:
mini, maxi = [int(num) for num in line]
case(mini, maxi)
print()
does not satisfy SPOJ Question 2?? The prime tester has worked well for me before, and the code works on the example inputs.

Categories

Resources