Seaborn plot adds extra zeroes to x axis time-stamp labels - python

I am trying to plot the below dataset as barplot cum pointplot using seaborn.
But the time-stamp in the x-axis labels shows additional zeroes at the end as shown below
The code I use is
import matplotlib.pyplot as plt
import seaborn as sns
fig, ax1 = plt.subplots()
# Plot the barplot
sns.barplot(x='Date', y=y_value, hue='Sentiment', data=mergedData1, ax=ax1)
# Assign y axis label for bar plot
ax1.set_ylabel('No of Feeds')
# Position the legen on the right side outside the box
plt.legend(loc=2, bbox_to_anchor=(1.1, 1), ncol=1)
# Create a dual axis
ax2 = ax1.twinx()
# Plot the ponitplot
sns.pointplot(x='Date', y='meanTRP', data=mergedData1, ax=ax2, color='r')
# Assign y axis label for point plot
ax2.set_ylabel('TRP')
# Hide the grid for secondary axis
ax2.grid(False)
# Give a chart title
plt.title(source+' Social Media Feeds & TRP for the show '+show)
# Automatically align the x axis labels
fig.autofmt_xdate()
fig.tight_layout()
Not sure what is going wrong. Please help me with this. Thanks

Easiest solution is to split the text at the letter "T" as the rest is probably not needed.
ax.set_xticklabels([t.get_text().split("T")[0] for t in ax.get_xticklabels()])

You can still have more control over date format with this code:
ax.set_xticklabels([pd.to_datetime(tm).strftime('%d-%m-%Y') for tm in ax.get_xticklabels()])

Related

How to use a 3rd dataframe column as x axis ticks/labels in matplotlib scatter

I'm struggling to wrap my head around matplotlib with dataframes today. I see lots of solutions but I'm struggling to relate them to my needs. I think I may need to start over. Let's see what you think.
I have a dataframe (ephem) with 4 columns - Time, Date, Altitude & Azimuth.
I produce a scatter for alt & az using:
chart = plt.scatter(ephem.Azimuth, ephem.Altitude, marker='x', color='black', s=8)
What's the most efficient way to set the values in the Time column as the labels/ticks on the x axis?
So:
the scale/gridlines etc all remain the same
the chart still plots alt and az
the y axis ticks/labels remain as is
only the x axis ticks/labels are changed to the Time column.
Thanks
This isn't by any means the cleanest piece of code but the following works for me:
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.scatter(ephem.Azimuth, ephem.Altitude, marker='x', color='black', s=8)
labels = list(ephem.Time)
ax.set_xticklabels(labels)
plt.show()
Here you will explicitly force the set_xticklabels to the dataframe Time column which you have.
In other words, you want to change the x-axis tick labels using a list of values.
labels = ephem.Time.tolist()
# make your plot and before calling plt.show()
# insert the following two lines
ax = plt.gca()
ax.set_xticklabels(labels = labels)
plt.show()

Seaborn: add counts to countplot? [duplicate]

I have a Pandas DataFrame with a column called "AXLES", which can take an integer value between 3-12. I am trying to use Seaborn's countplot() option to achieve the following plot:
left y axis shows the frequencies of these values occurring in the data. The axis extends are [0%-100%], tick marks at every 10%.
right y axis shows the actual counts, values correspond to tick marks determined by the left y axis (marked at every 10%.)
x axis shows the categories for the bar plots [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
Annotation on top of the bars show the actual percentage of that category.
The following code gives me the plot below, with actual counts, but I could not find a way to convert them into frequencies. I can get the frequencies using df.AXLES.value_counts()/len(df.index) but I am not sure about how to plug this information into Seaborn's countplot().
I also found a workaround for the annotations, but I am not sure if that is the best implementation.
Any help would be appreciated!
Thanks
plt.figure(figsize=(12,8))
ax = sns.countplot(x="AXLES", data=dfWIM, order=[3,4,5,6,7,8,9,10,11,12])
plt.title('Distribution of Truck Configurations')
plt.xlabel('Number of Axles')
plt.ylabel('Frequency [%]')
for p in ax.patches:
ax.annotate('%{:.1f}'.format(p.get_height()), (p.get_x()+0.1, p.get_height()+50))
EDIT:
I got closer to what I need with the following code, using Pandas' bar plot, ditching Seaborn. Feels like I'm using so many workarounds, and there has to be an easier way to do it. The issues with this approach:
There is no order keyword in Pandas' bar plot function as Seaborn's countplot() has, so I cannot plot all categories from 3-12 as I did in the countplot(). I need to have them shown even if there is no data in that category.
The secondary y-axis messes up the bars and the annotation for some reason (see the white gridlines drawn over the text and bars).
plt.figure(figsize=(12,8))
plt.title('Distribution of Truck Configurations')
plt.xlabel('Number of Axles')
plt.ylabel('Frequency [%]')
ax = (dfWIM.AXLES.value_counts()/len(df)*100).sort_index().plot(kind="bar", rot=0)
ax.set_yticks(np.arange(0, 110, 10))
ax2 = ax.twinx()
ax2.set_yticks(np.arange(0, 110, 10)*len(df)/100)
for p in ax.patches:
ax.annotate('{:.2f}%'.format(p.get_height()), (p.get_x()+0.15, p.get_height()+1))
You can do this by making a twinx axes for the frequencies. You can switch the two y axes around so the frequencies stay on the left and the counts on the right, but without having to recalculate the counts axis (here we use tick_left() and tick_right() to move the ticks and set_label_position to move the axis labels
You can then set the ticks using the matplotlib.ticker module, specifically ticker.MultipleLocator and ticker.LinearLocator.
As for your annotations, you can get the x and y locations for all 4 corners of the bar with patch.get_bbox().get_points(). This, along with setting the horizontal and vertical alignment correctly, means you don't need to add any arbitrary offsets to the annotation location.
Finally, you need to turn the grid off for the twinned axis, to prevent grid lines showing up on top of the bars (ax2.grid(None))
Here is a working script:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import matplotlib.ticker as ticker
# Some random data
dfWIM = pd.DataFrame({'AXLES': np.random.normal(8, 2, 5000).astype(int)})
ncount = len(dfWIM)
plt.figure(figsize=(12,8))
ax = sns.countplot(x="AXLES", data=dfWIM, order=[3,4,5,6,7,8,9,10,11,12])
plt.title('Distribution of Truck Configurations')
plt.xlabel('Number of Axles')
# Make twin axis
ax2=ax.twinx()
# Switch so count axis is on right, frequency on left
ax2.yaxis.tick_left()
ax.yaxis.tick_right()
# Also switch the labels over
ax.yaxis.set_label_position('right')
ax2.yaxis.set_label_position('left')
ax2.set_ylabel('Frequency [%]')
for p in ax.patches:
x=p.get_bbox().get_points()[:,0]
y=p.get_bbox().get_points()[1,1]
ax.annotate('{:.1f}%'.format(100.*y/ncount), (x.mean(), y),
ha='center', va='bottom') # set the alignment of the text
# Use a LinearLocator to ensure the correct number of ticks
ax.yaxis.set_major_locator(ticker.LinearLocator(11))
# Fix the frequency range to 0-100
ax2.set_ylim(0,100)
ax.set_ylim(0,ncount)
# And use a MultipleLocator to ensure a tick spacing of 10
ax2.yaxis.set_major_locator(ticker.MultipleLocator(10))
# Need to turn the grid on ax2 off, otherwise the gridlines end up on top of the bars
ax2.grid(None)
plt.savefig('snscounter.pdf')
I got it to work using core matplotlib's bar plot. I didn't have your data obviously, but adapting it to yours should be straight forward.
Approach
I used matplotlib's twin axis and plotted the data as bars on the second Axes object. The rest ist just some fiddeling around to get the ticks right and make annotations.
Hope this helps.
Code
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from mpl_toolkits.mplot3d import Axes3D
import seaborn as sns
tot = np.random.rand( 1 ) * 100
data = np.random.rand( 1, 12 )
data = data / sum(data,1) * tot
df = pd.DataFrame( data )
palette = sns.husl_palette(9, s=0.7 )
### Left Axis
# Plot nothing here, autmatically scales to second axis.
fig, ax1 = plt.subplots()
ax1.set_ylim( [0,100] )
# Remove grid lines.
ax1.grid( False )
# Set ticks and add percentage sign.
ax1.yaxis.set_ticks( np.arange(0,101,10) )
fmt = '%.0f%%'
yticks = matplotlib.ticker.FormatStrFormatter( fmt )
ax1.yaxis.set_major_formatter( yticks )
### Right Axis
# Plot data as bars.
x = np.arange(0,9,1)
ax2 = ax1.twinx()
rects = ax2.bar( x-0.4, np.asarray(df.loc[0,3:]), width=0.8 )
# Set ticks on x-axis and remove grid lines.
ax2.set_xlim( [-0.5,8.5] )
ax2.xaxis.set_ticks( x )
ax2.xaxis.grid( False )
# Set ticks on y-axis in 10% steps.
ax2.set_ylim( [0,tot] )
ax2.yaxis.set_ticks( np.linspace( 0, tot, 11 ) )
# Add labels and change colors.
for i,r in enumerate(rects):
h = r.get_height()
r.set_color( palette[ i % len(palette) ] )
ax2.text( r.get_x() + r.get_width()/2.0, \
h + 0.01*tot, \
r'%d%%'%int(100*h/tot), ha = 'center' )
I think you can first set the y major ticks manually and then modify each label
dfWIM = pd.DataFrame({'AXLES': np.random.randint(3, 10, 1000)})
total = len(dfWIM)*1.
plt.figure(figsize=(12,8))
ax = sns.countplot(x="AXLES", data=dfWIM, order=[3,4,5,6,7,8,9,10,11,12])
plt.title('Distribution of Truck Configurations')
plt.xlabel('Number of Axles')
plt.ylabel('Frequency [%]')
for p in ax.patches:
ax.annotate('{:.1f}%'.format(100*p.get_height()/total), (p.get_x()+0.1, p.get_height()+5))
#put 11 ticks (therefore 10 steps), from 0 to the total number of rows in the dataframe
ax.yaxis.set_ticks(np.linspace(0, total, 11))
#adjust the ticklabel to the desired format, without changing the position of the ticks.
_ = ax.set_yticklabels(map('{:.1f}%'.format, 100*ax.yaxis.get_majorticklocs()/total))

adjust matplotlib subplot spacing after tight_layout

I would like to minimize white space in my figure. I have a row of sub plots where four plots share their y-axis and the last plot has a separate axis.
There are no ylabels or ticklabels for the shared axis middle panels.
tight_layout creates a lot of white space between the the middle plots as if leaving space for tick labels and ylabels but I would rather stretch the sub plots. Is this possible?
import matplotlib.gridspec as gridspec
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
fig = plt.figure()
gs = gridspec.GridSpec(1, 5, width_ratios=[4,1,4,1,2])
ax = fig.add_subplot(gs[0])
axes = [ax] + [fig.add_subplot(gs[i], sharey=ax) for i in range(1, 4)]
axes[0].plot(np.random.randint(0,100,100))
barlist=axes[1].bar([1,2],[1,20])
axes[2].plot(np.random.randint(0,100,100))
barlist=axes[3].bar([1,2],[1,20])
axes[0].set_ylabel('data')
axes.append(fig.add_subplot(gs[4]))
axes[4].plot(np.random.randint(0,5,100))
axes[4].set_ylabel('other data')
for ax in axes[1:4]:
plt.setp(ax.get_yticklabels(), visible=False)
sns.despine();
plt.tight_layout(pad=0, w_pad=0, h_pad=0);
Setting w_pad = 0 is not changing the default settings of tight_layout. You need to set something like w_pad = -2. Which produces the following figure:
You could go further, to say -3 but then you would start to get some overlap with your last plot.
Another way could be to remove plt.tight_layout() and set the boundaries yourself using
plt.subplots_adjust(left=0.065, right=0.97, top=0.96, bottom=0.065, wspace=0.14)
Though this can be a bit of a trial and error process.
Edit
A nice looking graph can be achieved by moving the ticks and the labels of the last plot to the right hand side. This answer shows you can do this by using:
ax.yaxis.tick_right()
ax.yaxis.set_label_position("right")
So for your example:
axes[4].yaxis.tick_right()
axes[4].yaxis.set_label_position("right")
In addition, you need to remove sns.despine(). Finally, there is now no need to set w_pad = -2, just use plt.tight_layout(pad=0, w_pad=0, h_pad=0)
Using this creates the following figure:

Creating a percentage countplot in python with pandas [duplicate]

I have a Pandas DataFrame with a column called "AXLES", which can take an integer value between 3-12. I am trying to use Seaborn's countplot() option to achieve the following plot:
left y axis shows the frequencies of these values occurring in the data. The axis extends are [0%-100%], tick marks at every 10%.
right y axis shows the actual counts, values correspond to tick marks determined by the left y axis (marked at every 10%.)
x axis shows the categories for the bar plots [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
Annotation on top of the bars show the actual percentage of that category.
The following code gives me the plot below, with actual counts, but I could not find a way to convert them into frequencies. I can get the frequencies using df.AXLES.value_counts()/len(df.index) but I am not sure about how to plug this information into Seaborn's countplot().
I also found a workaround for the annotations, but I am not sure if that is the best implementation.
Any help would be appreciated!
Thanks
plt.figure(figsize=(12,8))
ax = sns.countplot(x="AXLES", data=dfWIM, order=[3,4,5,6,7,8,9,10,11,12])
plt.title('Distribution of Truck Configurations')
plt.xlabel('Number of Axles')
plt.ylabel('Frequency [%]')
for p in ax.patches:
ax.annotate('%{:.1f}'.format(p.get_height()), (p.get_x()+0.1, p.get_height()+50))
EDIT:
I got closer to what I need with the following code, using Pandas' bar plot, ditching Seaborn. Feels like I'm using so many workarounds, and there has to be an easier way to do it. The issues with this approach:
There is no order keyword in Pandas' bar plot function as Seaborn's countplot() has, so I cannot plot all categories from 3-12 as I did in the countplot(). I need to have them shown even if there is no data in that category.
The secondary y-axis messes up the bars and the annotation for some reason (see the white gridlines drawn over the text and bars).
plt.figure(figsize=(12,8))
plt.title('Distribution of Truck Configurations')
plt.xlabel('Number of Axles')
plt.ylabel('Frequency [%]')
ax = (dfWIM.AXLES.value_counts()/len(df)*100).sort_index().plot(kind="bar", rot=0)
ax.set_yticks(np.arange(0, 110, 10))
ax2 = ax.twinx()
ax2.set_yticks(np.arange(0, 110, 10)*len(df)/100)
for p in ax.patches:
ax.annotate('{:.2f}%'.format(p.get_height()), (p.get_x()+0.15, p.get_height()+1))
You can do this by making a twinx axes for the frequencies. You can switch the two y axes around so the frequencies stay on the left and the counts on the right, but without having to recalculate the counts axis (here we use tick_left() and tick_right() to move the ticks and set_label_position to move the axis labels
You can then set the ticks using the matplotlib.ticker module, specifically ticker.MultipleLocator and ticker.LinearLocator.
As for your annotations, you can get the x and y locations for all 4 corners of the bar with patch.get_bbox().get_points(). This, along with setting the horizontal and vertical alignment correctly, means you don't need to add any arbitrary offsets to the annotation location.
Finally, you need to turn the grid off for the twinned axis, to prevent grid lines showing up on top of the bars (ax2.grid(None))
Here is a working script:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import matplotlib.ticker as ticker
# Some random data
dfWIM = pd.DataFrame({'AXLES': np.random.normal(8, 2, 5000).astype(int)})
ncount = len(dfWIM)
plt.figure(figsize=(12,8))
ax = sns.countplot(x="AXLES", data=dfWIM, order=[3,4,5,6,7,8,9,10,11,12])
plt.title('Distribution of Truck Configurations')
plt.xlabel('Number of Axles')
# Make twin axis
ax2=ax.twinx()
# Switch so count axis is on right, frequency on left
ax2.yaxis.tick_left()
ax.yaxis.tick_right()
# Also switch the labels over
ax.yaxis.set_label_position('right')
ax2.yaxis.set_label_position('left')
ax2.set_ylabel('Frequency [%]')
for p in ax.patches:
x=p.get_bbox().get_points()[:,0]
y=p.get_bbox().get_points()[1,1]
ax.annotate('{:.1f}%'.format(100.*y/ncount), (x.mean(), y),
ha='center', va='bottom') # set the alignment of the text
# Use a LinearLocator to ensure the correct number of ticks
ax.yaxis.set_major_locator(ticker.LinearLocator(11))
# Fix the frequency range to 0-100
ax2.set_ylim(0,100)
ax.set_ylim(0,ncount)
# And use a MultipleLocator to ensure a tick spacing of 10
ax2.yaxis.set_major_locator(ticker.MultipleLocator(10))
# Need to turn the grid on ax2 off, otherwise the gridlines end up on top of the bars
ax2.grid(None)
plt.savefig('snscounter.pdf')
I got it to work using core matplotlib's bar plot. I didn't have your data obviously, but adapting it to yours should be straight forward.
Approach
I used matplotlib's twin axis and plotted the data as bars on the second Axes object. The rest ist just some fiddeling around to get the ticks right and make annotations.
Hope this helps.
Code
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from mpl_toolkits.mplot3d import Axes3D
import seaborn as sns
tot = np.random.rand( 1 ) * 100
data = np.random.rand( 1, 12 )
data = data / sum(data,1) * tot
df = pd.DataFrame( data )
palette = sns.husl_palette(9, s=0.7 )
### Left Axis
# Plot nothing here, autmatically scales to second axis.
fig, ax1 = plt.subplots()
ax1.set_ylim( [0,100] )
# Remove grid lines.
ax1.grid( False )
# Set ticks and add percentage sign.
ax1.yaxis.set_ticks( np.arange(0,101,10) )
fmt = '%.0f%%'
yticks = matplotlib.ticker.FormatStrFormatter( fmt )
ax1.yaxis.set_major_formatter( yticks )
### Right Axis
# Plot data as bars.
x = np.arange(0,9,1)
ax2 = ax1.twinx()
rects = ax2.bar( x-0.4, np.asarray(df.loc[0,3:]), width=0.8 )
# Set ticks on x-axis and remove grid lines.
ax2.set_xlim( [-0.5,8.5] )
ax2.xaxis.set_ticks( x )
ax2.xaxis.grid( False )
# Set ticks on y-axis in 10% steps.
ax2.set_ylim( [0,tot] )
ax2.yaxis.set_ticks( np.linspace( 0, tot, 11 ) )
# Add labels and change colors.
for i,r in enumerate(rects):
h = r.get_height()
r.set_color( palette[ i % len(palette) ] )
ax2.text( r.get_x() + r.get_width()/2.0, \
h + 0.01*tot, \
r'%d%%'%int(100*h/tot), ha = 'center' )
I think you can first set the y major ticks manually and then modify each label
dfWIM = pd.DataFrame({'AXLES': np.random.randint(3, 10, 1000)})
total = len(dfWIM)*1.
plt.figure(figsize=(12,8))
ax = sns.countplot(x="AXLES", data=dfWIM, order=[3,4,5,6,7,8,9,10,11,12])
plt.title('Distribution of Truck Configurations')
plt.xlabel('Number of Axles')
plt.ylabel('Frequency [%]')
for p in ax.patches:
ax.annotate('{:.1f}%'.format(100*p.get_height()/total), (p.get_x()+0.1, p.get_height()+5))
#put 11 ticks (therefore 10 steps), from 0 to the total number of rows in the dataframe
ax.yaxis.set_ticks(np.linspace(0, total, 11))
#adjust the ticklabel to the desired format, without changing the position of the ticks.
_ = ax.set_yticklabels(map('{:.1f}%'.format, 100*ax.yaxis.get_majorticklocs()/total))

Hide axis label only, not entire axis, in Pandas plot

I can clear the text of the xlabel in a Pandas plot with:
plt.xlabel("")
Instead, is it possible to hide the label?
May be something like .xaxis.label.set_visible(False).
From the Pandas docs -
The plot method on Series and DataFrame is just a simple wrapper around plt.plot():
This means that anything you can do with matplolib, you can do with a Pandas DataFrame plot.
pyplot has an axis() method that lets you set axis properties. Calling plt.axis('off') before calling plt.show() will turn off both axes.
df.plot()
plt.axis('off')
plt.show()
plt.close()
To control a single axis, you need to set its properties via the plot's Axes. For the x axis - (pyplot.axes().get_xaxis().....)
df.plot()
ax1 = plt.axes()
x_axis = ax1.axes.get_xaxis()
x_axis.set_visible(False)
plt.show()
plt.close()
Similarly to control an axis label, get the label and turn it off.
df.plot()
ax1 = plt.axes()
x_axis = ax1.axes.get_xaxis()
x_axis.set_label_text('foo')
x_label = x_axis.get_label()
##print isinstance(x_label, matplotlib.artist.Artist)
x_label.set_visible(False)
plt.show()
plt.close()
You can also get to the x axis like this
ax1 = plt.axes()
x_axis = ax1.xaxis
x_axis.set_label_text('foo')
x_axis.label.set_visible(False)
Or this
ax1 = plt.axes()
ax1.xaxis.set_label_text('foo')
ax1.xaxis.label.set_visible(False)
DataFrame.plot
returns a matplotlib.axes.Axes or numpy.ndarray of them
so you can get it/them when you call it.
axs = df.plot()
.set_visible() is an Artist method. The axes and their labels are Artists so they have Artist methods/attributes as well as their own. There are many ways to customize your plots. Sometimes you can find the feature you want browsing the Gallery and Examples
You can remove axis labels and ticks using xlabel= or ylabel= arguments in the plot() call. For example, to remove the xlabel, use xlabel='':
df.plot(xlabel='');
To remove the x-axis ticks, use xticks=[] (for y-axis ticks, use yticks=):
df.plot(xticks=[]);
To remove both:
df.plot(xticks=[], xlabel='');

Categories

Resources