TensorFlow simple XOR example not converging - python

I have the following code to learn a simple XOR network:
import tensorflow as tf
import numpy as np
def generate_xor(length=1000):
x = np.random.randint(0,2, size=(length,2))
y = []
for pair in x:
y.append(int(np.logical_xor(pair[0],pair[1])))
return x, np.array(y)
n_inputs = 2
n_hidden = n_inputs*4
n_outputs = 1
x = tf.placeholder(tf.float32, shape=[1,n_inputs])
y = tf.placeholder(tf.float32, [1, n_outputs])
W = tf.Variable(tf.random_uniform([n_inputs, n_hidden],-1,1))
b = tf.Variable(tf.zeros([n_hidden]))
W2 = tf.Variable(tf.random_uniform([n_hidden,n_outputs],-1,1))
b2 = tf.Variable(tf.zeros([n_outputs]))
def xor_model(data):
x = data
hidden_layer = tf.nn.relu(tf.matmul(x,W)+b)
output = tf.nn.relu(tf.matmul(hidden_layer, W2)+b2)
return output
xor_nn = xor_model(x)
cost = tf.reduce_mean(tf.abs(xor_nn - y))
train_step = tf.train.AdagradOptimizer(0.05).minimize(cost)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
x_data,y_data = generate_xor(length=100000)
errors = []
count = 0
out_freq = 1000
for xor_in, xor_out in zip(x_data,y_data):
_, err = sess.run([train_step, cost], feed_dict={x:xor_in.reshape(1,2), y:xor_out.reshape(1,n_outputs)})
errors.append(err)
count += 1
if count == out_freq:
tol = np.mean(errors[-out_freq:])
print tol
count = 0
if tol < 0.005:
break
n_tests = 100
correct = 0
count = 0
x_test, y_test = generate_xor(length=n_tests)
for xor_in, xor_out in zip(x_test, y_test):
output = sess.run([xor_nn], feed_dict={x:xor_in.reshape(1,2)})[0]
guess = int(output[0][0])
truth = int(xor_out)
if guess == truth:
correct += 1
count += 1
print "Model %d : Truth %d - Pass Rate %.2f" % (int(guess), int(xor_out), float(correct*100.0)/float(count))
However, I can't get the code to reliably converge. I have tried varying the size of the hidden layer, using different optimizers / step sizes and different initializations of the weights and biases.
I'm clearly making an elemental error. If anyone could help I'd be grateful.
EDIT:
Thanks to Prem and Alexander Svetkin I managed to spot my errors. Firstly I wasn't rounding the outputs when I cast them to ints, a schoolboy mistake. Secondly I had a relu on the output layer which wasn't needed - a copy and paste mistake. Thirdly relu is indeed a bad choice of activation function for this task, using a sigmoid function works much better.
So this:
hidden_layer = tf.nn.relu(tf.matmul(x,W)+b)
output = tf.nn.relu(tf.matmul(hidden_layer, W2)+b2)
becomes this:
hidden_layer = tf.nn.sigmoid(tf.matmul(x,W)+b)
output = tf.matmul(hidden_layer, W2)+b2
and this:
guess = int(output[0][0])
becomes this:
guess = int(output[0][0]+0.5)

Shouldn't you only return the activation function of output layer instead of relu?
output = tf.matmul(hidden_layer, W2) + b2

ReLU just isn't right activation function for binary classification task, use something different, like sigmoid function.
Pay attention to your float output values. 0.99 should mean 1 or 0? Use rounding.

Related

How to Implement Vectorized Backprop in Numpy

I'm working on a school project and am stuck on how to implement backpropagation in Numpy with the current forward prop structure I have. The aim of this script is to make a simple dynamic (meaning any number of layers and nodes) fully connected network using only numpy.
I think that I have to find the derivatives of the activation functions and multipliy it by the original error as well as the derivative of each activation function I encounter moving backward.
However, I'm having trouble figuring out how to implement this correctly in my script.
It'd be a great help if someone could explain in English what exactly I have to do given the complexities of the setup here, or even give a recommendation for a video/post that deals w dynamic size backprop.
Right now all the weights and biases are being stored in lists for future backprop, and I'm able to get the error for each output with the small amount of code currently in the backprop function.
This code block
#initialize a test model w/ 128 bacth and lr of 0.01
model = Model(128, 0.01)
#simple x data input
X = np.array([[1,1],[0,0],[12,5]])
Y = np.array([[1],[0],[-1]])
#adding 4 layers
z = model.add(X, 3, "sigmoid")
z = model.add(z, 1, "sigmoid", output=True)
#this is a full forward pass through the layers
z = model.predict(X)
print(z)
#this is the error of the predictions
print(model.backprop(z, Y))
Outputs the following vectors:
[[0.50006457]
[0.50006459]
[0.50006431]]
[[0.24993544]
[0.2500646 ]
[2.25019293]]
Like I said, not sure how to move forward ( or backward ;) ) from here.
Below is the full script needed to run the example:
import math
import numpy as np
#everything below is defining activation functions
#--------------------------------------------------------------------------------------------
def b_relu(input):
return max((0, max(input)))
def bd_relu(input):
if(input < 0 or input == 0):
return 0
else:
return 1
def b_sigmoid(x):
return 1 / (1 + math.exp(-x))
def bd_sigmoid(input):
return sigmoid(input) * (1 - sigmoid(input))
def b_tanh(input):
top = (math.exp(input) - math.exp(-input))
bottom = (math.exp(input) + math.exp(-input))
return (top/bottom)
#helper functions for tanh
def cosh(input):
return ((math.exp(input) + math.exp(-input)) / 2)
def sinh(input):
return ((math.exp(input) - math.exp(-input)) / 2)
def bd_tanh(input):
top = (math.pow(cosh(input), 2) - math.pow(sinh(input), 2))
bottom = math.pow(input, 2)
return (top / bottom)
def b_softmax(z):
# subracting the max adds numerical stability
shiftx = z - np.max(z,axis=1)[:,np.newaxis]
exps = np.exp(shiftx)
return exps / np.sum(exps,axis=1)[:,np.newaxis]
def bd_softmax(Y_hat, Y):
return Y_hat - Y
def b_linear(input):
return input
def bd_linear(input):
return 1
#vectorizing the activation and deriv. activation functions
relu = np.vectorize(b_relu)
d_relu = np.vectorize(bd_relu)
sigmoid = np.vectorize(b_sigmoid)
d_sigmoid = np.vectorize(bd_sigmoid)
tanh = np.vectorize(b_tanh)
d_tanh = np.vectorize(bd_tanh)
softmax = np.vectorize(b_softmax)
d_softmax = np.vectorize(bd_softmax)
linear = np.vectorize(b_linear)
d_linear = np.vectorize(bd_linear)
class Model:
def __init__(self, batch, lr):
#initializing self lists to keep track of stuff for bacthes, forward prop & backporp
self.batch = batch
self.lr = lr
self.W = []
self.B = []
self.A = []
self.Z = []
self.X = []
self.layers = []
self.tempW = []
self.tempB = []
#store error for backprop
self.output_error = []
#initialize the weights during 'model.add' so we can test our network shapes dynamically w/out model.compile
#added an output bool here so we can make sure the shape of the output network is (1,n)
def initial_weights(self, input_data, output_shape, output=False):
B = np.zeros((1, output_shape))
#assigning the shape
W = np.random.uniform(-1e-3, 1e-3, size = (input_data.shape[len(input_data.shape) - 1], output_shape))
self.B.append(B)
self.W.append(W)
def add(self, input_data, output_shape, activation, output=False):
#append to layers so we have a correct index value
self.layers.append(69)
#making sure our data in a numpy array
if (type(input_data) == np.ndarray):
X = input_data
else:
X = np.asarray(input_data)
#adding data and activations to self lists
self.X.append(X)
self.A.append(activation)
#keep track of our index & initializing random weights for dynamic comatibility testing
index = len(self.layers)-1
self.initial_weights(input_data, output_shape, output=False)
X2 = self.forward(input_data, index)
#printing layer info
print("Layer:", index)
print("Input Shape: ", X.shape)
print("Weight Shape: ", self.W[index].shape)
print("Output Shape: ", X2.shape)
print(" ")
return(X2)
def forward(self, input_data, index):
#pulling weights and biases from main lists for operations
B = self.B[index]
W = self.W[index]
#matmul of data # weights + bias
Z = np.matmul(input_data, W) + B
#summing each row of inputs to activation node
for x in Z:
x = sum(x)
#pulling activation from index
act = str(self.A[index])
#activating
Z = activate(Z, act)
#keeping track of Z i guess
self.Zappend = Z
return(Z)
def predict(self, input_data):
for x in range(len(self.layers)):
z = model.forward(input_data, x)
input_data = z
return z
def backprop(self, model_output, ground_truth):
#------------------------------
#now begins the backprop portion
#let's start with finding the error between predictions and actual values
#gonna do MSE to keep it simple
self.output_error = (ground_truth - model_output) ** 2
#so now we have the error of the output layer, this tells us two things, how wrong we were, and in which direction we should update
#the outputs of these nodes
'''
What to do if this was linear regression (for m & b)
1. Take the error and multiply it by the transpose of the last layer weights
(I think the error in this case is where the prime activation function should be if we had activations)
2. The last layer bias is just the error
3. The second to last layer inputs is the bias times the transpose of second layers weights
3. Then I have no idea
'''
return self.output_error

Why everything is disconnected in my Tensorboard graph?

I have implemented a CNN for detecting human activity using accelrometer data, my model is working really fine but when i visualize my grapgh on tensorboard, everythin seems to be diconnected. Right now i am not using Namescopes but even without it grpagh should make some sense right?
EDIT After implementing answer given by #user1735003 , this is the output. What i still don't understand is why i'm getting all the nodes at left
What i have implemented is: i have two convolution layer and two max-pooling layers and on top of that i have two hidden layers with 1024 and 512 neurons.
so Here is my code:
#Weights
def init_weights(shape):
init_random_dist = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(init_random_dist)
#Bias
def init_bias(shape):
init_bias = tf.constant(0.1,shape=shape)
return tf.Variable(init_bias)
def conv1d(x,weights):
#x is input accelration data and W is corresponding weight
return tf.nn.conv1d(value=x,filters = weights,stride=1,padding='VALID')
def convolution_layer(input_x,shape):
w1 = init_weights(shape)
b = init_bias([shape[2]])
return tf.nn.relu(conv1d(input_x,weights=w1)+b)
def normal_full_layer(input_layer,size):
input_size = int(input_layer.get_shape()[1])
W = init_weights([input_size, size])
b = init_bias([size])
return tf.matmul(input_layer, W) +b
x = tf.placeholder(tf.float32,shape=[None ,window_size,3]) #input tensor with 3 input channels
y = tf.placeholder(tf.float32,shape=[None,6]) #Labels
con_layer_1 = convolution_layer(x,shape=[4,3,32])#filter of shape [filter_width, in_channels, out_channels]
max_pool_1=tf.layers.max_pooling1d(inputs=con_layer_1,pool_size=2,strides=2,padding='Valid')
con_layer_2 = convolution_layer(max_pool_1,shape=[4,32,64])
max_pool_2 = tf.layers.max_pooling1d(inputs=con_layer_2,pool_size=2,strides=2,padding='Valid')
flat = tf.reshape(max_pool_2,[-1,max_pool_2.get_shape()[1]*max_pool_2.get_shape()[2]])
fully_conected = tf.nn.relu(normal_full_layer(flat,1024))
second_hidden_layer = tf.nn.relu(normal_full_layer(fully_conected,512))
hold_prob = tf.placeholder(tf.float32)
full_one_dropout = tf.nn.dropout(second_hidden_layer,keep_prob=hold_prob)
y_pred = normal_full_layer(full_one_dropout,6)
pred_softmax = tf.nn.softmax(y_pred)
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=y_pred))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
train = optimizer.minimize(cross_entropy)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
filename="./summary_log11/run"
summary_writer = tf.summary.FileWriter(filename, graph_def=sess.graph_def)
for i in range(5000):
batch_x,batch_y = next_batch(100,X_train,y_train)
sess.run(train, feed_dict={x: batch_x, y: batch_y, hold_prob: 0.5})
# PRINT OUT A MESSAGE EVERY 100 STEPS
if i%100 == 0:
print('Currently on step {}'.format(i))
print('Accuracy is:')
# Test the Train Model
matches = tf.equal(tf.argmax(y_pred,1),tf.argmax(y,1))
acc = tf.reduce_mean(tf.cast(matches,tf.float32))
print(sess.run(acc,feed_dict={x:X_test,y:y_test,hold_prob:1.0}))
print('\n')
Try organizing your nodes into scopes. That will help Tensorboard to figure out your graph hierarchy. For example,
with tf.variable_scope('input'):
x = tf.placeholder(tf.float32,shape=[None ,window_size,3]) #input tensor with 3 input channels
y = tf.placeholder(tf.float32,shape=[None,6]) #Labels
with tf.variable_scope('net'):
con_layer_1 = convolution_layer(x,shape=[4,3,32])#filter of shape [filter_width, in_channels, out_channels]
max_pool_1=tf.layers.max_pooling1d(inputs=con_layer_1,pool_size=2,strides=2,padding='Valid')
con_layer_2 = convolution_layer(max_pool_1,shape=[4,32,64])
max_pool_2 = tf.layers.max_pooling1d(inputs=con_layer_2,pool_size=2,strides=2,padding='Valid')
flat = tf.reshape(max_pool_2,[-1,max_pool_2.get_shape()[1]*max_pool_2.get_shape()[2]])
fully_conected = tf.nn.relu(normal_full_layer(flat,1024))
second_hidden_layer = tf.nn.relu(normal_full_layer(fully_conected,512))
hold_prob = tf.placeholder(tf.float32)
full_one_dropout = tf.nn.dropout(second_hidden_layer,keep_prob=hold_prob)
y_pred = normal_full_layer(full_one_dropout,6)
pred_softmax = tf.nn.softmax(y_pred)
with tf.variable_scope('loss'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=y_pred))
with tf.variable_scope('optimizer'):
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
train = optimizer.minimize(cross_entropy)
Since you didn't explicitly name your tf operations it was done automatically by tensorflow, e.g. ReLu operators were named ReLu_1, ReLu_2, ... . According to tensorboard documentation:
One last structural simplification is series collapsing. Sequential motifs--that is, nodes whose names differ by a number at the end and have isomorphic structures--are collapsed into a single stack of nodes, as shown below. For networks with long sequences, this greatly simplifies the view.
As you can see at the right side of your graph, all add_[0-7], MatMul_[0-5] and Relu_[0-5] nodes were grouped together because they have similar names, this doesn't mean that nodes are disconnected in your graph, it's just the tensorboard's node grouping policy.
If you want to avoid this then give your operations the names that are more different than just by a number at the end. Or use tf.name_scope() as you mentioned, e.g.:
with tf.name_scope("conv1"):
con_layer_1 = convolution_layer(x,shape=[4,3,32])
max_pool_1=tf.layers.max_pooling1d(inputs=con_layer_1,pool_size=2,strides=2,padding='Valid')
with tf.name_scope("conv2"):
con_layer_2 = convolution_layer(max_pool_1,shape=[4,32,64])
max_pool_2 = tf.layers.max_pooling1d(inputs=con_layer_2,pool_size=2,strides=2,padding='Valid')
# etc.

simple example of mxnet model parallelism

The simple examples in the Guon tutorial for mxnet are very helpful to those of us who are just getting started with mxnet. As yet, there is not a simple example for model parallelism. I see the model parallelism example code for LSTM, but I am new to mxnet and it would help me (and perhaps others) to have a more streamlined example. So, I have created a model parallelism example by working off the regression example in the gluon tutorial, and by mixing in some code from mxnet.gluon.Trainer.
However, I am clearly getting something wrong. The gradients do not seem to be updated. Can anyone assist by identifying the problem(s)? The goal here is to create a linear regression model that has three layers, each held on a different gpu. The model itself is not useful, except as an example to show how initialization and training can occur for model parallelism, when using a custom block and imperative programming.
As I understand it, Trainer() is written for data parallelism. It will not work for model parallelism in that it requires all parameters to be initialized on all GPUs.
import os
import numpy as np
import mxnet as mx
from mxnet import nd, autograd, gluon
from mxnet.gluon import Block
# make some data
num_inputs = 2
num_outputs = 1
num_examples = 10000
def real_fn(X):
return 2 * X[:, 0] - 3.4 * X[:, 1] + 4.2
X = np.random.normal(0,1, (num_examples, num_inputs))
noise = 0.001 * np.random.normal(0,1, (num_examples))
y = real_fn(X) + noise
y = y.reshape(-1,1)
# configuration
hidden_layers = 2
num_gpus = hidden_layers + 1
ctxList = [mx.gpu(i) for i in range(num_gpus)]
#ctxList = [mx.gpu() for i in range(num_gpus)]
#os.environ["MXNET_ENGINE_TYPE"] = "NaiveEngine"
print("\n")
# ======================================================================
class myDenseBlock(Block):
"""
A custom layer
"""
def __init__(self, layer_number, size_input, size_output, **kwargs):
super(myDenseBlock, self).__init__(**kwargs)
self.layer_number = layer_number
self.size_input = size_input
self.size_output = size_output
with self.name_scope():
# add parameters to the Block's ParameterDict.
self.w = self.params.get(
'weight',
init= mx.init.Xavier(magnitude=2.24),
shape=(size_input, size_output),
grad_req = 'write')
self.b = self.params.get(
'bias',
init= mx.init.Constant(0.5),
shape=(size_output,),
grad_req = 'write')
def forward(self, x):
x = x.as_in_context(ctxList[self.layer_number])
with x.context:
linear = nd.dot(x, self.w.data()) + self.b.data()
return linear
# ======================================================================
# create net
net = gluon.nn.Sequential()
with net.name_scope():
# initial layer, with X as input
net.add(myDenseBlock(0,
size_input = 2,
size_output = 2))
for ii in range(hidden_layers-1):
net.add(myDenseBlock(ii+1,
size_input = 2,
size_output = 2))
# final block, Y is nx1
net.add(myDenseBlock(ii+2,
size_input = 2,
size_output = 1))
# ititialize paramerters for different blocks (layers) on different gpus.
params = net.collect_params()
"""
The parameters are:
sequential0_mydenseblock0_weight
sequential0_mydenseblock0_bias
sequential0_mydenseblock1_weight
sequential0_mydenseblock1_bias
sequential0_mydenseblock2_weight
sequential0_mydenseblock2_bias
"""
print("\ninitializing:")
for i, param in enumerate(params):
if 'mydenseblock0' in param:
params[param].initialize(ctx=ctxList[0])
elif 'mydenseblock1' in param:
params[param].initialize(ctx=ctxList[1])
elif 'mydenseblock2' in param:
params[param].initialize(ctx=ctxList[2])
print(" ", i, param, " ", params[param].list_data()[0].context)
print("\n")
def square_loss(yhat, y):
return nd.mean((yhat - y) ** 2)
def mytrainer(updaters, params, ignore_stale_grad=False):
#print("\n")
for i, param in enumerate(params):
#print(i, param, " ", len(params[param].list_data()), params[param].list_data()[0].context)
if params[param].grad_req == 'null':
continue
if not ignore_stale_grad:
for data in params[param].list_data():
if not data._fresh_grad:
print(
"`%s` on context %s has not been updated"%(params[param].name, str(data.context)))
assert False
for upd, arr, grad in zip(updaters, params[param].list_data(), params[param].list_grad()):
if not ignore_stale_grad or arr._fresh_grad:
upd(i, grad, arr)
arr._fresh_grad = False
#print ("grad= ", grad)
batch_size = 100
epochs = 100000
iteration = -1
opt = mx.optimizer.create('adam', learning_rate=0.001, rescale_grad = 1 / batch_size)
updaters = [mx.optimizer.get_updater(opt)]
# the following definition for updaters does not work either
#updaters = [mx.optimizer.get_updater(opt) for _ in ctxList]
results = []
for e in range(epochs):
train_groups = np.array_split(np.arange(X.shape[0]), X.shape[0]/batch_size)
for ii, idx in enumerate(train_groups):
iteration += 1
xtrain, ytrain = X[idx,:], y[idx]
xtrain = nd.array(xtrain)
xtrain = xtrain.as_in_context(ctxList[0])
ytrain = nd.array(ytrain).reshape((-1, 1))
ytrain = ytrain.as_in_context(ctxList[0])
with autograd.record():
yhat = net(xtrain)
error = square_loss(yhat, ytrain.as_in_context(ctxList[-1]))
# Question: does the call to error.backward() go under the indent
# for autograd.record() or outside the indent? The gluon examples have
# it both ways
error.backward()
mytrainer(updaters, net.collect_params())
if iteration%10 == 0:
results.append([iteration, error.asnumpy().item()])
print(("epoch= {:5,d}, iter= {:6,d}, error= {:6.3E}").format(
e, iteration, error.asnumpy().item()))
The code fails at the "if not data._fresh_grad" test in mytrainer(). The output is:
initializing:
0 sequential0_mydenseblock0_weight gpu(0)
1 sequential0_mydenseblock0_bias gpu(0)
2 sequential0_mydenseblock1_weight gpu(1)
3 sequential0_mydenseblock1_bias gpu(1)
4 sequential0_mydenseblock2_weight gpu(2)
5 sequential0_mydenseblock2_bias gpu(2)
`sequential0_mydenseblock0_weight` on context gpu(0) has not been updated
I can verify using mx.autograd.get_symbol(error).tojson() that the computational graph only extends to the parameters on gpu(2), and does not reach other gpus.
Yes, per #sergei's comment, moving to v1.0.0 solves this.

Why does my TensorFlow Neural Network for XOR only have an accuracy of around 0.5?

I Wrote a Neural Network in TensorFlow for the XOR input. I have used 1 hidden layer with 2 units and softmax classification. The input is of the form <1, x_1, x_2, zero, one> , where
1 is the bias
x_1 and x_2 are either between 0 and 1 for all the combination {00, 01, 10, 11}. Selected to be normally distributed around 0 or 1
zero: is 1 if the output is zero
one: is 1 if the output is one
The accuracy is always around 0.5. What has gone wrong? Is the architecture of the neural network wrong, or is there something with the code?
import tensorflow as tf
import numpy as np
from random import randint
DEBUG=True
def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01))
def model(X, weight_hidden, weight_output):
# [1,3] x [3,n_hiddent_units] = [1,n_hiddent_units]
hiddern_units_output = tf.nn.sigmoid(tf.matmul(X, weight_hidden))
# [1,n_hiddent_units] x [n_hiddent_units, 2] = [1,2]
return hiddern_units_output
#return tf.matmul(hiddern_units_output, weight_output)
def getHiddenLayerOutput(X, weight_hidden):
hiddern_units_output = tf.nn.sigmoid(tf.matmul(X, weight_hidden))
return hiddern_units_output
total_inputs = 100
zeros = tf.zeros([total_inputs,1])
ones = tf.ones([total_inputs,1])
around_zeros = tf.random_normal([total_inputs,1], mean=0, stddev=0.01)
around_ones = tf.random_normal([total_inputs,1], mean=1, stddev=0.01)
batch_size = 10
n_hiddent_units = 2
X = tf.placeholder("float", [None, 3])
Y = tf.placeholder("float", [None, 2])
weight_hidden = init_weights([3, n_hiddent_units])
weight_output = init_weights([n_hiddent_units, 2])
hiddern_units_output = getHiddenLayerOutput(X, weight_hidden)
py_x = model(X, weight_hidden, weight_output)
#cost = tf.square(Y - py_x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))
train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost)
with tf.Session() as sess:
tf.global_variables_initializer().run()
trX_0_0 = sess.run(tf.concat([ones, around_zeros, around_zeros, ones, zeros], axis=1))
trX_0_1 = sess.run(tf.concat([ones, around_zeros, around_ones, zeros, ones], axis=1))
trX_1_0 = sess.run(tf.concat([ones, around_ones, around_zeros, zeros, ones], axis=1))
trX_1_1 = sess.run(tf.concat([ones, around_ones, around_ones, ones, zeros], axis=1))
trX = sess.run(tf.concat([trX_0_0, trX_0_1, trX_1_0, trX_1_1], axis=0))
trX = sess.run(tf.random_shuffle(trX))
print(trX)
for i in range(10):
for start, end in zip(range(0, len(trX), batch_size), range(batch_size, len(trX) + 1, batch_size)):
trY = tf.identity(trX[start:end,3:5])
trY = sess.run(tf.reshape(trY,[batch_size, 2]))
sess.run(train_op, feed_dict={ X: trX[start:end,0:3], Y: trY })
start_index = randint(0, (total_inputs*4)-batch_size)
y_0 = sess.run(py_x, feed_dict={X: trX[start_index:start_index+batch_size,0:3]})
print("iteration :",i, " accuracy :", np.mean(np.absolute(trX[start_index:start_index+batch_size,3:5]-y_0)),"\n")
Check the comments section for the updated code
The problem was with the randomly assigned weights. Here is the modified version, obtained after a series of trail-and-error.

Getting very high values in linear regression

I am trying to make a simple MLP to predict values of a pixel of an image - original blog .
Here's my earlier attempt using Keras in python - link
I've tried to do the same in tensorflow, but I am getting very large output values (~10^12) when they should be less than 1.
Here's my code:
import numpy as np
import cv2
from random import shuffle
import tensorflow as tf
'''
Image preprocessing
'''
image_file = cv2.imread("Mona Lisa.jpg")
h = image_file.shape[0]
w = image_file.shape[1]
preX = []
preY = []
for i in xrange(h):
for j in xrange(w):
preX.append([i,j])
preY.append(image_file[i,j,:].astype('float32')/255.0)
print preX[:5], preY[:5]
zipped = [i for i in zip(preX,preY)]
shuffle(zipped)
X_train = np.array([i for (i,j) in zipped]).astype('float32')
Y_train = np.array([j for (i,j) in zipped]).astype('float32')
print X_train[:10], Y_train[:10]
'''
Tensorflow code
'''
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
x = tf.placeholder(tf.float32, shape=[None,2])
y = tf.placeholder(tf.float32, shape=[None,3])
'''
Layers
'''
w1 = weight_variable([2,300])
b1 = bias_variable([300])
L1 = tf.nn.relu(tf.matmul(X_train,w1)+b1)
w2 = weight_variable([300,3])
b2 = bias_variable([3])
y_model = tf.matmul(L1,w2)+b2
'''
Training
'''
# criterion
MSE = tf.reduce_mean(tf.square(tf.sub(y,y_model)))
# trainer
train_op = tf.train.GradientDescentOptimizer(learning_rate = 0.01).minimize(MSE)
nb_epochs = 10
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
cost = 0
for i in range(nb_epochs):
sess.run(train_op, feed_dict ={x: X_train, y: Y_train})
cost += sess.run(MSE, feed_dict ={x: X_train, y: Y_train})
cost /= nb_epochs
print cost
'''
Prediction
'''
pred = sess.run(y_model,feed_dict = {x:X_train})*255.0
print pred[:10]
output_image = []
index = 0
h = image_file.shape[0]
w = image_file.shape[1]
for i in xrange(h):
row = []
for j in xrange(w):
row.append(pred[index])
index += 1
row = np.array(row)
output_image.append(row)
output_image = np.array(output_image)
output_image = output_image.astype('uint8')
cv2.imwrite('out_mona_300x3_tf.png',output_image)
First of all, I think that instead of running the train_op and then the MSE
you can run both ops in a list and reduce your computational cost significantly.
for i in range(nb_epochs):
cost += sess.run([MSE, train_op], feed_dict ={x: X_train, y: Y_train})
Secondly, I suggest always writing out your cost function so you can see what is going on during the training phase. Either manually print it out or use tensorboard to log your cost and plot it (you can find examples on the official tf page).
You can also monitor your weights to see that they aren't blowing up.
A few things you can try:
Reduce learning rate, add regularization to weights.
Check that your training set (pixels) really consist of the values that
you expect them to.
You give the input layer weights and the output layer weights the same names w and b, so it seems something goes wrong in the gradient-descent procedure. Actually I'm surprised tensorflow doesn't issue an error or at leas a warning (or am I missing something?)

Categories

Resources