Hi I've tried to drop columns based on a boolean array but for some odd reason pandas does not seem to be dropping the columns at all.
The boolean array is and (376,). It only contains True and False values.
for x in range(0,len(analysis)-1):
if analysis[x] == False:
col = dtest.columns[x]
dtest.drop(dtest.columns[x],1)
This is my code for dropping the columns, essentially the length of the analysis array is the number of columns there is in dtest.
dtest is (4209, 376) & pandas.core.frame.DataFrame
I have tried debugging, it does detect the Falses in the analysis and also is able to print out the col variable accurately but it just wont drop the columns for some reason.
Would greatly appreciate any help! Thanks :)
IIUC you don't need loop:
dtest = dtest.loc[:, analysis]
Demo:
In [320]: df = pd.DataFrame(np.random.rand(5, 10), columns=list(range(1, 11)))
In [321]: df
Out[321]:
1 2 3 4 5 6 7 8 9 10
0 0.332792 0.927047 0.899874 0.294391 0.762800 0.861521 0.988783 0.475127 0.033096 0.980141
1 0.447273 0.268828 0.951633 0.947425 0.020006 0.808608 0.607091 0.712309 0.383256 0.248582
2 0.169946 0.951702 0.671014 0.514326 0.607129 0.227021 0.831474 0.696117 0.799418 0.224851
3 0.724165 0.748455 0.452430 0.941572 0.873344 0.877872 0.925788 0.183115 0.113217 0.072717
4 0.303488 0.426459 0.750076 0.225662 0.298983 0.729585 0.692489 0.934778 0.124634 0.274208
In [322]: analysis = np.random.choice([True, False], 10)
In [323]: analysis
Out[323]: array([ True, True, True, False, True, True, True, False, False, True], dtype=bool)
In [324]: df = df.loc[:, analysis]
In [325]: df
Out[325]:
1 2 3 5 6 7 10
0 0.332792 0.927047 0.899874 0.762800 0.861521 0.988783 0.980141
1 0.447273 0.268828 0.951633 0.020006 0.808608 0.607091 0.248582
2 0.169946 0.951702 0.671014 0.607129 0.227021 0.831474 0.224851
3 0.724165 0.748455 0.452430 0.873344 0.877872 0.925788 0.072717
4 0.303488 0.426459 0.750076 0.298983 0.729585 0.692489 0.274208
You need assign output back:
cols = []
for x in range(0,len(analysis)):
if analysis[x] == False:
col = dtest.columns[x]
cols.append(col)
dtest = dtest.drop(cols,1)
print (dtest)
0 2
0 1 3
but better is select only columns by True mask like in another answer.
Related
Below is a df of formulas:
formula
0 Ac
1 Ac(AgO2)2
2 Ac(AsO2)2
3 Ac(AuO2)2
4 Ac(BO2)2
... ...
695606 ZrZnW3
695607 ZrZnW4
695608 ZrZnWAu
695609 ZrZnWC
695610 ZrZnWSe
[694398 rows x 1 columns]
I have checked the validity of each of these formulas and have created a list called vals that is the same length as this df with True and False values corresponding to each formula. I want to remove the rows in the df that are False. Right now I have df.drop(df[vals].index, inplace = False) which outputs the False formulas but I want the True ones
You were almost there. This should be the right syntax where : means "all columns"
df = df[vals,:]
Are you sure the list vals indeed consists of boolen values True or False, instead of maybe their strings like 'True' or 'False'. If it is indeed a boolean list, then this should simply work
vals = [True, False, False, True, True, False, True, False, True, True, False]
df[vals]
returns
0 Ac
3 Ac(AuO2)2
4 Ac(BO2)2
6 ZrZnW3
8 ZrZnWAu
9 ZrZnWC
Let's suppose I have these two dataframes with the same number of columns, but possibly different number of rows:
tmp = np.arange(0,12).reshape((4,3))
df = pd.DataFrame(data=tmp)
tmp2 = {'a':[3,100,101], 'b':[4,4,100], 'c':[5,100,3]}
df2 = pd.DataFrame(data=tmp2)
print(df)
0 1 2
0 0 1 2
1 3 4 5
2 6 7 8
3 9 10 11
print(df2)
a b c
0 3 4 5
1 100 4 100
2 101 100 3
I want to verify if the rows of df2 are matching any rows of df, that is I want to obtain a series (or an array) of boolean values that gives this result:
0 True
1 False
2 False
dtype: bool
I think something like the isin method should work, but I got this result, which results in a dataframe and is wrong:
print(df2.isin(df))
a b c
0 False False False
1 False False False
2 False False False
As a constraint, I wish to not use the merge method, since what I am doing is in fact a check on the data before applying merge itself.
Thank you for your help!
You can use numpy.isin, which will compare all elements in your arrays and return True or False for each element for each array.
Then using all() on each array, will get your desired output as the function returns True if all elements are true:
>>> pd.Series([m.all() for m in np.isin(df2.values,df.values)])
0 True
1 False
2 False
dtype: bool
Breakdown of what is happening:
# np.isin
>>> np.isin(df2.values,df.values)
Out[139]:
array([[ True, True, True],
[False, True, False],
[False, False, True]])
# all()
>>> [m.all() for m in np.isin(df2.values,df.values)]
Out[140]: [True, False, False]
# pd.Series()
>>> pd.Series([m.all() for m in np.isin(df2.values,df.values)])
Out[141]:
0 True
1 False
2 False
dtype: bool
Use np.in1d:
>>> df2.apply(lambda x: all(np.in1d(x, df)), axis=1)
0 True
1 False
2 False
dtype: bool
Another way, use frozenset:
>>> df2.apply(frozenset, axis=1).isin(df1.apply(frozenset, axis=1))
0 True
1 False
2 False
dtype: bool
You can use a MultiIndex (expensive IMO):
pd.MultiIndex.from_frame(df2).isin(pd.MultiIndex.from_frame(df))
Out[32]: array([ True, False, False])
Another option is to create a dictionary, and run isin:
df2.isin({key : array.array for key, (_, array) in zip(df2, df.items())}).all(1)
Out[45]:
0 True
1 False
2 False
dtype: bool
There may be more efficient solutions, but you could append the two dataframes can call duplicated, e.g.:
df.append(df2).duplicated().iloc[df.shape[0]:]
This assumes that all rows in each DataFrame are distinct. Here are some benchmarks:
tmp1 = np.arange(0,12).reshape((4,3))
df1 = pd.DataFrame(data=tmp1, columns=["a", "b", "c"])
tmp2 = {'a':[3,100,101], 'b':[4,4,100], 'c':[5,100,3]}
df2 = pd.DataFrame(data=tmp2)
df1 = pd.concat([df1] * 10_000).reset_index()
df2 = pd.concat([df2] * 10_000).reset_index()
%timeit df1.append(df2).duplicated().iloc[df1.shape[0]:]
# 100 loops, best of 5: 4.16 ms per loop
%timeit pd.Series([m.all() for m in np.isin(df2.values,df1.values)])
# 10 loops, best of 5: 74.9 ms per loop
%timeit df2.apply(frozenset, axis=1).isin(df1.apply(frozenset, axis=1))
# 1 loop, best of 5: 443 ms per loop
Try:
df[~df.apply(tuple,1).isin(df2.apply(tuple,1))]
Here is my result:
Columns L,M,N of my dataframe are populated with 'true' and 'false' statements(1000 rows). I would like to create a new column 'count_false' that will return the number of times 'false' statement occurred in columns L,M and N.
Any tips appreciated!
Thank you.
You can negate your dataframe and sum over axis=1:
df = pd.DataFrame(np.random.randint(0, 2, (5, 3)), columns=list('LMN')).astype(bool)
df['Falses'] = (~df).sum(1)
print(df)
L M N Falses
0 True False True 1
1 True False False 2
2 True True True 0
3 False True False 2
4 False False True 2
If you have additional columns, you can filter accordingly:
df['Falses'] = (~df[list('LMN')]).sum(1)
Try this : df[df==false].count()
As explained in this Stack question True and False equal to 1 and 0 in Python, therefore something like the line three of the following example should solve your problem:
import pandas as pd
df = pd.DataFrame([[True, False, True],[False, False, False],[True, False, True],[False, False, True]], columns=['L','M','N'])
df['count_false'] = 3 - (df['L']*1 + df['M']*1 + df['N']*1)
How can I check if a given value is NaN?
e.g. if (a == np.NaN) (doesn't work)
Please note that:
Numpy's isnan method throws errors with data types like string
Pandas docs only provide methods to drop rows containing NaNs, or ways to check if/when DataFrame contains NaNs. I'm asking about checking if a specific value is NaN.
Relevant Stackoverflow questions and Google search results seem to be about checking "if any value is NaN" or "which values in a DataFrame"
There must be a clean way to check if a given value is NaN?
You can use the inate property that NaN != NaN
so a == a will return False if a is NaN
This will work even for strings
Example:
In[52]:
s = pd.Series([1, np.NaN, '', 1.0])
s
Out[52]:
0 1
1 NaN
2
3 1
dtype: object
for val in s:
print(val==val)
True
False
True
True
This can be done in a vectorised manner:
In[54]:
s==s
Out[54]:
0 True
1 False
2 True
3 True
dtype: bool
but you can still use the method isnull on the whole series:
In[55]:
s.isnull()
Out[55]:
0 False
1 True
2 False
3 False
dtype: bool
UPDATE
As noted by #piRSquared if you compare None==None this will return True but pd.isnull will return True so depending on whether you want to treat None as NaN you can still use == for comparison or pd.isnull if you want to treat None as NaN
Pandas has isnull, notnull, isna, and notna
These functions work for arrays or scalars.
Setup
a = np.array([[1, np.nan],
[None, '2']])
Pandas functions
pd.isna(a)
# same as
# pd.isnull(a)
array([[False, True],
[ True, False]])
pd.notnull(a)
# same as
# pd.notna(a)
array([[ True, False],
[False, True]])
DataFrame (or Series) methods
b = pd.DataFrame(a)
b.isnull()
# same as
# b.isna()
0 1
0 False True
1 True False
b.notna()
# same as
# b.notnull()
0 1
0 True False
1 False True
I have a dataframe like the following:
In[8]: df = pd.DataFrame({'transport': ['Car;Bike;Horse','Car','Car;Bike', 'Horse;Car']})
df
Out[8]:
transport
0 Car;Bike;Horse
1 Car
2 Car;Bike
3 Horse;Car
And I want to convert it to something like this:
In[9]: df2 = pd.DataFrame({'transport_car': [True,True,True,True],'transport_bike': [True,False,True,False], 'transport_horse': [True,False,False,True]} )
df2
Out[10]:
transport_bike transport_car transport_horse
0 True True True
1 False True False
2 True True False
3 False True True
I got a solution, but it feels very 'hacked' and 'unpythonic'. (It works for my considerably small data set)
In[11]:
# get set of all possible values
new_columns = set()
for element in set(df.transport.unique()):
for transkey in str(element).split(';'):
new_columns.add(transkey)
print(new_columns)
# Use broadcast to initialize all columns with default value.
for col in new_columns:
df['trans_'+str(col).lower()] = False
# Change cells appropiate to keywords
for index, row in df.iterrows():
for key in new_columns:
if key in row.transport:
df.set_value(index, 'trans_'+str(key).lower(), True)
df
Out[11]:
transport trans_bike trans_car trans_horse
0 Car;Bike;Horse True True True
1 Car False True False
2 Car;Bike True True False
3 Horse;Car False True True
My goal is to use the second representation to perform some evaluation to answer questions like: "How often is car used?", "How often is car used together with horse", etc.
This and this answers suggest using pivot and eval might be the way to go, but I'm not sure.
So what would be the best way, to convert a DataFrame from first representation to the second?
You can use apply and construct a Series for each entry with the splited fields as index. This will result in a data frame with the index as the columns:
df.transport.apply(lambda x: pd.Series(True, x.split(";"))).fillna(False)
I decided to extend the great #Metropolis's answer with a working example:
In [249]: %paste
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer(min_df=1)
X = vectorizer.fit_transform(df.transport.str.replace(';',' '))
r = pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names())
## -- End pasted text --
In [250]: r
Out[250]:
bike car horse
0 1 1 1
1 0 1 0
2 1 1 0
3 0 1 1
now you can join it back to the source DF:
In [251]: df.join(r)
Out[251]:
transport bike car horse
0 Car;Bike;Horse 1 1 1
1 Car 0 1 0
2 Car;Bike 1 1 0
3 Horse;Car 0 1 1
Timing: for 40K rows DF:
In [254]: df = pd.concat([df] * 10**4, ignore_index=True)
In [255]: df.shape
Out[255]: (40000, 1)
In [256]: %timeit df.transport.apply(lambda x: pd.Series(True, x.split(";"))).fillna(False)
1 loop, best of 3: 33.8 s per loop
In [257]: %%timeit
...: vectorizer = CountVectorizer(min_df=1)
...: X = vectorizer.fit_transform(df.transport.str.replace(';',' '))
...: r = pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names())
...:
1 loop, best of 3: 732 ms per loop
I would consider using the Count Vectorizer provided by Scikit-learn. The vectorizer will construct a vector where each index refers to a term and the value refers to the number of appearances of that term in the record.
Advantages over the home-rolled approaches suggested in other answer are efficiency for large datasets and generalizability. Disadvantage is, obviously, bringing in an extra dependency.