I have a variable img which is a int64 numpy.array with sizes 28x28. Its content looks like this:
[...]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 68 154 188 176 254 254 254 254 254
227 106 17 0 0 0 0 0 0 0]
[...]
I want to convert the array to a PIL image. To do so I call img = Image.fromarray(img, mode='L') but the output I get is only 0s while it is obvious that it shouldn't be like that. I have checked the mode options and seems like L is correct. Also checked other answers inside stackoverflow and couldn't find something that reproduces this particular problem.
L (8-bit pixels, black and white)
Why is this "simple" piece of code given an unexpected behaviour?
Thanks in advance!
As #Divakar pointed out, the data types were not coherent.
Just by adding np.uint8() it works:
img = Image.fromarray(np.uint8(img), mode='L')
Related
I'm facing an issue when opening a .tif using rasterio using the code below.
fp = 'image.tif'
image = rasterio.open(fp)
print(image.read())
When printing the content of the image, I get this
[[[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
...
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]]]
I verified all values and they are all 0. However, when dragging the image in QGIS, I can view it and confirm that the image contains values ranging from 101 to 122.
QGIS image
Any idea on how to read the image and get these 101 to 122 values as a numpy array ?
Here's a link to the image in question
I have created a numpy array shape(11 x 11) with all pixels 0 excluding one column filled with 1.
[[ 0 0 0 0 0 1 0 0 0 0 0 ]
[ 0 0 0 0 0 1 0 0 0 0 0 ]
[ 0 0 0 0 0 1 0 0 0 0 0 ]
[ 0 0 0 0 0 1 0 0 0 0 0 ]
[ 0 0 0 0 0 1 0 0 0 0 0 ]
[ 0 0 0 0 0 1 0 0 0 0 0 ]
[ 0 0 0 0 0 1 0 0 0 0 0 ]
[ 0 0 0 0 0 1 0 0 0 0 0 ]
[ 0 0 0 0 0 1 0 0 0 0 0 ]
[ 0 0 0 0 0 1 0 0 0 0 0 ]
[ 0 0 0 0 0 1 0 0 0 0 0 ]]
The array was saved as a png image using matplotlib.imsave yielding the expected image - black background with a white line in the middle.
When trying to reimport the saved png image
skipy.imread and Pil.Image.Open yield an array of the form
[[[ 68 1 84 255]
[ 68 1 84 255]
[ 68 1 84 255]
[ 68 1 84 255]
[ 68 1 84 255]
[253 231 36 255]
[ 68 1 84 255]
[ 68 1 84 255]
[ 68 1 84 255]
[ 68 1 84 255]
[ 68 1 84 255]]
...
]
What does this file format mean (could not find an explanation in the scikit image documentation) ?
And how do I convert it back to the binary input image?
What you see is explained thusly:
your data was grayscale
then you plotted that with a colormap
-- the line looks yellow and the background looks dark blue/violet?
then you told matplotlib to save that false-color picture
then you read that false-color picture back
now you have RGBA pixel data. you see the first pixel row, and each value of each color pixel
If you wanted to maintain the grayscale appearance of your data, you'd have some choices.
Use plt.imshow(arr, cmap="gray"), which uses a gray color map rather than a colorful one.
When reading the image, and also converting any color to grayscale, you can choose scikit-image or OpenCV. OpenCV has cv.imread(fname, cv.IMREAD_GRAYSCALE). scikit-image offers skimage.io.imread(fname, as_gray=True).
And really you should use scikit-image or OpenCV for writing your picture in the first place. Matplotlib is for plotting, not for storing data authentically. Matplotlib took your data and rescaled it so the maximum and minimum value become 0 and 1, which is black and white for the gray cmap.
On grayscale, a pixel with value 1 doesn't appear white - this simply happens because matplotlib normalizes the image before displaying it.
Choose either:
a) Keep the original binary values, then the saved image won't have a white line in the middle
b) Have a white line in the middle, but then you'll have to modify the array before saving and after loading it.
Ad b)
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
# This is the array you have
arr = np.zeros((11, 11), dtype=np.uint8)
arr[:, 5] = 1
plt.figure()
plt.imshow(arr, cmap='gray')
plt.show()
# This will ensure that the line appears white in the .png
arr_png = arr * 255 # 2**8 - 1
# Write to disk
cv.imwrite('line.png', arr_png)
# Load from disk
arr_from_disk = np.array(cv.imread('line.png', 0), dtype=np.uint8)
# Rescale
arr_from_disk = np.divide(arr_from_disk, 255)
assert np.array_equal(arr, arr_from_disk), 'Oops'
I have a numpy array of dimension 11*11 that I want to convert into an RGB image so I'm using this code :
import matplotlib.pyplot as plt
from PIL import Image as im
n_images = 1
train_data_np = train_data.to_numpy()
train_images = train_data_np[:n_images]
for i in range(n_images):
image_train = np.reshape(train_images[i], [11, 11])
image = im.fromarray(np.uint8(image_train))
plt.imshow(image)
plt.show()
My problem is that the image displayed is not all RGB because for this value :
[[ 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 255 0 0 150 25 43 7 43 0]
[ 0 0 12 0 0 255 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 255 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 255 0]]
it displayed this image
which doesn't respect RGB format as you can see where 0 it should be black instead
of purple and 255 should be white instead of yellow.
I tried to convert the numpy array of [11,11] into [11,11,3] to support RGB channels but it gave in the end a grayscale image only white and black. but it is not what I want. Here is the code that I used :
n_images = 1
train_data_np = train_data.to_numpy()
train_images = train_data_np[:n_images]
for i in range(n_images):
image_res = np.reshape(train_images[i],[11,11])
img2 = np.zeros( ( image_res.shape[0], image_res.shape[1], 3 ) )
img2[:,:,0] = image_res # same value in each channel
img2[:,:,1] = image_res
img2[:,:,2] = image_res
image_train = np.reshape(img2,[11,11,3])
image = im.fromarray(np.uint8(image_train),'RGB')
plt.imshow(image)
plt.show()
can someone explain to me how to implement or use a python function to transform the NumPy array 11x11 into an array of 11x11x3 using a colormap ?
This link contains an example of what i want really to do :
https://www.mathworks.com/help/matlab/ref/ind2rgb.html
Thank you in advance
I am trying to implement a python code to extend a matrix in such a way as given below:
Given Matrix:
1 2
3 4
Now I want to convert it to the following:
1 0 0 2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
3 0 0 4 0 0
0 0 0 0 0 0
0 0 0 0 0 0
I am trying the same for a matrix of the dimensions 60x80. I tried out numpy.insert(). But for larger matrix I am not able to apply the same thing(as it becomes too much hardcoding). So need some suggestions to do such interpolation.
You can use the step part of the slice to achieve this, if you preallocate yourself a result
repeat = 3
result = np.zeros((arr.shape[0]*repeat, arr.shape[1]*repeat))
result[::repeat,::repeat] = arr
I need to extract some data from .dat file which I usually do with
import numpy as np
file = np.loadtxt('blablabla.dat')
Here my data are not separated by a specific delimiter but have predefined length (digits) and some lines don't have any values for some columns.
Here an sample to be clear :
3 0 36 0 0 0 0 0 0 0 99.
-2 0 0 0 0 0 0 0 0 0 99.
2 0 0 0 0 0 0 0 0 0 .LA.0?. 3.
5 0 0 0 0 2 4 0 0 0 .SAS7?. 99.
-5 0 0 0 0 0 0 0 0 0 99.
99 0 0 0 0 0 0 0 0 0 .S..3*. 3.5
My little code above get the error :
# Convert each value according to its column and store
ValueError: Wrong number of columns at line 3
Does someone have an idea about how to collect this kind of data?
numpy.genfromtxt seems to be what you want; it you can specify field widths for each column and treats missing data as NaNs.
For this case:
import numpy as np
data = np.genfromtxt('blablabla.dat',delimiter=[2,3,4,3,3,2,3,4,5,3,8,5])
If you want to keep information in the string part of the file, you could read twice and specify the usecols parameter:
import numpy as np
number_data = np.genfromtxt('blablabla.dat',delimiter=[2,3,4,3,3,2,3,4,5,3,8,5],\
usecols=(0,1,2,3,4,5,6,7,8,9,11))
string_data = np.genfromtxt('blablabla.dat',delimiter=[2,3,4,3,3,2,3,4,5,3,8,5],\
usecols=(10),dtype=str)
What you essentially need is to get list of empty "columns" position that serve as delimiters
That will get you started
In [108]: table = ''' 3 0 36 0 0 0 0 0 0 0 99.
.....: -2 0 0 0 0 0 0 0 0 0 99.
.....: 2 0 0 0 0 0 0 0 0 0 .LA.0?. 3.
.....: 5 0 0 0 0 2 4 0 0 0 .SAS7?. 99.
.....: -5 0 0 0 0 0 0 0 0 0 99.
.....: 99 0 0 0 0 0 0 0 0 0 .S..3*. 3.5'''.split('\n')
In [110]: max_row_len = max(len(row) for row in table)
In [117]: spaces = reduce(lambda res, row: res.intersection(idx for idx, c in enumerate(row) if c == ' '), table, set(range(max_row_len)))
This code builds set of character positions in the longest row - and reduce leaves only set of positions that have spaces in all rows