I have created a (rather large) program that takes quite a long time to finish, and I started looking into ways to speed up the program.
I found that if I open task manager while the program is running only one core is being used.
After some research, I found this website:
Why does multiprocessing use only a single core after I import numpy? which gives a solution of os.system("taskset -p 0xff %d" % os.getpid()),
however this doesn't work for me, and my program continues to run on a single core.
I then found this:
is python capable of running on multiple cores?,
which pointed towards using multiprocessing.
So after looking into multiprocessing, I came across this documentary on how to use it https://docs.python.org/3/library/multiprocessing.html#examples
I tried the code:
from multiprocessing import Process
def f(name):
print('hello', name)
if __name__ == '__main__':
p = Process(target=f, args=('bob',))
p.start()
p.join()
a = input("Finished")
After running the code (not in IDLE) It said this:
Finished
hello bob
Finished
Note: after it said Finished the first time I pressed enter
So after this I am now even more confused and I have two questions
First: It still doesn't run with multiple cores (I have an 8 core Intel i7)
Second: Why does it input "Finished" before its even run the if statement code (and it's not even finished yet!)
To answer your second question first, "Finished" is printed to the terminal because a = input("Finished") is outside of your if __name__ == '__main__': code block. It is thus a module level constant which gets assigned when the module is first loaded and will execute before any code in the module runs.
To answer the first question, you only created one process which you run and then wait to complete before continuing. This gives you zero benefits of multiprocessing and incurs overhead of creating the new process.
Because you want to create several processes, you need to create a pool via a collection of some sort (e.g. a python list) and then start all of the processes.
In practice, you need to be concerned with more than the number of processors (such as the amount of available memory, the ability to restart workers that crash, etc.). However, here is a simple example that completes your task above.
import datetime as dt
from multiprocessing import Process, current_process
import sys
def f(name):
print('{}: hello {} from {}'.format(
dt.datetime.now(), name, current_process().name))
sys.stdout.flush()
if __name__ == '__main__':
worker_count = 8
worker_pool = []
for _ in range(worker_count):
p = Process(target=f, args=('bob',))
p.start()
worker_pool.append(p)
for p in worker_pool:
p.join() # Wait for all of the workers to finish.
# Allow time to view results before program terminates.
a = input("Finished") # raw_input(...) in Python 2.
Also note that if you join workers immediately after starting them, you are waiting for each worker to complete its task before starting the next worker. This is generally undesirable unless the ordering of the tasks must be sequential.
Typically Wrong
worker_1.start()
worker_1.join()
worker_2.start() # Must wait for worker_1 to complete before starting worker_2.
worker_2.join()
Usually Desired
worker_1.start()
worker_2.start() # Start all workers.
worker_1.join()
worker_2.join() # Wait for all workers to finish.
For more information, please refer to the following links:
https://docs.python.org/3/library/multiprocessing.html
Dead simple example of using Multiprocessing Queue, Pool and Locking
https://pymotw.com/2/multiprocessing/basics.html
https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/mapreduce.html
Related
I am using multiprocessing python module to run parallel and unrelated jobs with a function similar to the following example:
import numpy as np
from multiprocessing import Pool
def myFunction(arg1):
name = "file_%s.npy"%arg1
A = np.load(arg1)
A[A<0] = np.nan
np.save(arg1,A)
if(__name__ == "__main__"):
N = list(range(50))
with Pool(4) as p:
p.map_async(myFunction, N)
p.close() # I tried with and without that statement
p.join() # I tried with and without that statement
DoOtherStuff()
My problem is that the function DoOtherStuff is never executed, the processes switches into sleep mode on top and I need to kill it with ctrl+C to stop it.
Any suggestions?
You have at least a couple problems. First, you are using map_async() which does not block until the results of the task are completed. So what you're doing is starting the task with map_async(), but then immediately closes and terminates the pool (the with statement calls Pool.terminate() upon exiting).
When you add tasks to a Process pool with methods like map_async it adds tasks to a task queue which is handled by a worker thread which takes tasks off that queue and farms them out to worker processes, possibly spawning new processes as needed (actually there is a separate thread which handles that).
Point being, you have a race condition where you're terminating the Pool likely before any tasks are even started. If you want your script to block until all the tasks are done just use map() instead of map_async(). For example, I rewrote your script like this:
import numpy as np
from multiprocessing import Pool
def myFunction(N):
A = np.load(f'file_{N:02}.npy')
A[A<0] = np.nan
np.save(f'file2_{N:02}.npy', A)
def DoOtherStuff():
print('done')
if __name__ == "__main__":
N = range(50)
with Pool(4) as p:
p.map(myFunction, N)
DoOtherStuff()
I don't know what your use case is exactly, but if you do want to use map_async(), so that this task can run in the background while you do other stuff, you have to leave the Pool open, and manage the AsyncResult object returned by map_async():
result = pool.map_async(myFunction, N)
DoOtherStuff()
# Is my map done yet? If not, we should still block until
# it finishes before ending the process
result.wait()
pool.close()
pool.join()
You can see more examples in the linked documentation.
I don't know why in your attempt you got a deadlock--I was not able to reproduce that. It's possible there was a bug at some point that was then fixed, though you were also possibly invoking undefined behavior with your race condition, as well as calling terminate() on a pool after it's already been join()ed. As for your why your answer did anything at all, it's possible that with the multiple calls to apply_async() you managed to skirt around the race condition somewhat, but this is not at all guaranteed to work.
I am trying to execute n processes simultaneously. The example below works with 2 processes that are supplied externally.
At the moment it is all hard-coded for just these 2 processes but I would need to come up with the generic solution how to accomplish the same - i.e. run n processes at the same time.
My code is as follows:
import multiprocessing
'''
The first process: print 'aa'
The second Process: print 'BB'
'''
def TR1():
print 'aaaaaaaaa'
def TR2():
print 'BBBBBBBB'
if __name__ == '__main__':
process_1 = multiprocessing.Process(name='process_1', target=TR1)
process_2 = multiprocessing.Process(name='process_2', target=TR2)
process_1.start()
process_2.start()
Thanks for your suggestions!
You can either spawn processes in a loop, or use executor pool.
In real life, later one is often preferred approach, as you can limit pool size and have easy result gathering.
If you're using python 2, there's backport including ProcessPoolExecutor
I am a novice user of python multithreading/multiprocessing, so please bear with me.
I would like to solve the following problem and I need some help/suggestions in this regard.
Let me describe in brief:
I would like to start a python script which does something in the
beginning sequentially.
After the sequential part is over, I would like to start some jobs
in parallel.
Assume that there are four parallel jobs I want to start.
I would like to also start these jobs on some other machines using "lsf" on the computing cluster.My initial script is also running on a ” lsf”
machine.
The four jobs which I started on four machines will perform two logical steps A and B---one after the other.
When a job started initially, they start with logical step A and finish it.
After every job (4jobs) has finished the Step A; they should notify the first job which started these. In other words, the main job which started is waiting for the confirmation from these four jobs.
Once the main job receives confirmation from these four jobs; it should notify all the four jobs to do the logical step B.
Logical step B will automatically terminate the jobs after finishing the task.
Main job is waiting for the all jobs to finish and later on it should continue with the sequential part.
An example scenario would be:
Python script running on an “lsf” machine in the cluster starts four "tcl shells" on four “lsf” machines.
In each tcl shell, a script is sourced to do the logical step A.
Once the step A is done, somehow they should inform the python script which is waiting for the acknowledgement.
Once the acknowledgement is received from all the four, python script inform them to do the logical step B.
Logical step B is also a script which is sourced in their tcl shell; this script will also close the tcl shell at the end.
Meanwhile, python script is waiting for all the four jobs to finish.
After all four jobs are finished; it should continue with the sequential part again and finish later on.
Here are my questions:
I am confused about---should I use multithreading/multiprocessing. Which one suits better?
In fact what is the difference between these two? I read about these but I wasn't able to conclude.
What is python GIL? I also read somewhere at any one point in time only one thread will execute.
I need some explanation here. It gives me an impression that I can't use threads.
Any suggestions on how could I solve my problem systematically and in a more pythonic way.
I am looking for some verbal step by step explanation and some pointers to read on each step.
Once the concepts are clear, I would like to code it myself.
Thanks in advance.
In addition to roganjosh's answer, I would include some signaling to start the step B after A has finished:
import multiprocessing as mp
import time
import random
import sys
def func_A(process_number, queue, proceed):
print "Process {} has started been created".format(process_number)
print "Process {} has ended step A".format(process_number)
sys.stdout.flush()
queue.put((process_number, "done"))
proceed.wait() #wait for the signal to do the second part
print "Process {} has ended step B".format(process_number)
sys.stdout.flush()
def multiproc_master():
queue = mp.Queue()
proceed = mp.Event()
processes = [mp.Process(target=func_A, args=(x, queue)) for x in range(4)]
for p in processes:
p.start()
#block = True waits until there is something available
results = [queue.get(block=True) for p in processes]
proceed.set() #set continue-flag
for p in processes: #wait for all to finish (also in windows)
p.join()
return results
if __name__ == '__main__':
split_jobs = multiproc_master()
print split_jobs
1) From the options you listed in your question, you should probably use multiprocessing in this case to leverage multiple CPU cores and compute things in parallel.
2) Going further from point 1: the Global Interpreter Lock (GIL) means that only one thread can actually execute code at any one time.
A simple example for multithreading that pops up often here is having a prompt for user input for, say, an answer to a maths problem. In the background, they want a timer to keep incrementing at one second intervals to register how long the person took to respond. Without multithreading, the program would block whilst waiting for user input and the counter would not increment. In this case, you could have the counter and the input prompt run on different threads so that they appear to be running at the same time. In reality, both threads are sharing the same CPU resource and are constantly passing an object backwards and forwards (the GIL) to grant them individual access to the CPU. This is hopeless if you want to properly process things in parallel. (Note: In reality, you'd just record the time before and after the prompt and calculate the difference rather than bothering with threads.)
3) I have made a really simple example using multiprocessing. In this case, I spawn 4 processes that compute the sum of squares for a randomly chosen range. These processes do not have a shared GIL and therefore execute independently unlike multithreading. In this example, you can see that all processes start and end at slightly different times, but we can aggregate the results of the processes into a single queue object. The parent process will wait for all 4 child processes to return their computations before moving on. You could then repeat the code for func_B (not included in the code).
import multiprocessing as mp
import time
import random
import sys
def func_A(process_number, queue):
start = time.time()
print "Process {} has started at {}".format(process_number, start)
sys.stdout.flush()
my_calc = sum([x**2 for x in xrange(random.randint(1000000, 3000000))])
end = time.time()
print "Process {} has ended at {}".format(process_number, end)
sys.stdout.flush()
queue.put((process_number, my_calc))
def multiproc_master():
queue = mp.Queue()
processes = [mp.Process(target=func_A, args=(x, queue)) for x in xrange(4)]
for p in processes:
p.start()
# Unhash the below if you run on Linux (Windows and Linux treat multiprocessing
# differently as Windows lacks os.fork())
#for p in processes:
# p.join()
results = [queue.get() for p in processes]
return results
if __name__ == '__main__':
split_jobs = multiproc_master()
print split_jobs
Im trying to do things concurrently in my program and to throttle the number of processes opened at the same time (10).
from multiprocessing import Process
from threading import BoundedSemaphore
semaphore = BoundedSemaphore(10)
for x in xrange(100000):
semaphore.acquire(blocking=True)
print 'new'
p = Process(target=f, args=(x,))
p.start()
def f(x):
... # do some work
semaphore.release()
print 'done'
The first 10 processes are launched and they end correctly (I see 10 "new" and "done" on the console), and then nothing. I don't see another "new", the program just hangs there (and Ctrl-C doesn't work either). What's wrong ?
Your problem is the use of threading.BoundedSemaphore across process boundaries:
import threading
import multiprocessing
import time
semaphore = threading.BoundedSemaphore(10)
def f(x):
semaphore.release()
print('done')
semaphore.acquire(blocking=True)
print('new')
print(semaphore._value)
p = multiprocessing.Process(target=f, args=(100,))
p.start()
time.sleep(3)
print(semaphore._value)
When you create a new process, the child gets a copy of the parent process's memory. Thus the child is decrementing it's semaphore, and the semaphore in the parent is untouched. (Typically, processes are isolated from each other: it takes some extra work to communicate across processes; this is what multiprocessing is for.)
This is opposed to threads, where the two threads share the memory space, and are considered the same process.
multiprocessing.BoundedSemaphore is probably what you want. (If you replace threading.BoundedSemaphore with it, and replace semaphore._value with semaphore.get_value()`, you'll see the above's output change.)
Your bounded semaphore is not shared properly between the various processes which are being spawned; you might want to switch to using multiprocessing.BoundedSemaphore. See the answers to this question for some more details.
I would like to run a number of jobs using a pool of processes and apply a given timeout after which a job should be killed and replaced by another working on the next task.
I have tried to use the multiprocessing module which offers a method to run of pool of workers asynchronously (e.g. using map_async), but there I can only set a "global" timeout after which all processes would be killed.
Is it possible to have an individual timeout after which only a single process that takes too long is killed and a new worker is added to the pool again instead (processing the next task and skipping the one that timed out)?
Here's a simple example to illustrate my problem:
def Check(n):
import time
if n % 2 == 0: # select some (arbitrary) subset of processes
print "%d timeout" % n
while 1:
# loop forever to simulate some process getting stuck
pass
print "%d done" % n
return 0
from multiprocessing import Pool
pool = Pool(processes=4)
result = pool.map_async(Check, range(10))
print result.get(timeout=1)
After the timeout all workers are killed and the program exits. I would like instead that it continues with the next subtask. Do I have to implement this behavior myself or are there existing solutions?
Update
It is possible to kill the hanging workers and they are automatically replaced. So I came up with this code:
jobs = pool.map_async(Check, range(10))
while 1:
try:
print "Waiting for result"
result = jobs.get(timeout=1)
break # all clear
except multiprocessing.TimeoutError:
# kill all processes
for c in multiprocessing.active_children():
c.terminate()
print result
The problem now is that the loop never exits; even after all tasks have been processed, calling get yields a timeout exception.
The pebble Pool module has been built for solving these types of issue. It supports timeout on given tasks allowing to detect them and easily recover.
from pebble import ProcessPool
from concurrent.futures import TimeoutError
with ProcessPool() as pool:
future = pool.schedule(function, args=[1,2], timeout=5)
try:
result = future.result()
except TimeoutError:
print "Function took longer than %d seconds" % error.args[1]
For your specific example:
from pebble import ProcessPool
from concurrent.futures import TimeoutError
results = []
with ProcessPool(max_workers=4) as pool:
future = pool.map(Check, range(10), timeout=5)
iterator = future.result()
# iterate over all results, if a computation timed out
# print it and continue to the next result
while True:
try:
result = next(iterator)
results.append(result)
except StopIteration:
break
except TimeoutError as error:
print "function took longer than %d seconds" % error.args[1]
print results
Currently the Python does not provide native means to the control execution time of each distinct task in the pool outside the worker itself.
So the easy way is to use wait_procs in the psutil module and implement the tasks as subprocesses.
If nonstandard libraries are not desirable, then you have to implement own Pool on base of subprocess module having the working cycle in the main process, poll() - ing the execution of each worker and performing required actions.
As for the updated problem, the pool becomes corrupted if you directly terminate one of the workers (it is the bug in the interpreter implementation, because such behavior should not be allowed): the worker is recreated, but the task is lost and the pool becomes nonjoinable.
You have to terminate all the pool and then recreate it again for another tasks:
from multiprocessing import Pool
while True:
pool = Pool(processes=4)
jobs = pool.map_async(Check, range(10))
print "Waiting for result"
try:
result = jobs.get(timeout=1)
break # all clear
except multiprocessing.TimeoutError:
# kill all processes
pool.terminate()
pool.join()
print result
UPDATE
Pebble is an excellent and handy library, which solves the issue. Pebble is designed for the asynchronous execution of Python functions, where is PyExPool is designed for the asynchronous execution of modules and external executables, though both can be used interchangeably.
One more aspect is when 3dparty dependencies are not desirable, then PyExPool can be a good choice, which is a single-file lightweight implementation of Multi-process Execution Pool with per-Job and global timeouts, opportunity to group Jobs into Tasks and other features.
PyExPool can be embedded into your sources and customized, having permissive Apache 2.0 license and production quality, being used in the core of one high-loaded scientific benchmarking framework.
Try the construction where each process is being joined with a timeout on a separate thread. So the main program never gets stuck and as well the processes which if gets stuck, would be killed due to timeout. This technique is a combination of threading and multiprocessing modules.
Here is my way to maintain the minimum x number of threads in the memory. Its an combination of threading and multiprocessing modules. It may be unusual to other techniques like respected fellow members have explained above BUT may be worth considerable. For the sake of explanation, I am taking a scenario of crawling a minimum of 5 websites at a time.
so here it is:-
#importing dependencies.
from multiprocessing import Process
from threading import Thread
import threading
# Crawler function
def crawler(domain):
# define crawler technique here.
output.write(scrapeddata + "\n")
pass
Next is threadController function. This function will control the flow of threads to the main memory. It will keep activating the threads to maintain the threadNum "minimum" limit ie. 5. Also it won't exit until, all Active threads(acitveCount) are finished up.
It will maintain a minimum of threadNum(5) startProcess function threads (these threads will eventually start the Processes from the processList while joining them with a time out of 60 seconds). After staring threadController, there would be 2 threads which are not included in the above limit of 5 ie. the Main thread and the threadController thread itself. thats why threading.activeCount() != 2 has been used.
def threadController():
print "Thread count before child thread starts is:-", threading.activeCount(), len(processList)
# staring first thread. This will make the activeCount=3
Thread(target = startProcess).start()
# loop while thread List is not empty OR active threads have not finished up.
while len(processList) != 0 or threading.activeCount() != 2:
if (threading.activeCount() < (threadNum + 2) and # if count of active threads are less than the Minimum AND
len(processList) != 0): # processList is not empty
Thread(target = startProcess).start() # This line would start startThreads function as a seperate thread **
startProcess function, as a separate thread, would start Processes from the processlist. The purpose of this function (**started as a different thread) is that It would become a parent thread for Processes. So when It will join them with a timeout of 60 seconds, this would stop the startProcess thread to move ahead but this won't stop threadController to perform. So this way, threadController will work as required.
def startProcess():
pr = processList.pop(0)
pr.start()
pr.join(60.00) # joining the thread with time out of 60 seconds as a float.
if __name__ == '__main__':
# a file holding a list of domains
domains = open("Domains.txt", "r").read().split("\n")
output = open("test.txt", "a")
processList = [] # thread list
threadNum = 5 # number of thread initiated processes to be run at one time
# making process List
for r in range(0, len(domains), 1):
domain = domains[r].strip()
p = Process(target = crawler, args = (domain,))
processList.append(p) # making a list of performer threads.
# starting the threadController as a seperate thread.
mt = Thread(target = threadController)
mt.start()
mt.join() # won't let go next until threadController thread finishes.
output.close()
print "Done"
Besides maintaining a minimum number of threads in the memory, my aim was to also have something which could avoid stuck threads or processes in the memory. I did this using the time out function. My apologies for any typing mistake.
I hope this construction would help anyone in this world.
Regards,
Vikas Gautam