Why not train GANs like this? - python

I'm new to generative networks and I decided to first try it on my own before seeing up a code. These are the steps I used to train my GAN.
[lib: tensorflow]
1) Train a discriminator on the dataset. (I used a dataset of 2 features with labels of either 'mediatating' or 'not meditating', dataset: https://drive.google.com/open?id=0B5DaSp-aTU-KSmZtVmFoc0hRa3c )
2) Once the the discriminator is trained, save it.
3) Make another file with for another feed forward network (or any other depending on your dataset). This feed forward network is the generator.
4) Once the generator is constructed, restore the discriminator and define a loss function for generator such that it learns to fool the discriminator. (this didn't work in tensorflow because sess.run() doesn't return a tf tensor and the path between G and D breaks but should work when done from scratch)
d_output = sess.run(graph.get_tensor_by_name('ol:0'), feed_dict={graph.get_tensor_by_name('features_placeholder:0'): g_output})
print(d_output)
optimize_for = tf.constant([[0.0]*10]) #not meditating
g_loss = -tf.reduce_mean((d_output - optimize_for)**2)
train = tf.train.GradientDescentOptimizer(learning_rate).minimize(g_loss)
Why don't we train a generator like this? This seems so much simpler. It's true I couldn't manage to run this on tensorflow but this should be possible if I do from scratch.
Full code:
Discriminator:
import pandas as pd
import tensorflow as tf
from sklearn.utils import shuffle
data = pd.read_csv("E:/workspace_py/datasets/simdata/linear_data_train.csv")
learning_rate = 0.001
batch_size = 1
n_epochs = 1000
n_examples = 999 # This is highly unsatisfying >:3
n_iteration = int(n_examples/batch_size)
features = tf.placeholder('float', [None, 2], name='features_placeholder')
labels = tf.placeholder('float', [None, 1], name = 'labels_placeholder')
weights = {
'ol': tf.Variable(tf.random_normal([2, 1]), name = 'w_ol')
}
biases = {
'ol': tf.Variable(tf.random_normal([1]), name = 'b_ol')
}
ol = tf.nn.sigmoid(tf.add(tf.matmul(features, weights['ol']), biases['ol']), name = 'ol')
loss = tf.reduce_mean((labels - ol)**2, name = 'loss')
train = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for epoch in range(n_epochs):
ptr = 0
data = shuffle(data)
data_f = data.drop("lbl", axis = 1)
data_l = data.drop(["f1", "f2"], axis = 1)
for iteration in range(n_iteration):
epoch_x = data_f[ptr: ptr + batch_size]
epoch_y = data_l[ptr: ptr + batch_size]
ptr = ptr + batch_size
_, lss = sess.run([train, loss], feed_dict={features: epoch_x, labels:epoch_y})
print("Loss # epoch ", epoch, " = ", lss)
print("\nTesting...\n")
data = pd.read_csv("E:/workspace_py/datasets/simdata/linear_data_eval.csv")
test_data_l = data.drop(["f1", "f2"], axis = 1)
test_data_f = data.drop("lbl", axis = 1)
print(sess.run(ol, feed_dict={features: test_data_f}))
print(test_data_l)
print("Saving model...")
saver = tf.train.Saver()
saver.save(sess, save_path="E:/workspace_py/saved_models/meditation_disciminative_model.ckpt")
sess.close()
Generator:
import tensorflow as tf
# hyper parameters
learning_rate = 0.1
# batch_size = 1
n_epochs = 100
from numpy import random
noise = random.rand(10, 2)
print(noise)
# Model
input_placeholder = tf.placeholder('float', [None, 2])
weights = {
'hl1': tf.Variable(tf.random_normal([2, 3]), name = 'w_hl1'),
'ol': tf.Variable(tf.random_normal([3, 2]), name = 'w_ol')
}
biases = {
'hl1': tf.Variable(tf.zeros([3]), name = 'b_hl1'),
'ol': tf.Variable(tf.zeros([2]), name = 'b_ol')
}
hl1 = tf.add(tf.matmul(input_placeholder, weights['hl1']), biases['hl1'])
ol = tf.add(tf.matmul(hl1, weights['ol']), biases['ol'])
sess = tf.Session()
sess.run(tf.global_variables_initializer())
g_output = sess.run(ol, feed_dict={input_placeholder: noise})
# restoring discriminator
saver = tf.train.import_meta_graph("E:/workspace_py/saved_models/meditation_disciminative_model.ckpt.meta")
saver.restore(sess, tf.train.latest_checkpoint('E:/workspace_py/saved_models/'))
graph = tf.get_default_graph()
d_output = sess.run(graph.get_tensor_by_name('ol:0'), feed_dict={graph.get_tensor_by_name('features_placeholder:0'): g_output})
print(d_output)
optimize_for = tf.constant([[0.0]*10])
g_loss = -tf.reduce_mean((d_output - optimize_for)**2)
train = tf.train.GradientDescentOptimizer(learning_rate).minimize(g_loss)

The discriminator's purpose isn't to classify your original data, or really discriminate anything about your original data. Its sole purpose is to discriminate your generator's output from original output.
Think of an example of an art forger. Your dataset is all original paintings. Your generator network G is an art forger, and your discriminator D is a detective whose sole purpose in life is to find forgeries made by G.
D can't learn much just by looking at original paintings. What's really important for him is to figure out what sets G's forgeries apart from everything else. G can't make any money selling forgeries if all his pieces are discovered and marked as such by D, so he must learn how to thwart D.
This creates an environment where G is constantly trying to make his pieces look more "like" original artwork, and D is constantly getting better at finding the nuances to G's forgery style. The better D gets, the better G needs to be in order to make a living. They each get better at their task until they (theoretically) reach some Nash equilibrium defined by the complexity of the networks and the data they're trying to forge.
That's why D needs to be trained back-and-forth with G, because it needs to know and adapt to G's particular nuances (which change over time as G learns and adapts), not just find some average definition of "not forged". By making D hunt G specifically, you force G to become a better forger, and thus end up with a better generator network. If you just train D once, then G can learn some easy, obvious, unimportant way to beat D and never actually produce very good forgeries.

Related

Efficient example implementation of GPU-training of a simple feed-forward NN in TensorFlow? Maybe with tf.data?

I just started using the GPU version of TensorFlow hoping that it would speed up the training of my feed-forward neural networks. I am able to train on my GPU (GTX1080ti), but unfortunately it is not notably faster than doing the same training on my CPU (i7-8700K) the current way I’ve implemented it. During training, the GPU appears to barely be utilized at all, which makes me suspect that the bottleneck in my implementation is how the data is copied from the host to the device using feed_dict.
I’ve heard that TensorFlow has something called the “tf.data” pipeline which is supposed to make it easier and faster to feed data to GPUs etc. However I have not been able to find any simple examples where this concept is implemented into multilayer perceptron training as a replacement for feed_dict.
Is anyone aware of such an example and can point me to it? Preferably as simple as possible since I’m new to TensorFlow in general. Or is there something else I should change in my current implementation to make it more efficient? I’m pasting the code I have here:
import tensorflow as tf
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
tf.reset_default_graph()
import time
# Function for iris dataset.
def get_iris_data():
iris = datasets.load_iris()
data = iris["data"]
target = iris["target"]
# Convert to one-hot vectors
num_labels = len(np.unique(target))
all_Y = np.eye(num_labels)[target]
return train_test_split(data, all_Y, test_size=0.33, random_state=89)
# Function which initializes tensorflow weights & biases for feed-forward NN.
def InitWeights(LayerSizes):
with tf.device('/gpu:0'):
# Make tf placeholders for network inputs and outputs.
X = tf.placeholder( shape = (None,LayerSizes[0]),
dtype = tf.float32,
name ='InputData')
y = tf.placeholder( shape = (None,LayerSizes[-1]),
dtype = tf.float32,
name ='OutputData')
# Initialize weights and biases.
W = {}; b = {};
for ii in range(len(LayerSizes)-1):
layername = f'layer%s' % ii
with tf.variable_scope(layername):
ny = LayerSizes[ii]
nx = LayerSizes[ii+1]
# Weights (initialized with xavier initializatiion).
W['Weights_'+layername] = tf.get_variable(
name = 'Weights_'+layername,
shape = (ny, nx),
initializer = tf.contrib.layers.xavier_initializer(),
dtype = tf.float32
)
# Bias (initialized with xavier initializatiion).
b['Bias_'+layername] = tf.get_variable(
name = 'Bias_'+layername,
shape = (nx),
initializer = tf.contrib.layers.xavier_initializer(),
dtype = tf.float32
)
return W, b, X, y
# Function for forward propagation of NN.
def FeedForward(X, W, b):
with tf.device('/gpu:0'):
# Initialize 'a' of first layer to the placeholder of the network input.
a = X
# Loop all layers of the network.
for ii in range(len(W)):
# Use name of each layer as index.
layername = f'layer%s' % ii
## Weighted sum: z = input*W + b
z = tf.add(tf.matmul(a, W['Weights_'+layername], name = 'WeightedSum_z_'+layername), b['Bias_'+layername])
## Passed through actication fcn: a = h(z)
if ii == len(W)-1:
a = z
else:
a = tf.nn.relu(z, name = 'activation_a_'+layername)
return a
if __name__ == "__main__":
# Import data
train_X, test_X, train_y, test_y = get_iris_data()
# Define network size [ninputs-by-256-by-outputs]
LayerSizes = [4, 256, 3]
# Initialize weights and biases.
W, b, X, y = InitWeights(LayerSizes)
# Define loss function to optimize.
yhat = FeedForward(X, W, b)
loss = tf.reduce_sum(tf.square(y - yhat),reduction_indices=[0])
# Define optimizer to use when minimizing loss function.
all_variables = tf.trainable_variables()
optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.0001)
train_op = optimizer.minimize(loss, var_list = all_variables)
# Start tf session and initialize variables.
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# Train 10000 minibatches and time how long it takes.
t0 = time.time()
for i in range(10000):
ObservationsToUse = np.random.choice(len(train_X), 32)
X_minibatch = train_X[ObservationsToUse,:]
y_minibatch = train_y[ObservationsToUse,:]
sess.run(train_op, feed_dict={X : X_minibatch, y : y_minibatch})
t1 = time.time()
print('Training took %0.2f seconds' %(t1-t0))
sess.close()
The speed might be low because:
You are creating placeholders. Using numpy, we insert the data in the
placeholders and thereby they are converted to tensors of the graph.
By using tf.data.Dataset, you can create a direct pipeline which makes the data directly flow into the graph without the need of placeholders. They are fast, scalable and have a number of functions to play around with.
with np.load("/var/data/training_data.npy") as data:
features = data["features"]
labels = data["labels"]
# Assume that each row of `features` corresponds to the same row as `labels`.
assert features.shape[0] == labels.shape[0]
dataset = tf.data.Dataset.from_tensor_slices((features, labels))
Some useful functions :
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.batch(32) # Creating batches
dataset = dataset.repeat(num_epochs) # repeat the dataset 'N' times
iterator = dataset.make_one_shot_iterator() # Create a iterator to retrieve batches of data
X, Y = iterator.get_next()
Here, 32 is the batch size.
In your case,
dataset = tf.data.Dataset.from_tensor_slices((data, targets))
Hence, there is no need of placeholders. Directly run,
session.run( train_op ) # no feed_dict!!

Tensorflow: Simple 3D Convnet not learning

I am trying to create a simple 3D U-net for image segmentation, just to learn how to use the layers. Therefore I do a 3D convolution with stride 2 and then a transpose deconvolution to get back the same image size. I am also overfitting to a small set (test set) just to see if my network is learning.
I created the same net in Keras and it works just fine. Now I want to create in tensorflow but I been having trouble with it.
The cost changes slightly but no matter what I do (reduce learning rate, add more epochs, add more layers, change batch size...) the output is always the same. I believe the net is not updating the weights. I am sure I am doing something wrong but I can find what it is. Any help would be greatly appreciate it.
Here is my code:
def forward_propagation(X):
if ( mode == 'train'): print(" --------- Net --------- ")
# Convolutional Layer 1
with tf.variable_scope('CONV1'):
Z1 = tf.layers.conv3d(X, filters = 16, kernel =[3,3,3], strides = [ 2, 2, 2], padding='SAME', name = 'S2/conv3d')
A1 = tf.nn.relu(Z1, name = 'S2/ReLU')
if ( mode == 'train'): print("Convolutional Layer 1 S2 " + str(A1.get_shape()))
# DEConvolutional Layer 1
with tf.variable_scope('DeCONV1'):
output_deconv1 = tf.stack([X.get_shape()[0] , X.get_shape()[1], X.get_shape()[2], X.get_shape()[3], 1])
dZ1 = tf.nn.conv3d_transpose(A1, filters = 1, kernel =[3,3,3], strides = [2, 2, 2], padding='SAME', name = 'S2/conv3d_transpose')
dA1 = tf.nn.relu(dZ1, name = 'S2/ReLU')
if ( mode == 'train'): print("Deconvolutional Layer 1 S1 " + str(dA1.get_shape()))
return dA1
def compute_cost(output, target, method = 'dice_hard_coe'):
with tf.variable_scope('COST'):
if (method == 'sigmoid_cross_entropy') :
# Make them vectors
output = tf.reshape( output, [-1, output.get_shape().as_list()[0]] )
target = tf.reshape( target, [-1, target.get_shape().as_list()[0]] )
loss = tf.nn.sigmoid_cross_entropy_with_logits(logits = output, labels = target)
cost = tf.reduce_mean(loss)
return cost
and the main function for the model:
def model(X_h5, Y_h5, learning_rate = 0.009,
num_epochs = 100, minibatch_size = 64, print_cost = True):
ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables
#tf.set_random_seed(1) # to keep results consistent (tensorflow seed)
#seed = 3 # to keep results consistent (numpy seed)
(m, n_D, n_H, n_W, num_channels) = X_h5["test_data"].shape #TTT
num_labels = Y_h5["test_mask"].shape[4] #TTT
img_size = Y_h5["test_mask"].shape[1] #TTT
costs = [] # To keep track of the cost
accuracies = [] # To keep track of the accuracy
# Create Placeholders of the correct shape
X, Y = create_placeholders(n_H, n_W, n_D, minibatch_size)
# Forward propagation: Build the forward propagation in the tensorflow graph
nn_output = forward_propagation(X)
prediction = tf.nn.sigmoid(nn_output)
# Cost function: Add cost function to tensorflow graph
cost_method = 'sigmoid_cross_entropy'
cost = compute_cost(nn_output, Y, cost_method)
# Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
# Initialize all the variables globally
init = tf.global_variables_initializer()
# Start the session to compute the tensorflow graph
with tf.Session() as sess:
print('------ Training ------')
# Run the initialization
tf.local_variables_initializer().run(session=sess)
sess.run(init)
# Do the training loop
for i in range(num_epochs*m):
# ----- TRAIN -------
current_epoch = i//m
patient_start = i-(current_epoch * m)
patient_end = patient_start + minibatch_size
current_X_train = np.zeros((minibatch_size, n_D, n_H, n_W,num_channels))
current_X_train[:,:,:,:,:] = np.array(X_h5["test_data"][patient_start:patient_end,:,:,:,:]) #TTT
current_X_train = np.nan_to_num(current_X_train) # make nan zero
current_Y_train = np.zeros((minibatch_size, n_D, n_H, n_W, num_labels))
current_Y_train[:,:,:,:,:] = np.array(Y_h5["test_mask"][patient_start:patient_end,:,:,:,:]) #TTT
current_Y_train = np.nan_to_num(current_Y_train) # make nan zero
feed_dict = {X: current_X_train, Y: current_Y_train}
_ , temp_cost = sess.run([optimizer, cost], feed_dict=feed_dict)
# ----- TEST -------
# Print the cost every 1/5 epoch
if ((i % (num_epochs*m/5) )== 0):
# Calculate the predictions
test_predictions = np.zeros(Y_h5["test_mask"].shape)
for j in range(0, X_h5["test_data"].shape[0], minibatch_size):
patient_start = j
patient_end = patient_start + minibatch_size
current_X_test = np.zeros((minibatch_size, n_D, n_H, n_W, num_channels))
current_X_test[:,:,:,:,:] = np.array(X_h5["test_data"][patient_start:patient_end,:,:,:,:])
current_X_test = np.nan_to_num(current_X_test) # make nan zero
current_Y_test = np.zeros((minibatch_size, n_D, n_H, n_W, num_labels))
current_Y_test[:,:,:,:,:] = np.array(Y_h5["test_mask"][patient_start:patient_end,:,:,:,:])
current_Y_test = np.nan_to_num(current_Y_test) # make nan zero
feed_dict = {X: current_X_test, Y: current_Y_test}
_, current_prediction = sess.run([cost, prediction], feed_dict=feed_dict)
test_predictions[j:j + minibatch_size,:,:,:,:] = current_prediction
costs.append(temp_cost)
print ("[" + str(current_epoch) + "|" + str(num_epochs) + "] " + "Cost : " + str(costs[-1]))
display_progress(X_h5["test_data"], Y_h5["test_mask"], test_predictions, 5, n_H, n_W)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('epochs')
plt.show()
return
I call the model with:
model(hdf5_data_file, hdf5_mask_file, num_epochs = 500, minibatch_size = 1, learning_rate = 1e-3)
These are the results that I am currently getting:
Edit:
I have tried reducing the learning rate and it doesn't help. I also tried using tensorboard debug and the weights are not being updated:
I am not sure why this is happening.
I Created the same simple model in keras and it works fine. I am not sure what I am doing wrong in tensorflow.
Not sure if you are still looking for help, as I am answering this question half a year later your posted date. :) I've listed my observations and also some suggestions for you to try below. It my primary observation is right... then you probably just need a coffee break / a night of good sleep.
primary observation:
tf.reshape( output, [-1, output.get_shape().as_list()[0]] ) seems wrong. If you prefer to flatten the vector, it should be something like tf.reshape(output,[-1,np.prod(image_shape_list)]).
other observations:
With such a shallow network, I doubt the network have enough spatial resolution to differentiate tumor voxels from non-tumor voxels. Can you show the keras implementation and the performance compared to a pure tf implementation? I would probably go with 2+ layers, let's .
say with 3 layers, with a stride of 2 per layer, and an input image width of 256, you will end with a width of 32 at your deepest encoder layer. (If you have a limited GPU memory, downsample the input image.)
if changing the loss computation does not work, as #bremen_matt mentioned, reduce LR to say maybe 1e-5.
after the basic architecture tweaks and you "feel" that the network is sort of learning and not stuck, try augmenting the training data, add dropout, batch norm during training, and then maybe fancy up your loss by adding a discriminator.

Why does my SRGAN (using PyTorch) result look similar to SRResNet results?

SRGAN was implemented using PyTorch.
Generator pre-train was conducted in 100 times and the SRGAN train was conducted in 200 times.
The code is a combination of the existing github codes.
For the content loss, MSELoss () in PyTorch was used and BCELoss () in PyTorch was used for adversarial loss.
When I ran code, LossD converges to 0, and LossG oscillates around a certain value. So I stopped training because I thought it was not training anymore.
If the training is 1e5 as in the paper, will the result change? Or is it a matter of loss function?
Below is the SRGAN training code.
print('Adversarial training')
for epoch in range(NUM_EPOCHS):
train_bar = tqdm(train_loader)
running_results = {'batch_sizes': 0, 'd_loss': 0, 'g_loss': 0, 'd_score': 0, 'g_score': 0}
# train_bar = tqdm(train_loader)
for data, target in train_bar:
batch_size = data.size(0)
running_results['batch_sizes'] += batch_size
target_real = Variable(torch.ones(batch_size, 1))
target_fake = Variable(torch.zeros(batch_size, 1))
if torch.cuda.is_available():
target_real = target_real.cuda()
target_fake = target_fake.cuda()
real_img = Variable(target)
z = Variable(data)
# Generate real and fake inputs
if torch.cuda.is_available():
inputsD_real = real_img.cuda()
inputsD_fake = netG(z.cuda())
else:
inputsD_real = real_img
inputsD_fake = netG(z)
######### Train discriminator #########
netD.zero_grad()
# With real data
outputs = netD(inputsD_real)
D_real = outputs.data.mean()
lossD_real = adversarial_criterion(outputs, target_real)
# With fake data
outputs = netD(inputsD_fake.detach()) # Don't need to compute gradients wrt weights of netG (for efficiency)
D_fake = outputs.data.mean()
lossD_fake = adversarial_criterion(outputs, target_fake)
lossD_total = lossD_real + lossD_fake
lossD_total.backward()
# Update discriminator weights
optimizerD.step()
######### Train generator #########
netG.zero_grad()
real_features = Variable(feature_extractor(inputsD_real).data)
fake_features = feature_extractor(inputsD_fake)
lossG_vgg19 = content_criterion(fake_features, real_features)
lossG_adversarial = adversarial_criterion(netD(inputsD_fake).detach(), target_real)
lossG_mse = content_criterion(inputsD_fake, inputsD_real)
lossG_total = lossG_mse + 2e-6 * lossG_vgg19 + 0.001 * lossG_adversarial
lossG_total.backward()
# Update generator weights
optimizerG.step()
If you use the classic GAN model for alternate training, this situation is inevitable, try to change the training method

Tensorflow: classification only based on first input

Getting to know Tensorflow, I built a toy network for classification. It consists of 15 input nodes for features identical to the one-hot encoding of the corresponding class label (with indexing beginning at 1) - so the data to be loaded from an input CSV may look like this:
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2
...
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,15
The network has only one hidden layer and an output layer, the latter containing probabilities for a given class. Here's my problem: during training the network assings a growing probability for whatever was fed in as the very first input.
Here are the relevant lines of code (some lines are omitted):
# number_of_p : number of samples
# number_of_a : number of attributes (features) -> 15
# number_of_s : number of styles (labels) -> 15
# function for generating hidden layers
# nodes is a list of nodes in each layer (len(nodes) = number of hidden layers)
def hidden_generation(nodes):
hidden_nodes = [number_of_a] + nodes + [number_of_s]
number_of_layers = len(hidden_nodes) - 1
print(hidden_nodes)
hidden_layer = list()
for i in range (0,number_of_layers):
hidden_layer.append(tf.zeros([hidden_nodes[i],batch_size]))
hidden_weights = list()
for i in range (0,number_of_layers):
hidden_weights.append(tf.Variable(tf.random_normal([hidden_nodes[i+1], hidden_nodes[i]])))
hidden_biases = list()
for i in range (0,number_of_layers):
hidden_biases.append(tf.Variable(tf.zeros([hidden_nodes[i+1],batch_size])))
return hidden_layer, hidden_weights, hidden_biases
#loss function
def loss(labels, logits):
cross_entropy = tf.losses.softmax_cross_entropy(
onehot_labels = labels, logits = logits)
return tf.reduce_mean(cross_entropy, name = 'xentropy_mean')
hidden_layer, hidden_weights, hidden_biases = hidden_generation(hidden_layers)
with tf.Session() as training_sess:
training_sess.run(tf.global_variables_initializer())
training_sess.run(a_iterator.initializer, feed_dict = {a_placeholder_feed: training_set.data})
current_a = training_sess.run(next_a)
training_sess.run(s_iterator.initializer, feed_dict = {s_placeholder_feed: training_set.target})
current_s = training_sess.run(next_s)
s_one_hot = training_sess.run(tf.one_hot((current_s - 1), number_of_s))
for i in range (1,len(hidden_layers)+1):
hidden_layer[i] = tf.tanh(tf.matmul(hidden_weights[i-1], (hidden_layer[i-1])) + hidden_biases[i-1])
output = tf.nn.softmax(tf.transpose(tf.matmul(hidden_weights[-1],hidden_layer[-1]) + hidden_biases[-1]))
optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.1)
# using the AdamOptimizer does not help, nor does choosing a much bigger and smaller learning rate
train = optimizer.minimize(loss(s_one_hot, output))
training_sess.run(train)
for i in range (0, (number_of_p)):
current_a = training_sess.run(next_a)
current_s = training_sess.run(next_s)
s_one_hot = training_sess.run(tf.transpose(tf.one_hot((current_s - 1), number_of_s)))
# (no idea why I have to declare those twice for the datastream to move)
training_sess.run(train)
I assume the loss function is being declared at the wrong place and always references the same vectors. However, replacing the loss function did not help me by now.
I will gladly provide the rest of the code if anyone is kind enough to help me.
EDIT: I've already discovered and fixed one major (and dumb) mistake: weights go before values node values in tf.matmul.
You do not want to be declaring the training op over and over again. That is unnecessary and like you pointed out is slower. You are not feeding your current_a into the neural net. So you are not going to be getting new outputs, also how you are using iterators isn't correct which could also be the cause of the problem.
with tf.Session() as training_sess:
training_sess.run(tf.global_variables_initializer())
training_sess.run(a_iterator.initializer, feed_dict = {a_placeholder_feed: training_set.data})
current_a = training_sess.run(next_a)
training_sess.run(s_iterator.initializer, feed_dict = {s_placeholder_feed: training_set.target})
current_s = training_sess.run(next_s)
s_one_hot = training_sess.run(tf.one_hot((current_s - 1), number_of_s))
for i in range (1,len(hidden_layers)+1):
hidden_layer[i] = tf.tanh(tf.matmul(hidden_weights[i-1], (hidden_layer[i-1])) + hidden_biases[i-1])
output = tf.nn.softmax(tf.transpose(tf.matmul(hidden_weights[-1],hidden_layer[-1]) + hidden_biases[-1]))
optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.1)
# using the AdamOptimizer does not help, nor does choosing a much bigger and smaller learning rate
train = optimizer.minimize(loss(s_one_hot, output))
training_sess.run(train)
for i in range (0, (number_of_p)):
current_a = training_sess.run(next_a)
current_s = training_sess.run(next_s)
s_one_hot = training_sess.run(tf.transpose(tf.one_hot((current_s - 1), number_of_s)))
# (no idea why I have to declare those twice for the datastream to move)
training_sess.run(train)
Here is some pseudocode to help you get the correct data flow. I would do the one hot encoding prior to this just to make things easier for loading the data during training.
train_dataset = tf.data.Dataset.from_tensor_slices((inputs, targets))
train_dataset = train_dataset.batch(batch_size)
train_dataset = train_dataset.repeat(num_epochs)
iterator = train_dataset.make_one_shot_iterator()
next_inputs, next_targets = iterator.get_next()
# Define Training procedure
global_step = tf.Variable(0, name="global_step", trainable=False)
loss = Neural_net_function(next_inputs, next_targets)
optimizer = tf.train.AdamOptimizer(learning_rate)
grads_and_vars = optimizer.compute_gradients(loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
with tf.Session() as training_sess:
for i in range(number_of_training_samples * num_epochs):
taining_sess.run(train_op)
Solved it! Backpropagation works properly when the training procedure is redeclared for every new dataset.
for i in range (0, (number_of_p)):
current_a = training_sess.run(next_a)
current_s = training_sess.run(next_s)
s_one_hot = training_sess.run(tf.transpose(tf.one_hot((current_s - 1), number_of_s)))
optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.1)
train = optimizer.minimize(loss(s_one_hot, output))
training_sess.run(train)
...makes training considerably slower, but it works.

Editing TensorFlow Source to fix unbalanced data

I have highly unbalanced data in a two class problem that I am trying to use TensorFlow to solve with a NN. I was able to find a posting that exactly described the difficulty that I'm having and gave a solution which appears to address my problem. However I'm working with an assistant, and neither of us really knows python and so TensorFlow is being used like a black box for us. I have extensive (decades) of experience working in a variety of programming languages in various paradigms. That experience allows me to have a pretty good intuitive grasp of what I see happening in the code my assistant cobbled together to get a working model, but neither of us can follow what is going on enough to be able to tell exactly where in TensorFlow we need to make edits to get what we want.
I'm hoping someone with a good knowledge of Python and TensorFlow can look at this and just tell us something like, "Hey, just edit the file called xxx and at the lines at yyy," so we can get on with it.
Below, I have a link to the solution we want to implement, and I've also included the code my assistant wrote that initially got us up and running. Our code produces good results when our data is balanced, but when highly imbalanced, it tends to classify everything skewed to the larger class to get better results.
Here is a link to the solution we found that looks promising:
Loss function for class imbalanced binary classifier in Tensor flow
I've included the relevant code from this link below. Since I know that where we make these edits will depend on how we are using TensorFlow, I've also included our implementation immediately under it in the same code block with appropriate comments to make it clear what we want to add and what we are currently doing:
# Here is the stuff we need to add some place in the TensorFlow source code:
ratio = 31.0 / (500.0 + 31.0)
class_weight = tf.constant([[ratio, 1.0 - ratio]])
logits = ... # shape [batch_size, 2]
weight_per_label = tf.transpose( tf.matmul(labels
, tf.transpose(class_weight)) ) #shape [1, batch_size]
# this is the weight for each datapoint, depending on its label
xent = tf.mul(weight_per_label
, tf.nn.softmax_cross_entropy_with_logits(logits, labels, name="xent_raw") #shape [1, batch_size]
loss = tf.reduce_mean(xent) #shape 1
# NOW HERE IS OUR OWN CODE TO SHOW HOW WE ARE USING TensorFlow:
# (Obviously this is not in the same file in real life ...)
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf
import numpy as np
from math import exp
from PreProcessData import load_and_process_training_Data,
load_and_process_test_data
from PrintUtilities import printf, printResultCompare
tf.set_random_seed(0)
#==============================================================
# predefine file path
''' Unbalanced Training Data, hence there are 1:11 target and nontarget '''
targetFilePath = '/Volumes/Extend/BCI_TestData/60FeaturesVersion/Train1-35/tar.txt'
nontargetFilePath = '/Volumes/Extend/BCI_TestData/60FeaturesVersion/Train1-35/nontar.txt'
testFilePath = '/Volumes/Extend/BCI_TestData/60FeaturesVersion/Test41/feats41.txt'
labelFilePath = '/Volumes/Extend/BCI_TestData/60FeaturesVersion/Test41/labs41.txt'
# train_x,train_y =
load_and_process_training_Data(targetFilePath,nontargetFilePath)
train_x, train_y =
load_and_process_training_Data(targetFilePath,nontargetFilePath)
# test_x,test_y = load_and_process_test_data(testFilePath,labelFilePath)
test_x, test_y = load_and_process_test_data(testFilePath,labelFilePath)
# trained neural network path
save_path = "nn_saved_model/model.ckpt"
# number of classes
n_classes = 2 # in this case, target or non_target
# number of hidden layers
num_hidden_layers = 1
# number of nodes in each hidden layer
nodes_in_layer1 = 40
nodes_in_layer2 = 100
nodes_in_layer3 = 30 # We think: 3 layers is dangerous!! try to avoid it!!!!
# number of data features in each blocks
block_size = 3000 # computer may not have enough memory, so we divide the train into blocks
# number of times we iterate through training data
total_iterations = 1000
# terminate training if computed loss < supposed loss
expected_loss = 0.1
# max learning rate and min learnign rate
max_learning_rate = 0.002
min_learning_rate = 0.0002
# These are placeholders for some values in graph
# tf.placeholder(dtype, shape=None(optional), name=None(optional))
# It's a tensor to hold our datafeatures
x = tf.placeholder(tf.float32, [None,len(train_x[0])])
# Every row has either [1,0] for targ or [0,1] for non_target. placeholder to hold one hot value
Y_C = tf.placeholder(tf.int8, [None, n_classes])
# variable learning rate
lr = tf.placeholder(tf.float32)
# neural network model
def neural_network_model(data):
if (num_hidden_layers == 1):
# layers contain weights and bias for case like all neurons fired a 0 into the layer, we will need result out
# When using RELUs, make sure biases are initialised with small *positive* values for example 0.1 = tf.ones([K])/10
hidden_1_layer = {'weights': tf.Variable(tf.random_normal([len(train_x[0]), nodes_in_layer1])),
'bias': tf.Variable(tf.ones([nodes_in_layer1]) / 10)}
# no more bias when come to the output layer
output_layer = {'weights': tf.Variable(tf.random_normal([nodes_in_layer1, n_classes])),
'bias': tf.Variable(tf.zeros([n_classes]))}
# multiplication of the raw input data multipled by their unique weights (starting as random, but will be optimized)
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['bias'])
l1 = tf.nn.relu(l1)
# We repeat this process for each of the hidden layers, all the way down to our output, where we have the final values still being the multiplication of the input and the weights, plus the output layer's bias values.
Ylogits = tf.matmul(l1, output_layer['weights']) + output_layer['bias']
if (num_hidden_layers == 2):
# layers contain weights and bias for case like all neurons fired a 0 into the layer, we will need result out
# When using RELUs, make sure biases are initialised with small *positive* values for example 0.1 = tf.ones([K])/10
hidden_1_layer = {'weights': tf.Variable(tf.random_normal([len(train_x[0]), nodes_in_layer1])),
'bias': tf.Variable(tf.ones([nodes_in_layer1]) / 10)}
hidden_2_layer = {'weights': tf.Variable(tf.random_normal([nodes_in_layer1, nodes_in_layer2])),
'bias': tf.Variable(tf.ones([nodes_in_layer2]) / 10)}
# no more bias when come to the output layer
output_layer = {'weights': tf.Variable(tf.random_normal([nodes_in_layer2, n_classes])),
'bias': tf.Variable(tf.zeros([n_classes]))}
# multiplication of the raw input data multipled by their unique weights (starting as random, but will be optimized)
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['bias'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), hidden_2_layer['bias'])
l2 = tf.nn.relu(l2)
# We repeat this process for each of the hidden layers, all the way down to our output, where we have the final values still being the multiplication of the input and the weights, plus the output layer's bias values.
Ylogits = tf.matmul(l2, output_layer['weights']) + output_layer['bias']
if (num_hidden_layers == 3):
# layers contain weights and bias for case like all neurons fired a 0 into the layer, we will need result out
# When using RELUs, make sure biases are initialised with small *positive* values for example 0.1 = tf.ones([K])/10
hidden_1_layer = {'weights':tf.Variable(tf.random_normal([len(train_x[0]), nodes_in_layer1])), 'bias':tf.Variable(tf.ones([nodes_in_layer1]) / 10)}
hidden_2_layer = {'weights':tf.Variable(tf.random_normal([nodes_in_layer1, nodes_in_layer2])), 'bias':tf.Variable(tf.ones([nodes_in_layer2]) / 10)}
hidden_3_layer = {'weights':tf.Variable(tf.random_normal([nodes_in_layer2, nodes_in_layer3])), 'bias':tf.Variable(tf.ones([nodes_in_layer3]) / 10)}
# no more bias when come to the output layer
output_layer = {'weights':tf.Variable(tf.random_normal([nodes_in_layer3, n_classes])), 'bias':tf.Variable(tf.zeros([n_classes]))}
# multiplication of the raw input data multipled by their unique weights (starting as random, but will be optimized)
l1 = tf.add(tf.matmul(data,hidden_1_layer['weights']), hidden_1_layer['bias'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1,hidden_2_layer['weights']), hidden_2_layer['bias'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2,hidden_3_layer['weights']), hidden_3_layer['bias'])
l3 = tf.nn.relu(l3)
# We repeat this process for each of the hidden layers, all the way down to our output, where we have the final values still being the multiplication of the input and the weights, plus the output layer's bias values.
Ylogits = tf.matmul(l3,output_layer['weights']) + output_layer['bias']
return Ylogits # return the neural network model
# set up the training process
def train_neural_network(x):
# produce the prediction base on output of nn model
Ylogits = neural_network_model(x)
# measure the error use build in cross entropy function, the value that we want to minimize
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Ylogits, labels=Y_C))
# To optimize our cost (cross_entropy), reduce error, default learning_rate is 0.001, but you can change it, this case we use default
# optimizer = tf.train.GradientDescentOptimizer(0.003)
optimizer = tf.train.AdamOptimizer(lr)
train_step = optimizer.minimize(cross_entropy)
# start the session
with tf.Session() as sess:
# We initialize all of our variables first before start
sess.run(tf.global_variables_initializer())
# iterate epoch count time (cycles of feed forward and back prop), each epoch means neural see through all train_data once
for epoch in range(total_iterations):
# count the total cost per epoch, declining mean better result
epoch_loss=0
i=0
decay_speed = 150
# current learning rate
learning_rate = min_learning_rate + (max_learning_rate - min_learning_rate) * exp(-epoch/decay_speed)
# divide the dataset in to data_set/batch_size in case run out of memory
while i < len(train_x):
# load train data
start = i
end = i + block_size
batch_x = np.array(train_x[start:end])
batch_y = np.array(train_y[start:end])
train_data = {x: batch_x, Y_C: batch_y, lr: learning_rate}
# train
# sess.run(train_step,feed_dict=train_data)
# run optimizer and cost against batch of data.
_, c = sess.run([train_step, cross_entropy], feed_dict=train_data)
epoch_loss += c
i+=block_size
# print iteration status
printf("epoch: %5d/%d , loss: %f", epoch, total_iterations, epoch_loss)
# terminate training when loss < expected_loss
if epoch_loss < expected_loss:
break
# how many predictions we made that were perfect matches to their labels
# test model
# test data
test_data = {x:test_x, Y_C:test_y}
# calculate accuracy
correct_prediction = tf.equal(tf.argmax(Ylogits, 1), tf.argmax(Y_C, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
print('Accuracy:',accuracy.eval(test_data))
# result matrix, return the position of 1 in array
result = (sess.run(tf.argmax(Ylogits.eval(feed_dict=test_data),1)))
answer = []
for i in range(len(test_y)):
if test_y[i] == [0,1]:
answer.append(1)
elif test_y[i]==[1,0]:
answer.append(0)
answer = np.array(answer)
printResultCompare(result,answer)
# save the prediction of correctness
np.savetxt('nn_prediction.txt', Ylogits.eval(feed_dict={x: test_x}), delimiter=',',newline="\r\n")
# save the nn model for later use again
# 'Saver' op to save and restore all the variables
saver = tf.train.Saver()
saver.save(sess, save_path)
#print("Model saved in file: %s" % save_path)
# load the trained neural network model
def test_loaded_neural_network(trained_NN_path):
Ylogits = neural_network_model(x)
saver = tf.train.Saver()
with tf.Session() as sess:
# load saved model
saver.restore(sess, trained_NN_path)
print("Loading variables from '%s'." % trained_NN_path)
np.savetxt('nn_prediction.txt', Ylogits.eval(feed_dict={x: test_x}), delimiter=',',newline="\r\n")
# test model
# result matrix
result = (sess.run(tf.argmax(Ylogits.eval(feed_dict={x:test_x}),1)))
# answer matrix
answer = []
for i in range(len(test_y)):
if test_y[i] == [0,1]:
answer.append(1)
elif test_y[i]==[1,0]:
answer.append(0)
answer = np.array(answer)
printResultCompare(result,answer)
# calculate accuracy
correct_prediction = tf.equal(tf.argmax(Ylogits, 1), tf.argmax(Y_C, 1))
print(Ylogits.eval(feed_dict={x: test_x}).shape)
train_neural_network(x)
#test_loaded_neural_network(save_path)
So, can anyone help point us to the right place to make the edits that we need to make to resolve our problem? (i.e. what is the name of the file we need to edit, and where is it located.) Thanks in advance!
-gt-
The answer you want:
You should add these codes in your train_neural_network(x) function.
ratio = (num of classes 1) / ((num of classes 0) + (num of classes 1))
class_weight = tf.constant([[ratio, 1.0 - ratio]])
Ylogits = neural_network_model(x)
weight_per_label = tf.transpose( tf.matmul(Y_C , tf.transpose(class_weight)) )
cross_entropy = tf.reduce_mean( tf.mul(weight_per_label, tf.nn.softmax_cross_entropy_with_logits(logits=Ylogits, labels=Y_C) ) )
optimizer = tf.train.AdamOptimizer(lr)
train_step = optimizer.minimize(cross_entropy)
instead of these lines:
Ylogits = neural_network_model(x)
# measure the error use build in cross entropy function, the value that we want to minimize
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Ylogits, labels=Y_C))
# To optimize our cost (cross_entropy), reduce error, default learning_rate is 0.001, but you can change it, this case we use default
# optimizer = tf.train.GradientDescentOptimizer(0.003)
optimizer = tf.train.AdamOptimizer(lr)
train_step = optimizer.minimize(cross_entropy)
More Details:
Since in neural network, we calculate the error of prediction with respect to the targets( the true labels ), in your case, you use the cross entropy error which finds the sum of targets multiple Log of predicted probabilities.
The optimizer of network backpropagates to minimize the error to achieve more accuracy.
Without weighted loss, the weight for each class are equals, so optimizer reduce the error for the classes which have more amount and overlook the other class.
So in order to prevent this phenomenon, we should force the optimizer to backpropogate larger error for class with small amount, to do this we should multiply the errors with a scalar.
I hope it was useful :)

Categories

Resources